
The Consolidated Enterprise Java Beans Design Pattern for Accelerating Large-

Data J2EE Applications

Reinhard Klemm

Collaborative Applications Research Department

Avaya Labs Research

Basking Ridge, New Jersey, U.S.A.

Email: klemm@research.avayalabs.com

Abstract— J2EE is a specification of services and interfaces

that support the design and implementation of Java server

applications. A key concept in J2EE is Entity Enterprise Java

Beans (EJBs). Their purpose is to persist the state of

application objects and to share objects between transactions.

Although typically desirable, the persistence in entity EJBs can

also incur a heavy performance penalty. In this article, we

describe a novel software design pattern aimed at improving

the performance of entity EJBs in J2EE applications with large

numbers of EJB instances. The pattern maps multiple real-

world entities of the same type (e.g., users) to a single

consolidated entity EJB (CEJB), thereby significantly reducing

the number of required entity EJB instances. Consequently,

CEJBs can increase EJB cache hit rates and database search

performance. We present detailed quantitative assessments of

performance gains from CEJBs and show that CEJBs can

accelerate some common EJB operations in large-data J2EE

applications by factors between 2 and 14.

Keywords-caching; Enterprise Java Beans; object

consolidation; software design patterns; software performance

I. INTRODUCTION

Enterprise Java Beans (EJBs) [1] take advantage of a
wide range of platform services from EJB containers in J2EE
application servers. Examples of platform services are data
persistence, object caching and pooling, object lifecycle
management, database connection pooling, transaction
semantics and concurrency control, entity relationship
management, security, and clustering. EJB containers
obviate the need for redeveloping such generic functionality
for each application and thus allow developers to more
quickly build complex and robust server-side applications.
However, common EJB operations, in particular entity EJB
operations, such as creating, accessing, modifying, and
removing EJBs, tend to execute much more slowly than
analogous operations for Java (J2SE) objects (Plain Old
Java Objects or POJOs) that do not implement the functional
equivalent of the J2EE platform service [2].

One of the platform services for entity EJBs that can
incur a heavy performance penalty is data persistence.
Although not mandated by the EJB specification, entity EJBs
are typically stored as persistent objects in relational
databases and we will assume this type of storage in the
remainder of this article. Furthermore, we will concentrate
on entity EJBs with container-managed persistence (CMP)
rather than bean-managed persistence (BMP). CMP entity
EJBs have the advantage of receiving more platform
assistance than BMP entity EJBs and are thus usually

preferable from a software engineering point of view. They
also tend to perform better than BMP entity EJBs because of
extensive application-independent performance
optimizations that EJB containers incorporate for CMP EJBs
[3]. For the sake of simplicity, we will refer to CMP entity
EJBs simply as “EJBs”. Note that the mapping from EJBs to
database tables and the data transfer between in-memory
(cached) EJBs and the database is the responsibility of the
J2EE platform and can therefore be only minimally
influenced by the EJB developer. Hence, we cannot discuss
the impact of the technique presented in this article on
structural or operational details of the data persistence layer
of the J2EE platform. Instead, we will discuss how our
technique changes the characteristics of the EJB layer that is
under the control of the EJB developer and show how these
changes affect the overall performance of EJB operations.

In the past, a lot of research into improving J2EE
application performance has focused on tuning the
configuration of EJBs and of the EJB operating environment
consisting of J2EE application servers, databases, Web
servers, and hardware. In addition, some software
engineering methods such as software design patterns and
coding guidelines have been developed to address
performance issues with J2EE applications. This article
presents a novel software design pattern for accelerating
J2EE applications that we call consolidated EJBs (CEJBs).
We devised the pattern during a multiyear research project at
Avaya Labs Research where we developed a J2EE-based
context aware communications middleware called Mercury.
Mercury operates on a large number of EJB instances that
represent enterprise users (hence our User EJB examples
later in this article). Due to a large frequency of retrieval,
query, and update operations on these EJBs, Mercury
suffered from slow performance even after tuning J2EE
application server and database settings. Thus, we felt
compelled to investigate structural changes to Mercury’s
J2EE implementation as a remedy for the performance
problems and we arrived at the CEJB design pattern.

The remainder of this article is organized as follows. In
Section II, we describe some of the related work. Section III
presents the CEJB software design pattern and its use in
J2EE applications. We describe the details of CEJB
allocation, the mapping of entities to CEJBs, the storage of
entities within CEJBs, and retrieval of entities from CEJBs.
Our presentation focuses on EJBs according to the EJB 2.1
specification. This specification has been supplanted by the
EJB 3.1 specification [4] in the meantime. However, the
salient ideas of our work remain valid with EJB 3.1. We

691Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

compare the performance of CEJBs and EJBs in Section IV.
A summary and an outline of future work conclude the
article in Section V.

II. RELATED WORK

Much research has been devoted to speeding up J2EE
applications by tuning EJBs and J2EE application server
parameters. Pugh and Spacco [5] and Raghavachari et al. [6]
discuss the potentially large performance impact and
difficulties of tuning J2EE application servers, connected
software systems such as databases, and the underlying
hardware. In contrast, CEJBs constitute an application-level
technique to attain additional J2EE application speed-ups.

The MTE project [7][8] offers more insight into the
relationship between J2EE application server parameters,
application structure, and application deployment parameters
on the one hand and performance on the other hand. The
MTE project underscores the sensitivity of J2EE application
performance to application server parameters as well as to
the application structure and deployment parameters.

Another large body of research into J2EE application
performance has investigated the relationship between J2EE
software design patterns and performance. Cecchet et al. [9]
study the impact of the internal structure of a J2EE
application on its performance. Many examples of J2EE
design patterns such as the session façade EJB pattern can be
found in [10] and [11], while Cecchet et al. [9] and Rudzki
[12] discuss performance implications of selected J2EE
design patterns. The CEJB design pattern improves
specifically the performance of bean caches and database
searches for EJBs. The Aggregate Entity Bean Pattern [13]
consolidates logically dependent entities of different types
into the same EJB while CEJBs consolidate entities of the
same type into an EJB. Converting EJBs into CEJBs can
therefore be automated by a tool whereas the aggregation
pattern requires knowledge of the specific application and
the logical dependencies of its entities. Aggregation and
CEJBs can be synergistically used in the same application to
increase overall execution speed.

Leff and Rayfield [14] show the importance of an EJB
cache in a J2EE application server for improving application
performance. We can find an in-depth study of performance
issues with entity EJBs in [3]. The authors point out that
caching is one of the greatest benefits of using entity EJBs
provided that the bean cache is properly configured and
entity EJB transaction settings are optimized.

The CEJB technique complies with the EJB specification
and therefore can be applied to any J2EE application on any
J2EE application server. Several J2SE-based technologies,
from Java Data Objects (JDO) to Java Object Serialization
(JOS), sacrifice the benefit of J2EE platform services in
return for much higher performance than would be possible
on a J2EE platform. Jordan [15] provides an extensive
comparison of EJB data persistence and several J2SE-based
data persistence mechanisms and their relative performance.

Trofin and Murphy [16] present the idea of collecting
runtime information in J2EE application servers and to
modify EJB containers accordingly to improve performance.
CEJBs, on the other hand, do not change EJB containers but

improve performance by multiplexing multiple logical
entities into one entity as seen by the EJB container.

III. CONSOLIDATED EJBS

A. CEJB Goal and Concept

CEJBs are intended to narrow the performance gap
between EJBs and POJOs in J2EE applications with large
numbers of EJBs of the same class. A look at common
operations during the life span of an EJB explains some of
the performance differences between EJBs and POJOs:

 Creating EJBs entails the addition of rows in a table
in the underlying relational database at transaction
commit time, whereas POJOs exist in memory.

 Accessing EJBs requires the execution of finder
methods to locate the EJBs in the bean cache of the
J2EE application server or in the database, whereas
access to POJOs is accomplished by simply
following object references.

 Depending on the selected transaction commit
options (pessimistic or optimistic), the execution of
business methods on EJBs is either serialized or
requires frequent synchronization with the
underlying database. Calling POJO methods, on the
other hand, simply means accessing objects in the
Java heap in memory, possibly with application-
specific concurrency control in place.

 Deleting EJBs also removes the corresponding
database table rows at commit time. Deleting POJOs
affects only the Java heap in memory.

The preceding list identifies the interaction between EJBs
and the persistence mechanism as a performance bottleneck
for EJBs that POJOs do not suffer from. The persistence
mechanism includes the bean cache and the database. One
way of decreasing the performance gap between EJBs and
POJOs, therefore, is to increase the bean cache hit rate,
thereby reducing the database access frequency. In case of
bean cache misses and when synchronizing the state of EJBs
with the database, we would like to speed up the search for
the database table rows that represent EJBs. CEJBs are
intended to significantly decrease the number of EJBs in a
J2EE application. A smaller number of EJBs translates into
higher bean cache hit rates and faster EJB access in the
database due to a smaller search space in database tables for
EJB finder operations. In other words, CEJBs reduce the
number and execution times of database accesses by
increasing the rate of in-memory search operations.

CEJBs are based on a simple idea. Traditionally, when
developing EJBs we map each real-world entity in the
application domain such as a user to a separate EJB. This
approach can result in a large number of EJB instances in the
application. With CEJBs, on the other hand, we consolidate
multiple entities of the same type into a single “special” EJB.
Specifically, we store up to N POJO entities in the same EJB
(the CEJB), where N is an priori determined constant.
Because N is determined at application design time, the
CEJB-internal data structure for storing entities can be an
array of size N. Hence, locating an entity within a CEJB can
be accomplished through a simple array indexing operation

692Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

requiring only constant time. The challenge for developing
CEJBs is devising an appropriate mapping function
m:KE→KC×[0,N-1], where KE is the primary key space of
the entities and KC is the primary key space of the CEJBs.
Function m maps a given entity primary key k, for example a
user ID, to a tuple (k1, k2) where

 k1 is an artificial primary key for a CEJB that will
store the entity,

 k2 is the index of the array element inside the CEJB
that stores the POJO with primary key k.

The mapping function m has to ensure that no more than
N entities are mapped to the same CEJB. On the other hand,
m also has to attempt to map as many entities to the same
CEJB as possible. Otherwise, CEJBs would perform little or
no better than EJBs. Moreover, the computation of m for a
given entity primary key has to be fast.

B. Developing a CEJB

Consider a simple entity represented as an EJB User with
the J2EE-mandated local home interface, local interface, and
bean implementation:

 The local home interface is responsible for creating

new Users through a method create(String userID,

String firstName, String lastName) and finding

existing ones through method

findByPrimaryKey(String userID).

 The local interface allows a client to call getter and
setter methods for the firstName and lastName
properties of Users. It also contains a method
businessMethod(String firstName, String lastName)

with some business logic: the method simply assigns
its parameters to the firstName and lastName
properties of a User, respectively.

 The bean implementation is the canonical bean
implementation of the methods in the local (home)
interfaces. For the sake of brevity, we omit showing
the (quite trivial) bean implementation here.

In Figures 1-4, we present a CEJB CUser that we
derived from the User EJB. To arrive at CUser, we first map
the persistent (CMP) fields in User to transient String arrays
firstNames and lastNames and persistent String fields
encodedfirstNames and encodedlastNames. Note that we do
not implement firstNames and lastNames as persistent array
fields. Instead, we encode firstNames and lastNames as
persistent Strings encodedFirstNames and
encodedLastNames, respectively, during ejbStore operations.
To do so, ejbStore creates a #-separated concatenation of all
elements of firstNames and one of all elements of lastNames
where # is a special symbol that does not appear in first or
last names. This technique allows us to store the first names
and last names as VARCHARs in the underlying database
and avoid the much less time-efficient storage as
VARCHARs for bit data that persistent array fields require.
During ejbLoad operations the encodedFirstNames and
encodedLastNames are being demultiplexed into the
transient arrays firstNames and lastNames, respectively. The
CUserBean then uses the state of the latter two arrays until

the next ejbLoad operation refreshes the state of the two
arrays from the underlying database.

The ejbCreate method in Figure 3 assigns an objectID to
the appropriate persistent field. We will discuss the choice of
the objectID later. The method also allocates and initializes
the transient firstNames and lastNames arrays. The size of
the arrays is determined by the formal parameter N.

In the CUser local interface, we add an index parameter
to all getter and setter methods and to the businessMethod.
We also add the lifecycle methods createUser and
removeUser. The getter and setter methods in CUserLocal
have to be implemented by CUserBean because they are
different from the abstract getter and setter methods in
CUserBean. The new getter and setter methods access the
indexed slot in the array fields firstName and lastName.
Similarly, we have to change the businessMethod, which
now accesses the indexed slot in the firstName and lastName
fields rather than the entire EJB state. The createUser
method first ensures that the indexed slots in the firstNames
and lastNames are empty. If not, this user has been added
before and a DuplicateKeyException is raised. If the slots are
empty, createUser will assign the state of the new user to the
indexed slots in the arrays. The removeUser method ensures
that the indexed firstNames and lastNames slots are not
empty, i.e., the referenced user is indeed stored in this
CUser. If so, removeUser deletes the state of this user from
the firstNames and lastNames arrays.

Figure 5 shows a class ObjectIDMapping that
encapsulates an exemplary mapping function m from User
primary keys (Strings) to CUser primary keys (objectIDs).
Figure 6 contains an example of retrieving a CUser through
an ObjectIDMapping and executing the businessMethod on
the retrieved CUser. The only argument for the constructor
of an ObjectIDMapping is N, the maximum number of
entities consolidated in a CUser. The mapping function m is
computed in the setObjectID method. This method maps a
User primary key, objectIDArg, to the tuple (objectID,
index). The objectID is derived from objectIDArg by
replacing objectIDArg’s last character c (viewed as an
integer) with c – index. The value of index is the result of c

modulo N, i.e., c=qN+index where 0 index <N and q
is the integer quotient of c and N. While the objectID
identifies the CUser in which we store an entity with
objectIDArg as its primary key, the index identifies the slots
in the CMP array fields in CUser that store the given entity.
Although our definition of m is somewhat complex, its
computation is fast and it maps at most N entities to each
CUser, which is a key requirement for m.

C. Design Considerations for CEJBs

By creating a simple façade session bean we can
completely hide CUsers from the rest of the application and
expose only POJO entities to clients. With a façade session
bean, the two-step process of first retrieving a CUser and
subsequently accessing a POJO entity shown in Figure 6 is
reduced to one step. The façade bean is straightforward and
therefore we do not show it here. For more complicated

693Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

public interface CUserLocalHome extends EJBLocalHome {

 CUserLocal create(String objectID, int numElements) throws CreateException;

 CUserLocal findByPrimaryKey(String objectID) throws FinderException;

 CUserLocal getUser(String objectID, int numElements) throws FinderException;

}
Figure 1. Local home interface for CUser.

public interface CUserLocal extends EJBLocalObject {

 void createUser(int index, String firstName, String lastName) throws DuplicateKeyException;

 void removeUser(int index) throws RemoveException;

 String getFirstName(int index);

 void setFirstName(int index, String firstName);

 String getLastName(int index);

 void setLastName(int index, String lastName);

 void businessMethod(int index, String firstName, String lastName);

}

Figure 2. Local interface for CUser.

public abstract class CUserBean implements EntityBean {

private transient String[] firstNames = null;

private transient String[] lastNames = null;

public abstract String getObjectID();

public abstract void setObjectID(String objectID);

public abstract String getEncodedFirstNames();

public abstract void setEncodedFirstNames(String encodedFirstNames);

public abstract String getEncodedLastNames();

public abstract void setEncodedLastNames(String encodedLastNames);

public String ejbCreate(String objectID, int N) throws CreateException {

 setObjectID(objectID);

 firstNames = new String[N];

 lastNames = new String[N];

for (int index = 0; index < N; index++) {

 firstNames[index]= null;

 lastNames[index] = null;

}

 return null;

}

public void ejbLoad() {

 StringTokenizer encodedFirstNames = new StringTokenizer(getEncodedFirstNames(), “#”),

 encodedLastNames = new StringTokenizer(getEncodedLastNames(), “#”);

 int numElements = encodedFirstNames.countTokens();

 if (firstNames == null) {

 firstNames = new String[numElements];

 lastNames = new String[numElements];

 }

 for (int index = 0; index < numElements; index++) {

 firstNames[index] = encodedFirstNames.nextToken();

lastNames[index] = encodedLastNames.nextToken();

 }

}

public void ejbStore() {

 StringBuffer encodedNames = new StringBuffer();

 for (int index = 0; index < firstNames.length; index++) {

 encodedNames.append(firstNames[index]);

 encodedNames.append(“#”);

 }

 setEncodedFirstNames(encodedNames.toString());

 encodedNames.setLength(0);

 for (int index = 0; index < lastNames.length; index++) {

 encodedNames.append(lastNames[index]);

 encodedNames.append(“#”);

 }

 setEncodedLastNames(encodedNames.toString());

}
Figure 3. Methods in CUserBean relevant to the CEJB discussion, part I.

694Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

public void createUser(int index, String firstName, String lastName) throws DuplicateKeyException {

 if (!(firstNames[index] == null && lastNames[index] == null)) throw new DuplicateKeyException("User exists already");

 firstNames[index] = firstName;

 lastNames[index] = lastName;

}

public void removeUser(int index) throws RemoveException {

 if (firstNames[index] == null || lastNames[index] == null) throw new RemoveException("User does not exist");

 firstNames[index] = “ “;

 lastNames[index] = “ “;

}

public void businessMethod(int index, String firstName, String lastName) {

 firstNames[index] = firstName;

 lastNames[index] = lastName;

}

public void setFirstName(int index, String firstName) {

 firstNames[index] = firstName;

}

// other getter/setter methods go here…

}
Figure 4. Methods in CUserBean relevant to the CEJB discussion, part II.

public class ObjectIDMapping {

private int N,

 index;

private String objectID;

public ObjectIDMapping(int N) {

 this.N = N;

 index = -1;

 objectID = null;

}

public void setObjectID(String objectIDArg) {

 int lastElementIndex = objectIDArg.length() - 1,

 lastCharacter = objectIDArg.charAt(lastElementIndex);

 index = lastCharacter % N;

 objectID = objectIDArg.substring(0, lastElementIndex) + (lastCharacter - index);

}

public int getIndex() {

 return index;

}

public String getObjectID() {

 return objectID;

}

}
Figure 5. Class for mapping User primary keys to CUser primary keys and array index slots.

ObjectIDMapping idMapping = new ObjectIDMapping(N);

idMapping.setObjectID(“rKlemm”);

CUserLocal cUser = cuserLocalHome.findByPrimaryKey(idMapping.getObjectID());

cUser.businessMethod(idMapping.getIndex(), "Reinhard", "Klemm");
Figure 6. Accessing a CUser EJB.

entities than Users, consolidation through CEJBs requires
more effort but is straightforward and could be supported by
a tool. Ideally, such a tool would be offered as part of a J2EE
development environment and convert EJBs into CEJBs at
the request and under the directions of the developer. The
tool would also need to support the following scenarios:

 If User implements customized ejbLoad, ejbStore,
ejbActivate, or ejbPassivate methods, these need to

be adapted in CUserBean to reflect the fact that the
state of a User is stored across different arrays in the
CUserBean.

 Finder and select queries for User must be re-
implemented for the CEJB because they need to
access both a CUser and the arrays within a CUser.

 If User has customized ejbHome methods, we need
to add functionally equivalent ejbHome methods to

695Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

CUser. Changes to the original User ejbHome
methods are only necessary if these methods access
the state of a specific User EJB after a prior select
method. In this case, the CUser ejbHome methods
need to retrieve POJO entities instead of Users.

 If User is part of a container-managed relationship
(CMR), consolidation through CEJBs requires
removal of the CMRs and manual re-implementation
of the CMRs without direct J2EE support.

The mapping function m has a strong impact on the
performance of CEJBs and therefore needs to be defined
carefully for the given application. The mapping function
delivers its best performance if primary keys that occur in the
application are clustered. Clustering here means that for
every primary key k in the application there is a set of
roughly N primary keys for other entities in the application
that are similar enough to k to be mapped to the same
objectID by m. The challenge is therefore to analyze the
actual key space of the entities that are to be consolidated in
a given application and to then define an efficient and
effective mapping function based on this analysis.

IV. PERFORMANCE EVALUATION

A. Methodology

We compared the performance of Users and CUsers in a
J2EE test application. It uses the mapping function m in
Figure 5 because this function clusters the primary keys that
we chose for the entities in the test application -
lexicographically consecutive strings - to facilitate the
generation of a large number of user entities. The test
application executes a sequence of operations either on Users
(EJB mode) or CUsers (CEJB mode). In EJB mode, the
application executes the following sequence of steps:

1. Create n User EJBs.
2. Find User EJB with randomly selected primary key

and read its state through getter operations. Repeat
n times.

3. Find User EJB with randomly selected primary key
and execute businessMethod on it, thus changing the
EJB state. Repeat n times.

4. Delete all User EJBs through EJB remove
operations.

Between any two consecutive steps, the test application
creates 20000 unrelated EJBs in order to introduce as much
disturbance as possible in the application server bean cache
and in the connection to the underlying database. During our
performance testing, however, it turned out that these cache
disturbance operations had a negligible effect on the
performance differences between the CEJB and EJB modes.

In CEJB mode, the application performs the same steps
on CUsers instead of Users. Also, in step 4 in CEJB mode,
the application sequentially deletes all entities in each CEJB
but not the CEJB itself. We varied the maximum number N
of entities per CEJB, from 2 to 250 in consecutive runs of the
test application. The performance of the test application
peaked around N=20. We only present the performance
results for N=20.

We configured the test application with two different
transaction settings in two different experiments: in long
transaction mode, each step of the test application is
executed in one long-lived transaction. In short transaction
mode, the application commits every data change as soon as
it occurs, i.e., after each entity creation, change, or deletion.
Here, the application performs a large number of short-lived
transactions. In successive runs of the test application, n
iterated over the set {1000, 10000, 50000}. After each run,
we restarted the database server and the application server
and deleted all database rows created by the application.

We deployed the test application on an IBM WebSphere
5.1.1.6 J2EE application server with default bean cache and
performance settings. The hardware is a dual Xeon 2.4 GHz
server running Microsoft Windows 2000 Server. An IBM
DB2 8.1.9 database provides the data storage. All EJBs use
the WebSphere default commit option C.

B. Performance Analysis

Figures 7-12 display the results of our performance
testing with the test application in long and short transaction
modes for the three different values of n. The speedup in the
figures is defined as the time for an EJB operation divided by
the time for the equivalent CEJB operation. Speedup values
greater than 1 indicate results where CEJBs outperform
EJBs, values of less than 1 indicate EJBs performing better
than CEJBs. In long transaction mode, CEJBs significantly
outperformed EJBs. For n=50000, for example, creating
users with CEJBs was more than twice as fast as with EJBs,
finding and reading users was more than 5 times faster,
finding and changing users was more than 7 times faster, and
deleting users with CEJBs was more than 14 times faster.

Because the mapping function m in our test application
clusters the primary keys of the user entities, the CEJBs
consolidate almost the maximum possible number of entities
(20 per our definition of N). Hence, the number of CEJBs
necessary to store all user entities in the test application is
about 1/20

th
 that of the number of EJBs in EJB mode, which

translates into much improved application server caching
behavior and accelerated database search times. Once a
CEJB has been retrieved, extracting the desired entity from
the CEJB is a simple and fast array indexing operation.
However, if the chosen mapping function m for a given
application does not achieve the cluster property, CEJBs may
lose some of their performance advantage over EJBs.

In CEJB mode, entity deletion does not force the deletion
of EJBs in the application server or the database. Instead,
entity deletion in CEJBs is accomplished through the
removal of entities inside EJBs. Not surprisingly therefore,
deleting users in CEJB mode is much faster than in EJB
mode where an EJB needs to be removed in the application
server bean cache and the underlying database.

In short transaction mode, our performance testing
showed a very different outcome. Here, CEJBs only offer
performance advantages over EJBs for finding and reading
users operations. CEJBs are about as fast as EJBs during
finding and changing of users and during deletion of users
but much slower in creating users. In short transaction mode,
transaction commits after EJB state changes dominate the

696Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

execution time of the test application and void many
performance advantages due to consolidation. Hence, J2EE
applications that eagerly commit every EJB state change will
experience a significant speed-up as a result of consolidation
only if the EJB read to write ratio is very high.

In conclusion, CEJBs provide strong performance
advantages over EJBs in a J2EE application if (1) the
application contains a large number of EJBs, (2) it accesses
EJBs either in long-lived transactions or in short-lived
transaction with a large EJB read to write ratio, and (3) if a
mapping function m can be found for the EJB key space that
exhibits the cluster property.

Our test application is designed to execute a large
number of common EJB operations in a repeatable fashion.
As such, the test application is somewhat artificial. It does
not involve human interactions and arbitrary timing delays
due to human input. The pattern of EJB operations is highly
regular and maximizes EJB accesses, whereas other J2EE
applications may have irregular EJB accesses and also
contain computationally or I/O-intensive tasks. Our User
EJBs are simple while EJBs in common J2EE applications
can be more complex and linked to each other. However, we
believe that our test application realistically captures the
performance differences between EJBs and CEJBs in a large
class of J2EE applications that are characterized by large
numbers of entities, a high frequency of EJB accesses with a
large degree of regularity (e.g., certain data mining
applications such as our Mercury system), and a predictable
and regular primary key space for the entities.

Figure 7. Test application performance: long transaction mode, n=1000.

Figure 8. Test application performance: long transaction mode, n=10000.

Figure 9. Test application performance: long transaction mode, n=50000.

Figure 10. Test application performance: short transaction mode, n=1000.

Figure 11. Test application performance: short transaction mode, n=10000.

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 0.55 2.25 3.38 3.88

CEJBs 0.30 0.23 0.28 0.20

Speedup 1.84 9.62 12.01 19.00

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 0.50 1.67 1.56 3.79

CEJBs 0.16 0.27 0.27 0.32

Speedups 3.02 6.14 5.72 11.84

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 0.39 1.38 1.48 3.21

CEJBs 0.17 0.24 0.20 0.23

Speedup 2.24 5.75 7.58 14.28

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 7.41 2.31 12.05 5.81

CEJBs 10.34 0.36 12.41 5.08

Speedup 0.72 6.44 0.97 1.14

0.00

2.00

4.00

6.00

8.00

10.00

12.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 4.14 1.66 4.72 5.06

CEJBs 6.52 0.18 4.84 4.94

Speedups 0.64 9.05 0.98 1.02

0.00

2.00

4.00

6.00

8.00

10.00

12.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

697Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 12. Test application performance: short transaction mode, n=50000.

V. CONCLUSION AND FUTURE WORK

We presented a J2EE software design pattern that
consolidates multiple entities in J2EE applications into
special-purpose entity EJBs that we call consolidated EJBs
(CEJBs). Consolidation increases the locality of data access
in J2EE applications, thus making bean caching in the
application server more effective and decreasing search
times for entity EJBs in the underlying database. In J2EE
applications with large numbers of EJBs, CEJBs can
therefore greatly increase the overall application
performance. Using a test application we showed that CEJBs
can outperform traditional EJBs by a wide margin for
common EJB operations. For example, the CEJB equivalent
of an EJB findByPrimaryKey operation is more than five
times faster in one of our experiments, and the execution of a
data-modifying business method on an EJB is more than
seven times faster in CEJBs. CEJBs conform to the EJB
specification and can therefore be used in any J2EE
application on any J2EE application server.

We have three future research goals for CEJBs. First, we
would like to modify CEJBs in such a way that applications
with short-lived transactions and a small ratio of EJB read to
EJB write operations perform better than our current
solution. Secondly, we intend to investigate mapping
functions for CEJBs that (1) perform well if the primary key
space for EJBs is irregular or unpredictable, and (2) that can
be automatically defined without requiring complex
developer decisions. Thirdly, we would like to address a
currently open question for our CEJB design pattern, which
is how to adjust CEJBs so that they are beneficial in most
J2EE applications and thus could ultimately become a
standard way of implementing entities in J2EE applications.

REFERENCES

[1] Oracle Inc., “Enterprise JavaBeans Specification 2.1,”
retrieved September 28, 2012, from http://bit.ly/Ovip59.

[2] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W,
Zwaenepoel, “Performance Comparison of Middleware
Architectures for Generating Dynamic Web Content,” Lecture
Notes in Computer Science, Vol. 2672, Jan. 2003, pp. 242-
261.

[3] S. Kounev and A. Buchmann, “Improving Data Access of
J2EE Applications by Exploiting Asynchronous Messaging
and Caching Services,” Proc. 28th International Conference on
Very Large Databases (VLDB), Aug. 2002, retrieved
September 28, 2012, from http://bit.ly/QgduUf.

[4] Oracle Inc., “Enterprise JavaBeans Specification 3.1,”
retrieved September 28, 2012, from http://bit.ly/SlMyPN.

[5] S. Pugh and J. Spacco, “RUBiS Revisited: Why J2EE
Benchmarking is Hard,” Companion to the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Oct. 2004,
pp. 204-205.

[6] M. Raghavachari, D. Reiner, and R. Johnson, “The
Deployer’s Problem: Configuring Application Servers for
Performance and Reliability,” Proc. 25th International
Conference on Software Engineering ICSE ’03, May 2003,
pp. 484-489.

[7] S. Ran, P. Brebner, and I. Gorton, “The Rigorous Evaluation
of Enterprise Java Bean Technology,” Proc. 15th International
Conference on Information Networking (ICOIN), IEEE
Computer Society, Jan. 2001, pp. 93-100.

[8] S. Ran, D. Palmer, P. Brebner, S. Chen, I. Gorton, J. Gosper,
L. Hu, A. Liu, and P. Tran, “J2EE Technology Performance
Evaluation Methodology,” Proc. International Conference on
the Move to Meaningful Internet Systems 2002, pp. 13-16.

[9] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance
and Scalability of EJB Applications,” Proc. 17th ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Application (OOPSLA), Nov. 2002,
retrieved September 28, 2012, from http://bit.ly/Qge98e.

[10] D. Alur, J. Crupi, and D. Malks, “Core J2EE Patterns,”
Prentice Hall/Sun Microsystems Press, Jun. 2001.

[11] F. Marinescu, “EJB Design Patterns: Advanced Patterns,
Processes, and Idioms,” John Wiley & Sons Inc., Mar. 2002.

[12] J. Rudzki, “How Design Patterns Affect Application
Performance – A Case of a Multi-Tier J2EE Application,”
Lecture Notes in Computer Science, No. 3409, Springer-
Verlag, 2005, pp. 12-23.

[13] C. Larman, “The Aggregate Entity Bean Pattern,” Software
Development Magazine, Apr. 2000, retrieved September 28,
2012, from http://bit.ly/PgBoxe.

[14] A. Leff and J. T. Rayfield, “Improving Application
Throughput with Enterprise JavaBeans Caching,” Proc. 23rd
International Conference on Distributed Computing Systems
(ICDCS), May 2003, pp. 244-251.

[15] M. Jordan, “A Comparative Study of Persistence Mechanisms
for the Java Platform,” Sun Microsystems Technical Report
TR-2004-136, Sep. 2004, retrieved September 28, 2012, from
http://bit.ly/U3GGPf.

[16] J. Trofin and J. Murphy, “A Self-Optimizing Container
Design for Enterprise Java Beans Applications,” 8th
International Workshop on Component Oriented
Programming (WCOP), Jul. 2003, retrieved September 28,
2012, from http://bit.ly/O4biAD.

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 3.08 1.34 4.69 5.01

CEJBs 5.35 0.18 4.75 4.96

Speedup 0.58 7.34 0.99 1.01

0.00

2.00

4.00

6.00

8.00

10.00

12.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

698Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://bit.ly/QgduUf
http://bit.ly/Qge98e
http://bit.ly/U3GGPf
http://bit.ly/O4biAD

