

A Case Study in Modeling a Fault-tolerant Satellite System
through Implementation of Dynamic Reconfiguration via Handshake

Kashif Javed
Turku Centre for Computer Science (TUCS)

Department of Information Technologies
Abo Akademi University

Turku, FIN-20520, Finland
Kashif.Javed@abo.fi

Elena Troubitsyna
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland
Elena.Troubitsyna@abo.fi

Abstract— Fault tolerance of satellite systems is critical for
ensuring the success of the space mission. To minimize
redundancy of the on-board equipment, the satellite systems
should rely on dynamic reconfiguration in case of failures of
some of their components. In this paper, modeling and
implementation of a handshake procedure has been presented
that becomes a crucial part of the dynamic reconfiguration
process of a satellite subsystem for data processing. The model
for handshake methodology is specialized software for quickly
and successfully recovering from the crisis and failure situation
of the satellite system.

Keywords – dynamic reconfiguration; fault tolerance; advanced
software for handshake procedure; modeling and verification.

I. INTRODUCTION
To ensure high reliability during long-term missions, the

satellite systems rely on redundancy to achieve fault
tolerance and guarantee that the system would be able to
deliver its services despite component failures. However,
the use of redundancy in the satellites is restricted by the
constraints put on the weight and volume of the on-board
equipment.

Despite a careful analysis performed to ensure the
desired degree of reliability, recently one of the satellites
has experienced a double-failure problem with a system that
samples and packages scientific data [6]. The system
consisted of two identical modules. When one of the
subcomponents of the first module failed, the system
switched to the use of the second module. However, after a
while a subcomponent of the spare module also failed, so it
became impossible to produce scientific data. In order to
avoid failure of the entire mission, the company controlling
the operation of the system has invented a solution that
relies on healthy subcomponents of both modules and
provides complex communication mechanism based on the
handshake procedure to restore functioning and to resume
production of scientific data.

In this paper, we present a case study in modeling and
implementation of Control and Data Management Unit
(CDMU) [1] - a generic subsystem of satellites. In
particular, we focus on modeling fault tolerance aspect of
the system that is implemented as a handshake procedure
between two redundant systems. This mechanism is

introduced to achieve the dynamic reconfiguration. For this
purpose, a formal model of the handshake procedure has
been designed and implemented in Promela. Handshake
modeling is an advanced software application to deal with
dynamic reconfiguration for ensuring fault-tolerance when
the mission-critical satellite system encounters faults in its
component and errors in data communication.

This paper is structured as follows. Section II describes
the state-of-the-art model of CDMU and Section III presents
the architecture of the control and data management unit.
Section IV describes the handshake procedure performed to
reconfigure the system from simple redundant two-module
architecture to the Master-Slave architecture. The proposed
system model for handshake is explained in Section V
covering all relevant details of master and slave modules.
Section VI discusses the handshake model between the two
reconfiguration modules that has been implemented and
verified using SPIN/PROMELA. Finally, conclusions and
future work are summarized in Section VII.

II. STATE-OF-THE-ART MODEL
CDMU is a state-of-the-art platform to monitor and

control the satellites system and to organize the collected
on-board data. The major objective of CDMU is to acquire
and transmit the data to the ground after carrying out
appropriate processing. Moreover, it also distributes and
decodes the given commands to its all redundant systems
consisting of processor, reconfiguration and telemetry
modules. Whenever any failure or data error takes place
during the operation of the satellite system, there is an
emergent requirement to dynamically reconfigure the
components of CDMU for its smooth and crisis-free control
and data management. Processing and storing of satellite
data at the right time is of top-most importance during the
working and recovery procedure of the proposed system. In
case of experiencing any failure, the implemented CDMU
structure and the developed model of handshake procedure
immediately adapts to the well-defined and specialized
switchover mechanism for shifting from one redundant
processor to another in order to reconfigure and provide safe
operation of the satellite system during its critical mission.

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

III. ARCHITECTURE
The CDMU consists of two Processor Modules (PM1

and PM2), two Reconfiguration Modules (RM1 and RM2),
and two Telemetry Modules (TMM1 and TMM2). It their
own turns, each PM consists of Random Access Memory
(RAM), Integer Unit (IU), Floating Point Unit (FPU), and
Erasable Electrically Programmable Memory (EEPROM).
Each Reconfiguration Module (RM) has two components --
Mass Memory (MM) and On-Board Reference Time
(OBRT). Telemetry Modules generate Telemetries (TMs)
that are processed by Processor Modules.

In CDMU, only one Processor Module (PM1 or PM2) is
in active mode and can access one or both RM1 and RM2.
TMs are received by the active processor module and
accumulated only in MM of its local RM. However, TMs
can be retrieved from the MM of partner RM after switching
is done from one processor module to another. When each
particular PM has experienced a failure, the Master and
Slave policy is introduced for error recovery. It aims at
ensuring that the CDMU functionality can be preserved
even when failures are present in the system.

In our case study, we consider the following two
consecutive errors in CDMU that might occur during the
execution of the system:

1) PM1 fails due to the failure in FPU.
2) TM ceases to function due to the failure in the link

between TMM2 and PM2.

The basis of the Master and the Slave is to prepare a
work-around in order to address above mentioned failures.
In this case, PM1 and PM2 are converted into the Slave and
the Master respectively. Similarly, Master and Slave
comprise of the functional program running in PM2 and
PM1 respectively and it is mainly established to execute the
system without the FPU and connection link.

At a time, both the Master and the Slave interface with
RM1 and RM2, respectively, as shown in the CDMU
structure. However, RM1 and RM2 are not capable to hold
simultaneous access to both of them.

Despite the error in the connection link of PM2, the PM2
is still in operational mode and stores TM in the MM.
Similarly, PM1 is also in operational mode by using only IU
program (without FPU) that recovers TM from the MM and
sends to the operator. The operator interacts with the Master
and the Slave by sending Tele-Commands (TCs). Figure 1
shows that each processor module is connected to both RM1
and RM2 and to both TMM1 and TMM2. The
TeleCommand (TC) receiver is also linked to both PM1 and
PM2.

Figure 1: CDMU Structure [1]

IV. FACTORS CONTRIBUTING IN HANDSHAKE
The important key factors that are involved in the

handshake procedure are as follows:

1) Time Event Register (TER) is used for messaging

between the Master and the Slave. As there is no
direct link between the Master and the Slave, so
TER is used as a shared device. Both can access
TER to read and write messages. RM1 and RM2
have their own TER devices.

2) The two interrupts -- Time Event Interrupt (TEI)
and Time Synchronization Interrupt (TSI) caused
by RM1 and RM2 are sent to the Slave and the
Master respectively. If the Master uses RM1 and
interrupt triggers, then interrupt is only sent to the
Slave because it is a local processor module of
RM1.

3) The interrupts can be used as a signal from the
Master to the Slave for the acknowledgement of
the messages because the Master has a charge of
the interrupt timing.

4) OBRT Status Register is used to find out that
interrupt has triggered in the system. The Master
holds the check of this register and clears the
interrupt flag for allowing the coming up
interrupts.

5) The Master and the Slave cannot use the same RM
at a time. However, both the Master and the Slave
are informed through handshake procedure in order
to choose required RM at a given time interval.

6) Handshaking is done through Communication
Channel (CCH) between the Master and the Slave.
RM1 or RM2 is used as CCH. The TER in the
CCH is expressed as Communication Time Event
Register (CTER).

7) The selection of RM1 or RM2 as CCH depends on
the Master as it utilizes both RM1 and RM2. On
getting the TC instruction from the operator, it

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

switches to one module of RM (RM1 or RM2) and
releases the other RM for CCH. If the Master is
using only one RM module initially, the unused
RM will be selected as CCH. The Master can
switch the RM at the end of the handshake
procedure.

8) The handshake message contains the phase content
and timing of the message that is encoded in the
CTER. The timing of the interrupt is slightly
affected by the phase content that is encoded in the
four Least Significant Bits (LSB) of the CTER, but
this affect of interrupt timing is less than 0.3 ms
and is, therefore, ignored.

9) The phase content in the four least significant bits
of the CTER is as under:

i. When 4 LSB of CTER has value ‘1’, then
the Master informs the Slave to
communicate through RM1. Similarly,
when 4 LSB of CTER has value ‘2’, then
the Master informs the Slave to
communicate through RM2. This phase is
known as “Select Communication RM”.

ii. If the value is ‘4’ in the 4 LSB of CTER,
the Slave updates the Master to confirm the
communication through RM1. Likewise, if
the value is ‘5’ in the 4 LSB of CTER, then
the Slave informs the Master that it
confirms the communication through RM2.
This phase of the handshake procedure is
called “Confirm Communication RM”.

iii. Upon setting the value of ‘10’ in 4 LSB of
CTER, the Slave is informed by the Master
that if RM1 is not in use then switch to it
and use it. For the value ‘11’, the Slave has
to switch to use RM2. When the value is
‘14’, then the Master instructs the Slave to
release both RM1 and RM2. This phase is
named as “Command Slave”.

iv. The Master sends a message to the Slave in
which it verifies the RM1 or RM2 selection
by putting the value ‘8’ in 4 LSB of CTER.
This phase is entitled as “Confirm
Command”.

10) The encoding of the handshake messages is done

within one second (s) - Pulse Per Second (PPS).
The interrupts according to the PPS time slot are
given below:

i. When interrupts occur from 0.10 to 0.40 s,
RM1 and RM2 are not selected in this time
slot. It means that the Master instructs the
Slave to confirm the change to use no RM.

ii. For the selection of RM1, interrupts take
place in the time slot ranging from 0.42 to
0.70 s. The Master orders the Slave either
to communicate with RM1 or confirm

change to use RM1 during the handshake
procedure.

iii. In the 0.72 - 1.00 s time slot, interrupts are
taken into account. This selection is
encoded for RM2 where master notifies the
Slave either to communicate with RM2 or
confirm change to use RM2 during the
handshake procedure.

iv. The purpose of the remaining unused slots
0.00 – 0.10 s, 0.40 – 0.42 s and 0.70 – 0.72
s is to avoid overlaps. Any interrupts
appearing in these timing slots will be
ignored.

11) The minimum time between two TSIs is greater

than 0.3s to ensure that two TSIs do not trigger
during the same time slot. On the other hand,
interrupt can be triggered two times during the
same time slot.

V. PROPOSED SYSTEM MODEL FOR HANDSHAKE
The handshake procedure [2] has been modeled for the

Master and the Slave as shown in Figure 2. Handshake is a
procedure in which the Master communicates with the Slave
to update the selection of RM1 and RM2. It is a complicated
process as there is no direct communication link between
them.

Figure 2: Model of Handshake Procedure

A. Master Handshake Procedure

The handshake procedure that is executed by the Master
Module is shown in Figure 2. Below we give its brief
description:

Upon the reception of TC from the operator, the
handshake procedure is started by the Master. The Master

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

informs the Slave that other RM will be used as CCH by
updating the value of 4 LSB TER. If the Master is using
RM2 and storing TM, then the Slave will be informed to
make RM1 as CCH. Likewise, if RM1 is operated by the
Master, then the Slave has to use RM2 as CCH. When CCH
is RM1, then system operation is performed from 0.42 to
0.70 s PPS slot. Similarly, for RM2, 0.72 to 1.00 s, PPS slot
is used for the system operation. System has to wait for
starting of the right PPS slot according to the CCH.

In order to send information to Slave, interrupts are
triggered from the Master after setting the value of OBRT
Status Register to zero. For accuracy, the value of TER for
the Slave RM is set to 0.04 s. The interval between two
interrupts is 0.06 s. The Master ensures by reading the
CTER value from the Slave that selection of CCH is done.
The Master can swap the CCH selection at the end of
handshake procedure. The Master commands the Slave by
setting the future CCH selection value in the 4 LSB CTER
and triggers a TEI only. The time value of TEI is not
relevant to the CTER, so the time slot of TEI makes no
changes in the end result of the system. Only operator is
responsible for the new RM selection and determining
which RM is used as CCH as stated in Section IV. In the
system, operator initially notifies the RM selection to the
Master, it changes CCH selection from used RM to other
RM according to the swapping information that is encoded
in 4 LSB CTER and also confirms the RM selection. The
confirmation message is also forwarded to the Slave by
sending two interrupts within the correct time slot. At this
moment, the Master ends the handshake procedure and
updates the operator for successful working by sending the
corresponding TM.

B. Handshake Procedure: Slave Behaviour
When the operator starts the handshake, the following

operations are carried out by the Slave as shown in Figure 2.
If the Slave is using RM1 or RM2, then it will deselect

the current RM on the reception of TC command from the
operator. When RM is discontinued from the Slave, then
OBRT Status Register will be set to zero and no more
interrupts will be triggered. The Slave waits for 0.03 s to get
the new command along with two interrupts (i.e. TEI and
TSI) which will be generated from the Master during the
expected PPS slot. When the Slave receives a message from
the Master, then it decodes it from the interrupts time slot as
mentioned in Section IV (para # 10). For verification, the
Slave also interprets the value of 4 LSB CTER as described
in Section IV (para # 9). If the values derived from the
interrupts time slot and 4 LSB CTER are the same, then the
Slave achieves the specified CCH selection. After that, the
Slave sends acknowledgement of confirmation to the Master
by setting the value of 4 LSB CTER according to Section
IV. Now, the Slave has to wait again for 0.02 s for the new
response or interrupt from the Master according to the PPS
slot. On the arrival of message from the Master, the Slave is
triggered by TEI. The Slave has no opportunity to change

the decision of new selection and waits for 10s for the
confirmation message from the Master. Again, the Slave
receives two interrupts with the CTER message and
compares the time slot of interrupts with previous CTER
value. If both are same, then the Slave begins the operation
with released RM. Finally, the Slave also completes the
handshake procedure by sending TM to the operator.

VI. VERIFICATION OF THE HANDSHAKE MODEL
The handshake model has been implemented by using

PROMELA (PROcess MEta LAnguage) high level
modeling language with SPIN model checker for verifying
the required results. SPIN [3,4] is extensively used in formal
verification of distributed and parallel processing systems.
SPIN has greatly facilitated the process of verification in the
areas of mission-critical algorithmic applications, message
and data communication in the client-server environment,
synchronization and coordination of large number of
processes in the parallel and distributed systems, deadlock
handling methodologies in the modern multi-tasking
operating systems, verification of the mission-oriented
control models for space aircrafts, utilization of intelligent
models for determining most suitable and economical paths
over wide area networks, checking performance of routing
protocols [5], testing of fault-tolerant strategies and
implementation of a wide variety of switching techniques.
The literature review reveals that most of the software-based
systems/models are checked and verified by the SPIN model
checker.

The handshake model between two processors in control
and data management unit has been successfully
implemented and verified using SPIN/PROMELA. The
flow chart for handshake procedure model is shown in
Figure 3. The following algorithm along with description of
each condition of the processes shows part of the
implemented SPIN/PROMELA model.
/*Variable Declarations */
active proctype Slave_starts_HP()
{S_TC=true;
if
::(S_TC==true)->RM1=0;RM2=0;
::(S_TC!=true)-> printf("\n\nExit Handshake Procedure.\n\n");
fi
S_TM=true;}

The above code depicts that when TC command is
received to Slave from the operator, Slave starts handshake
procedure by deselecting the RM selection. After successful
execution of the TC command, Slave sends TM to operator
and waits for Master’s response. In any other condition,
handshake procedure will be terminated.
active proctype Master_starts_HP()// time value is taken in (ms)
{M_TC=true; RM1=0;RM2=1; // set by the operator
if
::(RM1==0 && RM2==1)->// I_time denotes timing of interrupts
{CTER_4_LSB=1;I_time=500;TEI=true;TSI=true;OBRT_SR=1;
run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);}
::(RM1==1 && RM2==0)->
{CTER_4_LSB=2;I_time=800;TEI=true;TSI=true;OBRT_SR=1;

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);}
fi}

The code associated with the above process describes
that Master starts handshake on the operator command.
When operator selects RM2 for Master, then Master uses
RM2 and notifies Slave (by sending CTER and interrupts)
to use RM1 as CCH. Likewise, if operator selects RM1,
then Master uses RM1 and updates the Slave (through
CTER and interrupts) to use RM2 as CCH. After that, it
waits for Slave’s response.
proctype Slave_read_wrtie_operation(int CTER_4_LSB,I_time;bool
TEI,TSI)
{if
::((CTER_4_LSB==1) && (TEI==true && TSI==true) && (I_time>=420
&& I_time<=700))->
{CTER_4_LSB=4;run Master_decides_future_selection(CTER_4_LSB);}
::((CTER_4_LSB==2) && (TEI==true && TSI==true) && (I_time>=720
&& I_time<=1000))->
{CTER_4_LSB=5;run Master_decides_future_selection(CTER_4_LSB);}
::((CTER_4_LSB!=1) || !(I_time>=420 && I_time<=700))->
{printf("\n\nExit Handshake Procedure.\n\n");}
::((CTER_4_LSB!=2) || !(I_time>=720 && I_time<=1000))->
{printf("\n\nExit Handshake Procedure.\n\n");}
fi}

The above piece of code illustrates that when timing of
interrupts is in line with the information that is encoded in
CTER 4 LSB, then Slave confirms the selection to Master
and waits for 0.02 s in order to get Master’s response. So,
when interrupts occurs between 0.42 to 0.70 s time slot and
CTER 4 LSB is ‘1’, it means Slave confirms to use RM1 as
CCH by encoding the value ‘4’ in CTER 4 LSB. Similarly,
if time slot for interrupt is 0.72 to 1.00 s and CTER 4 LSB is
‘2’ then RM2 is confirmed as CCH by the Slave through
updating the value ‘5’ in CTER 4 LSB. If timing of the
interrupts is not compatible with the encoded information in
CTER 4 LSB, handshake procedure exits at this stage.
proctype Master_decides_future_selection(int CTER_4_LSB)
{if
::(CTER_4_LSB==4)->
{OBRT_SR=0;CTER_4_LSB=11;TEI=true;OBRT_SR=1;
if
::(CTER_4_LSB==11)->
{RM1=1;RM2=0;aa= CTER_4_LSB;OBRT_SR=0;CTER_4_LSB=8;
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true;
run Slave_interprets_message(aa,I_time,TEI,TSI);}
::(CTER_4_LSB==14)->
{RM1=0;RM2=0;OBRT_SR=0;aa=CTER_4_LSB;CTER_4_LSB=8;
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true;
run Slave_interprets_message(aa,I_time,TEI,TSI);}
fi;}

The above fragment of the code describes that when
Slave is using RM1, Master updates the up-coming
selection of RM by placing the value ‘11’ or ‘14’ in CTER 4
LSB with only TEI. If Master selects RM1, it releases RM2
to be used as CCH by putting the value ‘11’ in CTER 4
LSB. When Master picks RM1 and does not release RM2 to
be used as CCH, it writes the value ‘14’ in CTER 4 LSB.
After a half second to give the Slave sufficient time to read
value of CTER, the Master confirms the selection to the
Slave by encoding the value ‘8’ in CTER 4 LSB on the
specified time

Figure 3: Flow Chart of Handshake Procedure Model

slot according to Section IV and exits the handshake
procedure.

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

::(CTER_4_LSB==5)->
{OBRT_SR=0;CTER_4_LSB=10;TEI=true;OBRT_SR=1;
The associated code with above condition illustrates this.
if
::(CTER_4_LSB==10)->
{RM1=0;RM2=1;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8;
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true;
run Slave_interprets_message(bb,I_time,TEI,TSI);}
::(CTER_4_LSB==14)->
{RM1=0;RM2=0;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8;
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true;
run Slave_interprets_message(bb,I_time,TEI,TSI);}
fi;}
fi}

The above part of the code shows that when the Master
is using RM1, it updates the up-coming selection of RM by
setting the value ‘10’ or ‘14’ in CTER 4 LSB with only TEI.
If the Master selects RM2, it releases RM1 to be used as
CCH by putting the value ‘10’ in CTER 4 LSB. When the
Master picks RM2 and does not release RM1 to be used as
CCH, it writes the value ‘14’ in CTER 4 LSB. After a half
second to give the Slave sufficient time to read value of
CTER, the Master confirms the selection to the Slave by
encoding the value ‘8’ in CTER 4 LSB on the specified time
slot according to Section IV and exits the handshake
procedure.
proctype Slave_interprets_message(int previous_CTER,I_time;bool
TEI,TSI)
{if
::((I_time>=420 && I_time<=700) && (previous_CTER==10) &&
(TEI==true && TSI==true))->
{S_TM=true;}
::((I_time>=720 && I_time<=1000) && (previous_CTER==11) &&
(TEI==true && TSI==true))->
{S_TM=true;}s
::((I_time>=100 && I_time<=400) && (previous_CTER==14) &&
(TEI==true && TSI==true))->
{S_TM=true;}
::(!(I_time>=420 && I_time<=700) || (previous_CTER!=10))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
::(!(I_time>=720 && I_time<=1000) || (previous_CTER!=11))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
::(!(I_time>=100 && I_time<=400) || (previous_CTER!=14))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
fi}
init
{atomic// Atomic is used to reduce the complexity.
{run Slave_starts_HP();
run Master_starts_HP();}
}

The code given above indicates that after waiting for 10
s, Slave receives the confirmation message with two
interrupts from Master. The timing of interrupts is matched
with the information that is encoded in previous CTER 4
LSB as mentioned in Section IV. Therefore, when timing of
the interrupts lies between 0.42 to 0.70 s time slot and
previous CTER 4 LSB is ‘10’, it notifies that Slave uses
RM1 as CCH that is released by the Master. Similarly,
timing of the interrupts lies between 0.72 to 1.00 s time slot
and previous CTER 4 LSB is ‘11’, it notifies that Slave uses
RM2 as CCH that is released by the Master. Also, when
interrupts timing lies between 0.10 to 0.40 s and the value of
previous CTER 4 LSB is ‘14’, then Slave uses neither RM1

nor RM2 as CCH. After then Slave exits the handshake
procedure. If interrupts timing is not in line with the
information that is encoded in earlier CTER 4 LSB,
handshake procedure exits at this stage too.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a formal approach for

modeling a fault-tolerant satellite system that relies on the
handshake procedure for dynamic reconfiguration. We have
demonstrated how to create a Promela model of the
handshake and carry out its analysis. Since the handshake
procedure has a number of non-trivial properties caused by
the distributed nature of the system, such a model allows the
designers to ensure correctness of the handshake
implementation. In our future work, we are planning to
extend the proposed approach to derive the generic
modeling patterns. Moreover, it would be interesting to
explore the handshake in the presence of more complex
network architecture.

REFERENCES

[1] “DEPLOY – Software Requirement Specification,
Master/Slave Software”, Space Systems Finland, Ltd., July
2011.

[2] J. Kashif, and E. Troubitsyna, “Designing a Fault-Tolerant
Satellite System in SystemC”, ICONS 2012, The Seventh
International Conference on Systems, IEEE Computer Press,
pp. 49–54, March 2012.

[3] C.Baier and J.-P. Katoen. “Principles of Model Checking”.
MIT Press, 2008.

[4] N. A. S. A. Larc, “What is Formal Methods?", NASA
Langley Methods, http://shemesh.larc.nasa.gov/fm/fmwhat.
html, formal methods program, 2001.

[5] J. Kashif, A. Kashif, and E. Troubitsyna,, “Implementation of
SPIN Model Checker for Formal Verification of Distance
Vector Routing Protocol”, International Journal of Computer
Science and Information Security (IJCSIS), Vol 8, No 3,
USA, ISSN 1947-5500, pp. 1-6, June 2010.

[6] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, T. Latvala, and
L. Nummila, Formal Development and Assessment of a
Reconfigurable On-board Satellite System, In: Frank
Ortmeier, Peter Daniel (Eds.), Proceedings of 31st
International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2012), LNCS 7612, pp.210-222,
Springer, 2012.

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

