
An UML-based Authoring Approach of S1000D Procedural Data Modules and Tool

Support

Youhee Choi, Jeong-Ho Park, Byungtae Jang, DongSun Lim

Vehicle&Defense-IT Convergence Research Department, ETRI

Daejeon, KOREA

e-mail: {yhchoi, parkjh, jbt, dslim}@etri.re.kr

Abstract— The S1000D specification is developed as the

standard format to describe technical publications in

aerospace and military field. The S1000D supports

systematically classifying technical information about various

equipments in XML format. Most technical information about

equipments contains procedural information about installation,

operation, and maintenance. The procedural information can

be effectively described using graphical description methods

rather than using textual description like XML. Also, In UML,

activity diagrams can be used to describe the business and

operation step-by-step workflows. In the S1000D, there are

many types of data modules and procedural data modules

regarding procedural information. In this paper, we propose

an approach to authoring S1000D procedural data modules

using UML.

Keywords- S1000D; XML; UML; Shipdex.

I. INTRODUCTION

The “S1000D International Specification for technical
publication utilizing a common source database” is an
international specification for the procurement and
production of technical publications [1]. The S1000D covers
technical publication activities in support of any airline
projects and military projects. However, in the shipbuilding
field, most technical manuals are supplied today on paper or
in different formats, different structures and different data
quality. This situation caused several problems in terms of
information comprehension and electronic usage. Therefore,
to utilize enterprise resource planning (ERP) and manage
various technical manuals effectively, a common and
standardized protocol for exchanging technical data was
deemed necessary. For this reason, some European shipping
companies agreed to develop the Shipdex protocol that is a
common and shared data exchange protocol based on ASD
S1000D issue 2.3 [2]. The Shipdex protocol allows data
exchange, update, and search by standardizing technical
information publication format.

The S1000D that is the basis of the Shipdex defines a
“Data Module” which is defined as “the smallest self
contained information unit” and a data module is described
in XML format. XML is a markup language that defines a
set of rules for encoding documents [3]. It is a textual data

format with strong support via Unicode. XML was designed
to carry data, not to display data and XML tags are not
predefined. Naturally, there are various XML editors that
have facilities like tag completion and on-the-fly XML
validation with XML schema [4, 5, 6, 7]. Also, some XML
editors allow rendering XML documents using XSLT
stylesheets to show them close to the final output. However,
producing an XML document using these XML editors
requires learning XML schemas or DTDs. In the same way,
due to these features of XML, it means that producing a
S1000D data module requires pre-learning the S1000D
schemas or tags. Also, it is difficult to understand data
contained in data modules for non-technical users without
transforming data modules supplied in XML format into
other format. In addition, there are many studies to model
XML with UML[10, 11, 12, 13, 14]. However, the existing
researches focus on representing static structures of XML
schema elements. There are few studies to model contents of
XML using UML in view of semantics of XML elements.

We note that most technical publications for equipments
are manuals that contain procedural information about
installation, operation, and maintenance. The procedural
information can be effectively described using graphical
description methods. In this respect, we propose an approach
to authoring a S1000D procedural data module using
behavioral modeling method of UML that is the de facto
standard modeling language. Applying our approach to
describing S1000D procedural data modules, it allows to
easily produce S1000D data modules and to easily
understand contents of the S1000D data modules without
knowing XML DTD schema and tags.

The remainder of this paper is organized as follows. The
outline of the S1000D and the Shipdex is presented in
Section 2. Section 3 presents our approach to authoring
S1000D XML data using UML. The approach is applied to
an example in section 4. The paper concludes with future
work and conclusions in section 5.

II. S1000D AND SHIPDEX

A. S1000D

The S1000D is an international standard for the
production and procurement of technical publications. It has

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

been initially developed by the AeroSpace and Defence
Industries Association of Europe (ASD). In the S1000D, a
data module is the smallest information unit. Data modules
may be stored and managed in the CSDB(Common Source
Data Base). The purpose of the CSDB is to manage the data
modules so that information is not duplicated, link
relationships are maintained, and version control is applied
to content [8]. Because S1000D is modular, it facilitates
content reuse and seamless data interchange between
organizations [9]. There are many data module types which
are appropriate for use in the production of all technical
information required in operation and maintenance of the
product. The S1000D defined various types of data modules-
Descriptive, Procedural, Crew/Operator, Fault information,
Maintenance planning, Illustrated parts data, Process, Wiring
data, Wiring data description, Technical repository,
Container, Product cross-reference table, Technical
conditions cross-reference table, Business rules exchange. A
data module has a basic structure which is comprised of two
sections:

•Identification and status (IDSTATUS) section
•Content section
The IDSTATUS section of all data modules contains

identification data (data module code, title, issue number,
issue date, language) and status data (security classification,
responsible partner company and originator, applicability,
technical standard, quality assurance status, skill, reason for
update). The Content section of a data module must be
structured in accordance with data module types. The
Content section of a procedural data module that we focus on
contains the following elements.

•Data module title (<dmtitle>)
•Table of contents
•References (<refs>)
•Preliminary requirements (<prelreqs>) including safety

conditions(<safety>)
•Procedure (<step>)
•Requirements after job completion (<closereqs>)

B. Shipdex

The Shipdex protocol is the international business rules
developed to standardize the development and the exchange
of technical and logistic data within the shipping community.
It applies to ASD S1000D at issue 2.3. The Shipdex protocol
has been developed by the following companies- Grimaldi
Compagnia di Navigazione s.p.a, Intership Navigation Co.
Ltd., Alfa Laval, MacGREGOR a part of Cargotec Group,
MAN Diesel & Turbo, SpecTec Group Holdings Ltd.,
Yanmar Co. Ltd. The scope of this protocol is to cover the
data exchange related to the information currently supplied
in the form of technical manuals. The reason to develop the
protocol is that shipping companies are receiving from
manufactures technical manuals in different formats,
different structures and different data quality. The data
module types that the Shipdex protocol makes use are
Descriptive, Procedural, and Illustrated parts data (IPD).

C. Modeling XML schemas with conceptual models

Several approaches of modeling XML schemas by using
existing conceptual models, such as ER, UML have been
proposed [10, 11, 12, 13, 14]. The goals of most researches
are to represent a XML schema using a UML class diagram,
even if the modeler has no familiarity with the XML schema
syntax. In this respect, the authors have used the UML
extension mechanisms to represent XML schema elements.
They focus on representing static structures and data
relationships of XML schema elements. The existing
researches hardly consider semantics of values which would
be represented using XML schema elements.

III. AN UML-BASED AUTHORING APPROACH OF S1000D

PROCEDURAL DATA MODULES AND TOOL SUPPORT

A. Process for authoring S1000D procedural data

modules

This section describes the process for authoring the
content section of S1000D procedural data modules as
shown in Fig. 1.

Define a title of a data module

Define preconditions for the whole procedure

Define safety information for the whole procedure

Define postconditions for entire procedures

Define branching conditions

Define
Procedures

Define

Subprocedures

Define

References

Define

Safety info.

Define

Branching

Conditions

Figure 1 The process for authoring the S1000D procedural data modules

First of all, the title of a data module that represents the
whole procedure must be defined. Second, preconditions for
the whole procedure that are carried out before starting the
procedure must be defined. Third, safety information such as
warnings, cautions for the whole procedure must be defined.
Then, the main procedure must be defined. To define the
main procedure, a subprocedure that is a unit of an action
must be defined. For each subprocedure, if they exist,
referenced elements that the subprocedure refers and safety
information that is related to the subprocedure should be
defined. Then, if conditional flows are needed, branching
conditions that determine which actions are carried out
should be defined. Lastly, postconditions for the whole
procedure must be defined.

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Method for describing S1000D procedural data

modules

This section describes the method for describing the
content section of S1000D procedural data modules using
UML. The procedural data module is used to describe
procedural information. In the UML, activity diagrams can
be used to describe the business and operation step-by-step
workflows of components in a system [15]. Thus, we suggest
using activity diagrams to describe procedural data modules.

Major elements and attributes of the procedural data
module can be classified as shown in Table I.

TABLE I. MAJOR ELEMENTS AND ATTRIBUTES OF THE PROCEDURAL

DATA MODULE

Procedural data module DTD/Schema

Element Subelement Subelement Attribute

<dmtitle> <techname>

<refs> <refdm> or <reftp>

<avee> or <pubcode>
<dmtitle> or <pubtitle>

<issno> or <pubdate>

<prelreqs> <supequip>
<supplies>

<spares>

<nomen>
<qty>

id
uom

<safety>
<warning>
<caution>

<step>

<closereqs>

<xref>
xidtype

xrefid

Firstly, the ‘Data module title (<dmtitle>)’ must give
meaning to identification of the product and it has the
mandatory element <techname>. The content of the element
<techname> must reflect name of the hardware or function.
Since a procedural data module can be described as a unit of
activity diagram, the element <techname> can be described
with the name of the activity diagram or an activity that
represents the whole procedure without extending the UML.

Secondly, the ‘Table of contents’ element doesn’t contain
specific contents of the data module. Thus, we can exclude it.

Thirdly, in case of the ‘References’ element, there are
two types of references used in the S1000D.

•Internal references: References to other places within

the same data module(<xref>)

•External references: References to other data modules

(<refdm>) or other technical publications (<reftp>)

The former (<xref>) type of references corresponds to

Figures, tables, multimedia, procedures (steps), and so on.
Although, in the DTD/Schema, this type is optional, it gives
the detail information about the referenced targets. In this
respect, it is necessary to describe this type of references, so
identification information about the referenced target should
be described. Thus, we define the stereotype
<<InternalReference>> by extending UML Comment
element with tags that represent ID and type of the
referenced target as shown in Fig. 2.

In case of the latter (<refdm> or <reftp>) type of
references, these references are the mandatory elements and

they should be presented on the references table. The table
presents the data module/technical publication code, data
module/technical publication title, and issue number. Thus,
we define the stereotype <<ExternalReference>> by
extending UML Comment element with tag definitions that
represent code, title, and issue number as shown in Fig. 2.

<<stereotype>>

ExternalReference

<<metaclass>>

Comment

+Code: String

+IssueNum: String

<<stereotype>>

InternalReference

+Type: String

S1000D UML element

Element Subelement Subelement Attribute Stereotype Tag Properties

<refs> <refdm> or <reftp> ExternalReference

<dmtitle> or

<pubtitle>
body

<avee> or

<pubcode>

Code

<issno> or

<pubdate>
IssueNum

<xref> InternalReference

xrefid body

xidtype Type

Figure 2 S1000D references element vs. UML elements

In turn, the ‘Preliminary requirements’ element consists

of the following sub-elements.
•Required Conditions: actions to be done and/or

conditions that must be satisfied before doing
procedure(<prelreqs>) and any actions that are required after
the procedure is complete(<closereqs>)

•Support equipment: A list of any support equipment
including special tools, required to accomplish the
procedure(<supequip>)

•Supplies: A list of any consumables, materials and
expendables required to accomplish the
procedure(<supplies>)

•Spares: A list of any spares required to accomplish the
procedure(<spares>)

•Safety: A list of any safety requirements(<safety>)

Firstly, in case of the ‘Required Conditions’, there are

two types of Required Conditions.
•Required Conditions with no reference(<reqcond>)
•Required Conditions with external

references(<reqcondm>, <reqcontp>)

In case of the former (<reqcond>) type of the ‘Required

Conditions’, since the semantics of the sub-element
(<prelreqs>) corresponds to the semantics of the pre-defined
stereotype <<precondition>> for the activity, the sub-
element (<prelreqs>) can be described with the stereotype
<<precondition>> for the activity that represents the whole
procedure. In case of the latter (<reqcondm>, <reqcontp>)
type of the ‘Required Conditions’, we define the stereotype
<<PreconditionRef>> for precondition and the stereotype
<<PostconditionRef>> for postcondition by extending the
UML Comment element. In addition, relationships between
‘References’ and ‘Required Conditions’ can be described as
the linkage between the UML Comment element with the

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

stereotype <<PreconditionRef>> or <<PostconditionRef>>
and the UML Comment element with the stereotype
<<ExternalReference>>.

Secondly, in case of the sub-elements (<supequip>,
<supplies>, <spares>), each element is mandatory in
procedural data modules and can be referenced within the
same data module. And each element has a <nomen>
element which indicates the functional item nomenclature
and a <qty> element which is used to identify the quantity of
items. Also, each element has an ‘id’ attribute and an ‘uom’
attribute that indicates the unit of measure. To describe each
element, we define the stereotype <<SupportedEquipment>>,
<<Supply>>, and <<Spare>> by extending the UML Class
element with tags that indicate ID, the quantity of items, and
the unit of measure as shown in Fig. 3.

<<stereotype>>

SupportedEquipment

<<metaclass>>

Class

+ID: String

+Quantity: Integer

+UnitOfMeasure: String

<<stereotype>>

Supply

<<stereotype>>

Spare

+ID: String

+Quantity: Integer

+UnitOfMeasure: String

+ID: String

+Quantity: Integer

+UnitOfMeasure: String

S1000D UML element

Element Subelement Subelement Attribute Stereotype Tag Properties

<prelreqs>

<supequip> SupportedEquipment

<supplies> Supply

<spares> Spare

<nomen> Class Name

<qty> Quantity

id ID

uom UnitOfMeasure

 Figure 3 S1000D 'Preliminary requirements' elements vs. UML elements

In case of the sub-element (<safety>), the type of safety
conditions can be warnings or cautions. Thus, we define the
stereotype <<Warning>> and <<Caution>> by extending the
UML Comment element and body of the comment can be
safety conditions as shown in Fig. 4.

<<metaclass>>

Comment

<<stereotype>>

Warning

+SafetyCondition: String

<<stereotype>>

Caution

+SafetyCondition: String

Figure 4 The stereotypes for S1000D 'Safety' elements

In case of the ‘Procedure (<step>)’, each sub-procedure
(step) can be described with an UML Activity or an UML
Action element. If a step is broken down into sub-steps, this
step should be described with an UML Activity element that
can include other activities that are sub-steps. Otherwise, a
step can be described with an UML Action element. In
addition, conditional flows of procedure should be described.
First of all, to describe conditions, the type of condition
should be classified. If the condition affects selecting

resources that are required to accomplish a procedure, the
condition can be described using an UML Comment element
with the stereotype <<selection>> on the UML ObjectFlow.
Otherwise, the condition affects selecting the next procedure
(step), the condition can be described using an UML
DecisionNode.

Finally, since the semantics of the ‘Requirements after
job completion (<closereqs>)’ corresponds to the semantics
of the pre-defined stereotype <<postcondition>> for the
activity, the element (<closereqs>) can be described with
stereotype <<postcondition>> for the activity that represents
the whole procedure.

Table II shows that each rows’ items of the left part
(S1000D) can be described using the right part (UML)’s
items .

TABLE II. SUMMARIES OF S1000D ELEMENTS VS. UML ELEMENTS

S1000D UML

Element Subelement Subelement Attribute Element Stereotype Tag

<dmtitle> <techname> Activity name

<refs>

<refdm> or <reftp> Comment ExternalReference

<dmtitle> or

<pubtitle>
Comment body

<avee> or

<pubcode>
Code

<issno> or

<pubdate>
IssueNum

<xref>

Comment InternalReference

xrefid Comment body

xidtype Type

<prelreqs>

<reqcond> Activity precondition

<reqcondm> or <reqcontp> Comment PreconditionRef

<supequip> Class SupportedEquipment

<supplies> Class Supply

<spares> Class Spare

<nomen> Class name

<qty> Quantity

id ID

uom UnitOfMeasure

<step> Activity or

Action

Conditional flow

DecisionNode

or

Comment with

the stereotype

<<selection>>

<safety>

<warning> Commnet Warning

<caution> Comment Caution

<closereqs

>

<reqcond> Activity postcondition

<reqcondm> or <reqcontp> Comment PostconditionRef

C. Transformation rules

This section describes the rules that transform from an
UML model to a S1000D procedural data module XML file
according to the proposed UML metamodel.

•The name of the outermost Activity can be transformed
into the <techname> value of the <dmtitle> tag.

•The body of the stereotype <<precondition>> can be
transformed into the <reqcond> values of the
<prelreqs>/<reqconds> tag.

•The body of the stereotype <<postcondition>> can be
transformed into the <reqcond> values of the
<closereqs>/<reqconds> tag.

•In case of the stereotype <<PreconditionRef>> or
<<PostconditionRef>>, the body of the stereotype
<<PreconditionRef>> or <<PostconditionRef>> can be
transformed into a value of the <reqcond> tag and if the tag
<code> value of the linked <<ExternalReference>> element

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

is a data module code, it can be transformed as follows:

Otherwise, it can be transformed as follows:

•In case of the stereotype <<ExternalReference>>, if the

tag <code> value is a data module code, it can be
transformed as follows:

Otherwise, it can be transformed as follows:

Also, if the <<ExternalReference>> element is linked

with Activity or Action element, it can be transformed as
follows:

or

•In case of the stereotype <<InternalReference>>, the

part that the <<InternalReference>> element is used can be
transformed as follows:

•In case of the stereotype <<Warning>> or <<Caution>>,

if the element is linked with the outermost Activity, it can be
transformed as follows:

 or

If the element is linked with other Activity elements or

Action elements, it can be transformed as follows:

•In case of Activity elements and Action elements, it can

be transformed as follows:

If the source end of an incoming control flow is the UML
DecisionNode, it can be transformed as follows:

D. Structure of the S1000D Procedural Data Module

Authoring Tool

This section shows the structure of the S1000D
Procedural Data Module Authoring Tool. The tool supports
automatically generating major contents of a S1000D

procedural data module XML file by modeling an UML
activity diagram.

Fig. 5 shows the relationships between subblocks of the
tool and their artifacts. First of all, contents of primary
S1000D procedural elements can be defined using a S1000D
procedural data module editor even though not knowing the
particular S1000D procedural data module structure or the
UML diagram syntax. Then, an UML model generator
generates an UML activity diagram on the basis of the
primary S1000D procedural elements’ contents. An UML
model property editor allows a user to define additional
specific properties of the UML activity diagram that don’t
have to be externally represented. A S1000D procedural data
module XML file generator generates a S1000D procedural
data module XML file on the basis of the UML activity
diagram. A S1000D procedural data module XML file editor
allows a user to define optional elements’ contents.

UML model

property editor

S1000D procedural

data module

XML file generator

S1000D procedural data module authoring tool

UML model

generator

UML activity diagram

S1000D procedural

data module

XML file editor

S1000D procedural data module

XML file

S1000D procedural

data module

editor

Contents of

major S1000D elements

Figure 5. Subblocks of S1000D procedural data module authoring tool

IV. AN EXAMPLE

To address the practical applicability and features of our
approach, we have chosen the procedure of lubricating the
bicycle chain that is a typical example of the S1000D
specification.

Fig. 6 shows the mark-up example of the S1000D
procedural data module. In Fig. 6, the part (a) indicates the
sub-element (<prelreqs>) of the ‘Preliminary requirements’
element. The part (b) of Fig. 6 indicates the sub-element
(<supplies>) of the ‘Preliminary requirements’ element. The
part (c) of Fig. 6 indicates the sub-element (<safety>) of the
‘Preliminary requirements’ element. The parts (d) ~ (k) of
Fig. 6 indicate the ‘Procedure (<step>)’ elements.

Fig. 7 shows the UML activity diagram that describes the
major elements of the mark-up example in Fig. 6. The part
(a) of Fig. 6 can be described using the pre-defined
stereotype <<precondition>> as shown in the part (a) of Fig.
7. The part (b) of Fig. 6 can be described using the UML
Class element with the stereotype <<Supply>> as shown in
the part (b) of Fig. 7. The part (c) of Fig. 6 can be described
using the UML Comment element with the stereotype
<<Warning>> as shown in the part (c) of Fig. 7. As shown in
the part (d) of Fig. 7, the part (d) of Fig. 6 can be described
using the UML Action element because it doesn’t have any
sub-step. On the other hand, since the part (e) has sub-steps,
it can be described using the UML Activity element as
shown in Fig. 7. In case of the part (g) of Fig. 7, since the

<step~>

<para>[guard condition of the control flow],

[Activity body|Action body]</para>

</step~>

<step~><para>[Activity body|Action

body]</para></step~>

<step~><warning>……</warning></step~>

<safety><safecond><warning>……</warning><

/safecond></safety>

<safety><safecond><caution>……</caution></s

afecond></safety>

<step~><para>…<xref xrefid=….

xidtype=…>…</para></step~>

<step~><para> …….

<refdm>……</refdm></para></step~>

<step~><para> …….

<reftp>……</reftp></para></step~>

<refs><refdm>……</refdm></refs>

<refs><reftp>……</reftp></refs>

<reqconds><reqcondtp><reqcond>……</reqcond>

<reqtp>……</reqtp></recondtp></reqconds>

<reqconds><reqcondm><reqcond>….</reqcond>

<reqdm><avee>

….</avee></reqdm></recondm></reqconds>

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

step needs the supported equipment (Floor covering), the
step can be described using the UML action element linking
with the stereotyped object (<<SupportedEquipment>>). The
part (h) of Fig. 7 shows that the step contains the condition
affects determining the next procedure (step). As shown in
the part (h) of Fig. 7, the condition can be described using an
UML DecisionNode. The part (i) of Fig. 7 shows that the
step with the internal reference can be described using an
UML action element linking with the stereotyped comment
element (<<InternalReference>>). The part (k) of Fig. 7
shows that safety condition can be described using an UML
Comment element with the stereotype <<Caution>>.

<proced>
<prelreqs>
<reqconds>
<reqcond>The bicycle chain is clean and
dry</reqcond>
</reqconds>
..
<supequi id ="seq-0002"><nomen>Floor
covering</nomen>
..
<supply id ="sup-0001"><nomen>Wet lube</nomen>
</supply>
<supply id ="sup-0002"><nomen>Dry lube</nomen>
</supply>
</supplyli>
..
<safety>
<safecond>
<warning mark ="1" change ="add">
<para>Dry Lube is a very dangerous substance. Do not
get it onto
your skin. Use it in a well ventilated area. If you swallow
it seek immediate medical advice. If it gets into your
eyes
wash your eyes in clean water and seek medical
advice.</para>
</warning>
..
</safecond>
</safety>
</prelreqs>
<mainfunc>
<step1>
<para>Apply the penetrating lubricant into all the parts
of the bike that move. </para>
..
</step1>
<step1 id ="stp-0001"><para>Lubricate the
chain.</para>

<step2><para>Make sure the chain is clean and dry.</para>
</step2>
<step2 mark ="1" change ="modify" rfc ="New floor cover used">
<para>Put the
<xref xrefid ="seq-0002" xidtype ="supequip"></xref> on
the floor below the chain.</para>
</step2>
<step2>
<para>Use a
<xref xrefid ="sup-0002" xidtype ="supply"></xref> for dry
conditions.</para>
</step2>
<step2>
<para>Use a
<xref xrefid ="sup-0001" xidtype ="supply"></xref> for wet
conditions</para>
</step2>
<step2>
<para>Apply the lubricant to each roller of the chain (refer to
<xref xrefid ="fig-0004" xidtype ="figure"></xref>) but only
apply a small quantity.</para>
<figure id ="fig-0004">
<title>Lubricate the chain</title>
</figure>
</step2>
<step2>
<para>Hold the nozzle of the container above the front of the
chain ring and slowly turn the cranks rearwards.</para>
</step2>
<step2>
<caution mark ="1" change ="modify" rfc ="Hazard report">
<para>Do not get lubrication oil into the brake system.
Oil in the break system can affect the efficiency of the bake
system. Do not get oil onto the floor where it can easily get
transferred onto the brake system.</para>
</caution>
<para>Let the lubricant soak into chain before you clean the
unwanted lubricant from the chain.</para>
</step2>

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(g)

(j)

(k)

 Figure 6 The S1000D mark-up example

Chain <<precondition>> The bicycle chain is clean and dry
<<postcondition>> None

Apply the penetrating
lubricant into all the
parts of the bike that
move.

Lubricate the chain

Make sure the
chain is clean
and dry

Put the floor
covering on the
floor below the
chain

Floor covering
<<SupportedEquipment>>

Apply the
lubricant to each
roller of the chain
(refer to Fig-0004)
but only apply a
small quantity.

Dry Lube
<<Supply>>

Wet Lube
<<Supply>>

Hold the nozzle of
the container above
the front of the chain
ring and slowly turn
the cranks rearwards.

<<Caution>>
Do not get lubrication oil
into the brake system

<<InternalReference>>

Fig-0004

<<Warning>>

Dry Lube is a very dangerous substance. Do not get it onto
your skin. Use it in a well ventilated area. If you swallow
it seek immediate medical advice. If it gets into your eyes
wash your eyes in clean water and seek medical advice.

(b)

(a)

(c)

(e)

(d)

(f) (j)(g) (h)
Let the lubricant soak
into chain before you
clean the
unwanted lubricant
from the chain

(k)

Use a
dry
lube

(i)

Use a
wet
lube

[dry cond]

[wet cond]

(b)

Figure 7 The example UML activity diagram

V. CONCLUSIONS

S1000D specification is developed as the standard XML
format to describe technical publication. It is difficult to
author XML documents without learning XML schemas or
tags. Most technical publications for equipments are manuals
that contain procedural information. In this respect, we
proposed an approach to authoring S1000D procedural data
modules using behavioral modeling method of UML. The
proposed approach allows to easily produce S1000D data

modules and to easily understand contents of the S1000D
data modules without knowing XML DTD schema and tags.
In the future, we will evaluate the proposed approach’s
substantiality by applying to more practical examples.

ACKNOWLEDGMENT

This work was supported by the IT R&D program of
MKE/KEIT.[KI10038619, Development of Solution for Ship
Safety Navigation based Maritime Ad-hoc Network].

REFERENCES

[1] ATA, ASD, and AIA, “S1000D: International Specification

for Technical Publications Utilizing A Common Source

Database“, Issue 2.3, Air Transport Association, AeroSpace

and Defence Industries Association of Europe, AreoSpace

Industries Association[S], 2007.

[2] Shipdex Organization, http://www.shipdex.com [retrieved:

Sep, 2012]

[3] W3C, “XML Tutorial”, Available:

http://www.w3schools.com/xml/default.asp [retrieved: Sep.,

2012]

[4] PTC, Arbotext CSDB for S1000D, Available:

http://www.ptc.com/product/arbortext/csdb-for-s1000d/

[retrieved: Sep., 2012]

[5] CORENA, CORENA S1000D solutions, Available:

http://www.corena.com/what_we_offer/products/corena_s100

0d/ [retrieved: Sep., 2012]

[6] Web-x, UltraCSDB S1000D suite, Available:

http://www.webxsystems.com/. [retrieved: Sep., 2012]

[7] Siberlogic, SiberSafe S1000D Edition,

http://www.siberlogic.com/index.html. [retrieved: Sep., 2012]

[8] Crowell Solutions, “S1000D introduction”,

http://www.crowsol.com/s1000d/s1000d-introduction

[retrieved: Sep., 2012]

[9] CORENA, “Understanding S1000D business rules”,

CORENA white paper, 2010.

[10] Carlson, D. A., “Modeling XML Vocabularies with UML:

Part 1”, XML.com, Aug. 2001. Available:

http://www.xml.com/pub/a/2001/08/22/uml.htm [retrieved:

Sep., 2012]

[11] Carlson, D. A., “Modeling XML Vocabularies with UML:

Part 2”, XML.com, Sep., 2001. Available:

http://www.xml.com/pub/a/2001/09/19/uml.html [retrieved:

Sep., 2012]

[12] Carlson, D. A., “Modeling XML Vocabularies with UML:

Part 3”, XML.com, Oct., 2001. Available:

http://www.xml.com/pub/a/2001/10/10/uml.html [retrieved:

Sep., 2012]

[13] Booch, G., Christerson, M., Fuchs, M., and Koistinen, J.,

“UML for XML Schema Mapping Specification. Rational

White Paper, Dec. 1999.

[14] Conrad, R., Scheffner, D., and Freytag. J., “XML conceptual

modeling using UML”, Proceedings of ER'2000, pp. 558-571,

2000.

[15] Farhad, J., "The UML Extension Mechanisms", Department

of Computer Science, University College London, Dec., 2002.

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

