ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

An Automatic Security Testing approach of Android Applications

Stassia R. Zafimiharisoa
LIMOS - UMR CNRS 6158
Université Blaise Pascal, France
email: s.zafimiharisoa @ openium.fr

Abstract—In this paper, we propose a security testing ap-
proach which aims to check whether Android applications are
not vulnerable to malicious intents. An intent is an IPC (Inter-
Process Communication) mechanism which is used to compose
Android components together to form a whole application.
From Manifest files, which provide information about Android
applications, and based on the vulnerabilities expressed within
test patterns, we automatically generate JUnit test cases that
can detect intent-based vulnerabilities. Using formal methods,
executable security tests are then automatically generated from
any Android applications.

Keywords-security testing, Android applications, model-
based testing.

I. INTRODUCTION

As mobile usage grows, so should security: this sentence
summarises well the conclusions of several recent reports
[1] about mobile application security with platforms such as
i0S, Android or Windows Phone. These reports also show
that an alarming amount of malicious software is currently
available. On the other side, end-users wish using trustwor-
thy mobile applications; so, more and more developers have
in mind that security must not be left aside. Nevertheless,
eliminating security vulnerabilities in mobile applications is
not so obvious since these ones depend on different concepts
such as composition of software components, which have not
been completely covered by security studies.

This paper proposes a work in progress about an automatic
security testing method for Android applications. Since
mobile application security is a tremendous research field,
we focus here on the composition of Android components:
most of mobile applications gather a set of components com-
posed together statically or dynamically. With Android, these
components are glued by means of the concept of intent
which is an IPC mechanism. In reference to the Android
documentation [2], an intent is an abstract description of
an operation to be performed. Basically, an intent is a data
structure holding an abstract description of an action to be
executed by another component. This one is generally used
to call or launch another component, e.g., an activity (a
component which represents a single screen), or a service
(component which can be executed in background). For
example, an intent is used when a user wishes to search
for a contact for later sending an email.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Sébastien Salva
LIMOS - UMR CNRS 6158
Université d’Auvergne, France
email: sebastien.salva@udamail.fr

Patrice laurencot
LIMOS - UMR CNRS 6158
Université Blaise Pascal, France
email: laurencot@isima.fr

The use of intents introduces vulnerability issues (avail-
ability, integrity issues, etc.) when intents are composed
of malicious data. The security testing method developed
in this paper aims at detecting whether components are
vulnerable to these malicious intents. The first step of this
method is the generation of formal models i0STS (input
output Symbolic Transition Systems [3]) from Android
applications, and more precisely from Manifest files. These
Manifest files which can be found in Android application
packages (apk), contain the list of Android components,
permissions of these components and a list of intents that
can be performed. More precisely, with introspection of the
different compiled components, we derive an incomplete
class diagram which will be used to refine and reduce the
test case generation. We also parse Manifest files to derive
one i0STS for each component that describes the intent
communication. Vulnerabilities (that would be tested) are
also described formally with i0STS called fest patterns. We
give an example of test pattern for availability testing in this
short paper. However, our method can be also used to test
other security concepts such as integrity or authorisation.
Then, our method constructs test cases by combining the
component models with test patterns. The resulting i0STS
test cases are finally translated into JUnit test cases to be
later executed with classical development tools.

The paper is structured as follows: Section II presents
some works dealing with Android security and security
testing. The methodology is described in Section III. We
conclude in Section IV.

II. RELATED WORK

Several works, dealing with Android security, have been
proposed recently. Some works focused on the definition of
a more secure Android framework. For instance, different
actions were monitored to check the system integrity in
[4]. These approaches offer a different point of view, in
comparison to the work tackled in this paper which aims
at detecting applications vulnerabilities, since they target
the discovery of framework vulnerabilities. Analysis of
IPC were studied by E. Chin et al. [5]. They described
the permission system vulnerabilities that applications may
exploit to perform unauthorised actions. We have exploited
the described vulnerabilities to model test patterns which

643



ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

can be used to generate test cases. We have also completed
this vulnerability list by means of the recommendations and
vulnerabilities referenced by the OWASP (Open Web Ap-
plication Security Project) communities [6]. At the moment,
only Web applications are considered, but this gives some
indications for mobile applications too. Then, our approach
do not require Android framework extension and deal with
a large coverage of Android applications vulnerabilities.

Security testing, based upon formal models, has been
studied in several works [7]. Mouelhi et al. propose to
produce test cases from security policies described with
logic based languages(OrBAC). This ones permits to decribe
specific properties such as access control [8].In these two
previous works, test cases are generated from specification
and invariants or rules describing security policies. Starting
with a similar approach, we also use formal models to
describe Android applications and vulnerabilities, and we
propose to push one step beyond in the automatic generation
of partial models to produce tests.

In [9], a threat model-based security testing approach is
presented. This method produces security test cases from
threat trees and transforms them into executable tests. Using
trees is intuitive for industry but the use of formal languages
offer several other advantages such as the description of the
testing coverage.

III. SECURITY TESTING METHODOLOGY

In this section, we present an automatic security testing
approach which can be used to detect vulnerability issues
based on the intent mechanism. The different steps of
the method are illustrated in Figure 1. Initially, several
models are extracted from an Android application: from
the compiled classes, we extract a partial class diagram by
introspection. This one lists the components and gives the
associations between classes. We also produce one ioSTS
per component. These i0STSs will be combined with i0STS
test patterns, which describe vulnerabilities, to produce test
cases. We obtain symbolic test cases which need to be con-
cretised with values. Finally, these latter are translated into
JUnit test cases to be executed with classical development
tools. These steps are more detailed in the remainder of the

paper.
A. Model generation

1) Android components and interactions: Android appli-
cations are usually constructed over a set of components.
A component belongs to one of the four basic components
types that are activities (user interfaces), services (back-
ground processing), content providers (database manage-
ment) and broadcast receivers (broadcast message handling).
The communication between these components is performed
by intents. An intent is a kind of bundle of information
which gathers: the action which has to be performed, data
specifies the type of data to operate on or the MIME

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Yulnerahility o | Abstract Concrete JUNIT
Test patterns Testcases Testcases Testcases
Component
Models
Manifest 4¢
Class
Diagram

Model generation Testcase generation

Figure 1. Test case generation.

(Multipurpose Internet Mail Extension) type, a category and
eventually some extras which represent variable affectations
which are required for the action [2]. Intents are divided
into two groups: explicit intents where the target component
is designated and must be launched and implicit intents
(the most generally ones) where a component of another
application is going to be used. The mapping of an intent
to a component is expressed in Manifest files with intent
filters. The latter are given for each component. Android
Manifest file is mandatory in a project and it specifies system
information about the application. In this paper, Manifest
files are used to extract the list of Android components
deployed in the application and their intent filters.

2) Component partial model extraction: A simplified
class diagram, giving the Android components of the ap-
plication, is initially computed. The relationships between
components are established by applying reverse engineering
based on introspection in Java. This step aims to later reduce
the test case generation. For instance, we only produce test
cases to check data integrity on components which have
access to databases or to content-provider components only.
Our approach combines introspection with the detection of
specific Android component methods defined in [2], which
give details about intents, and the access to data.

Then, we generate one ioSTS for each component to
describe the intents that it can accept. An ioSTS is a
kind of automaton model which is extended with a set of
variables, with transition guards and assignments, giving the
possibilities to model the system state and constraints on
actions. Its complete definition can be found in [3]. An
i0STS is defined by the tuple < L,ly,V, Vo, I, A, —>,
where: L is the finite set of locations, with [y the initial
one, V is the finite set of internal variables, while [ is the
finite set of interaction ones. A is the finite set of symbols
and — is the finite transition set.

IoSTS are generated with Algorithm 1. It constructs one
partial i0STS specification per component listed in the Mani-
fest file. It is also based on the recommendations provided in
[2] to describe the different responses that can be observed
after the receipt of an intent by a component. In this paper,

644



ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

we focus on activity and service components only. Intents
are expressed with the output action !intent composed of
specific variables for the action, the data, the category, the
type and the extras. IoSTS are constructed according to the
intent action type. The set denoted A, is composed of the list
of Actions that requires response message after the intent,
e.g..,the action PICK. A, is the set composed of the list of
Actions that do not need response, e.g.,the action VIEW.

An minimalist and straightforward example of
specification is given below. It illustrates one intent
composed of the action VIEW that is called to display
information about the first person in the contact list of the
mobile phone.

lo

?intent(action,data)

action=ACTION_VIEW Adata=../contact/people/1
\display(ActivityA),[A.resp=isNull] I
0-

I

Algorithm 1: Partial Specification set Generation
input : Manifest file M F
output: An ioSTS set {S; | ¢t is a component}
foreach component ct in M F do

foreach IntentFilter it(a,d,c,v) of ¢t in MF do

if ct.type = activity then

if a € A, then

?intent(a,d,c,v),[a.in(A,)]

lo Ser (lit1)
display(ActivityA),[A.resp#Null]

See Lo

else if a € A, then
?intent(a,d,c,v),[a.in(Aq)]

lo Ser (lit,1)
ldisplay(ActivityA),[A.resp=Null]

S lo

else
Tintent(a,d,c,v),[a.in(A.)]

lo 8o (Lit1)

Idisplay(ActivityA)

Se: o

if ct.type = service then
if a € A, then

?intent(a,d,c,v),[a.in(A,)]
lo 5.0 (Lit,1)
lrunning(ServiceS),[S.resp#Null]

Se: lo

else
?intent(a,d,c,v)
lo See (lit,1)

lrunning(ServiceS)

Se: o

B. Vulnerability modelling with ioSTS test patterns

We propose to define security vulnerabilities of Android
components with 10STSs in order to combine them later
with 10STS specifications. Our method can take different
security concepts, e.g., availability, integrity or authorization
in condition that they could be modelled with i0STSs. One

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

lintent (action,category, type uri, extra) [in(action,

Ac U RV (String) A in (category, C U RV(String) U
Inj A inftype, T L RV(String) A infuri, U U RV(String)
A in(extra, Ve]

“?ResourceMNotF oundException

? ClassCastException
?Display(Activity A) [in (A.name,

ApplicationComponent
A AdsEnahle= trug]

FActivityNotFoundException,

Figure 2. Test pattern for availability

MullPointerException

vulnerability is expressed by a tree whose final locations
are labelled by a verdict in {pass, fail,inconclusive}:
branches beginning from the initial location and ended by
fail express functional behaviours composed of malicious
intents and responses which show the presence of the vulner-
ability. Branches ended by inconclusive express functional
behaviours which do not help to conclude on the presence
or the absence of the vulnerability. Branches ended by pass
express functional behaviours which show the absence of
the vulnerability.

We only present a test pattern example to check availabil-
ity in this paper. Availability of Android components means
that they must respond despite the receipt of malicious
intents. An availability test pattern for Activity components
is shown in Figure 2. The other security properties are com-
posed with more states. Availability issues are detected when
exceptions such as ClassCastException, NullPointerExcep-
tion, RessourceNotFoundException, etc. are received [2].
So, the test pattern expresses that when one of these excep-
tions is observed, the fail location is reached. For instance,
these exceptions can be received when there is no input
validation of the URI path. System exceptions e.g., Activi-
tyNotFoundException, SecurityException, etc. mean that the
intent has been blocked directly by the Android system.
This is expressed by transitions leading to the inconclusive
location. Variables of the intent action take values in specific
sets with the term in. These sets are required to target the
test with specific values and above all to reduce the number
of test cases. The set A, is composed of the list of Actions
found in the Android documentation [2]. In the same way,
C is a specific set of categories, T a set of types, U a
set of URL Ve is a set of extras i.e., tuples (key, values)
where the keys are extracted from the application package
(apk) and values are chosen randomly. RV stands for a
set gathering values known for relieving bugs and random
values. For instance, for the type String, RV (String) holds
values such as 77, ”$”, ”&”, and random values. Inj gathers
String values equal to XML and SQL injections.

C. Test case Generation

Test cases are generated by composing test patterns,
modelling vulnerabilities with component specifications. As
defined, a test pattern expresses one vulnerability in general

645



ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

lintent(action, data) [action:
ACTIOM_VIEW A data=
tor''="]

? ResourceNotF oundException

' ? ClassCastException \

7 ActivityNotF oundExcaption

?Display(Activity A) [in (A.name,
ApplicationComponent) A
AisEnable = trug]

7 MullPointerException

Figure 3. A test case example.

terms. This combination yields symbolic test cases which are
specialised to test one vulnerability by means of the func-
tional behaviours given in the specification. The combination
of one test pattern 7'P with one specification .S is performed
by two steps: synchronous product of the specification with
the test pattern to extract from the latter, the functional
behaviours expressed in the specification, completion of this
product with incorrect and inconclusive behaviours given in
the test pattern by transition leading to fail or inconclusive
respectively.

1) Test case concretisation: The resulting test cases are
still composed of variables. To execute them, variables are
replaced with values by using a pairwise technique [10] on
the value sets provided by the test patterns (RV, Ac, etc.)
instead of using a cartesian product. This technique helps to
reduce the coverage of the variable domain by constructing
discrete combinations for pair of parameters only. A final
test case is shown in Figure 3. It illustrates a malicious
intent transition composed of the classical SQL injection
Tor 'I’'="1.

2) Automatic unit test generation: 10STS test cases are
translated into JUnit test cases to be executed with Java
development tools. This is done with an algorithm that can
be summarised by: each i0STS transition starting from the
initial location corresponds to the launch of an intent on
a component with its parameters defined in the i0STS test
case. Then, the following transitions that correspond to both
observations and verdicts are translated into JUnit assertions.
Since inconclusive verdict are not allowed with JUnit, it will
be assigned to pass verdict and will be identified by specific
annotations. The following example illustrates a JUnit test
case.

public void testAvailability () {
ACTION_VIEW, ' or

'1"="1}; try{ mActivity=getActivity();

assertTrue (currentView, isNotNull());

assertTrue (activityResult, isNull());}

catch (ClassCastException c) {fail (c.message);}

catch (ActivityNotFoundException a)
{assertTrue (a.message,true);} ... }

. setIntent (

IV. CONCLUSION AND FUTURE WORK

We have introduced a work in progress about Android
security testing based on the notion of intent which can

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

be considered as a glue of the components participating
in applications. The intent concept offers some advantages
and flexibility but is also a weak spot in security since
attacks can be send to components. Our method generates
models from Android Manifest files and constructs test
cases from these models and vulnerabilities models. The
originality of the method is to produce formal models from
Android documentations and files extracted from Android
applications automatically. The use of these formal models
will be useful to express without ambiguity the coverage of
the tests. The next step is to list all the possible intent-based
vulnerabilities (we have collected five vulnerabilities at the
moment) and to develop the corresponding testing tool to
perform experiments on real applications.

REFERENCES

[1] IT Business: Android Security, (June , 2012). [Online]. Avail-
able: http://www.itbusinessedge.com/cm/blogs/weinschenk/
google-must-deal-with-android-security-problems-quickly/
2¢s=49291

[2] “Android developer page,” (May 1, 2012).
Available: http://developer.android.com/index.html

[Online].

[3] L. Frantzen, J. Tretmans, and T. Willemse, “Test Generation
Based on Symbolic Specifications,” in FATES 2004, ser. Lec-
ture Notes in Computer Science, J. Grabowski and B. Nielsen,
Eds., no. 3395. Springer, 2005, pp. 1-15.

[4] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel,
“Semantically rich application-centric security in android,” in
Proceedings of the 2009 Annual Computer Security Applica-
tions Conference, ser. ACSAC ’09, 2009, pp. 340-349.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyz-
ing inter-application communication in android,” in Proc. of
the 9th International Conference on Mobile Systems, Appli-
cations, and Services, 2011, pp. 239-252.

[6] OWASP, “Owasp testing guide v3.0  project,”

2003, (accessed May 1, 2012). [Online]. Avail-

able:  https://www.owasp.org/index.php/Category: OWASP_

Testing_Project#OWASP_Testing_Guide_v3

[7] H. Marchand, J. Dubreil, and T. Jéron, “Automatic Testing of
Access Control for Security Properties,” in TESTCOM/FATES
2009, Nov. 2009.

[8] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Traon, “A model-
based framework for security policy specification, deployment
and testing,” in Proceedings of the 11th international confer-
ence on Model Driven Engineering Languages and Systems,
2008, pp. 537-552.

[9] K. H. S. K. Aaron Marback, Hyunsook Do and D. Xu, “A
threat model-based approach to security testing,” in Softw.
Pract. Exper, 2012.

[10] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction testing,” in
Proc. of the 25th ICSE, 2003, pp. 38—48.

646



