
A Systematic Approach to Risk-Based Testing Using
Risk-annotated Requirements Models

Marc-Florian Wendland, Marco Kranz and Ina Schieferdecker
Fraunhofer Institute FOKUS

Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
{marc-florian.wendland, marco.kranz, ina.schieferdecker}@fokus.fraunhofer.de

Abstract—Nowadays, software-intensive systems continuously
pervade several areas of daily life, even critical ones, and
replace established mechanical or manual solutions.
Development and quality assurance methods have to ensure
that these software-intensive systems are delivered both with
adequate quality, optimized resources and within the
scheduled time frame. The idea of risk-based testing is to
prioritize testing activities to what is deemed critical for the
software-intensive system. Although there is a common
agreement that risk-based testing techniques ought to be
rigorously applied, especially for safety- and security-critical
systems, there is actually little knowledge available on how to
systematically come to risk-optimized test suites. This paper
presents a novel approach to risk-based testing that deals with
the transition from risk management and requirements
engineering to test design activities and test case generation by
using models. The main contribution of the paper is the
description of a methodology that allows an easy combination
of test generation directives and risk level in order to generate
risk-optimized test suites.

Keywords - risk-based testing; behavior engineering; model-
based testing; requirements model; safety-critical systems

I. INTRODUCTION

Already in 1999, Amland stated that IT projects are very
rarely on time, schedule or budget, so when it comes down
to testing, the time to delivery is extremely short and there is
no budget left due to the development overrun [5]. This
statement holds even for today. This requires test case
design techniques to be able to identify the most important
test cases to be carried out in view of limited time. Thus, the
test cases need to be prioritized to be comparable with each
other.

A well-known and highly recommended approach is
risk-based testing ([24][28][29]). The idea of risk-based
testing is as simple as intuitive: Identify prior to test case
design and execution those scenarios that trigger the most
critical situations for a system in production and ensure that
these critical situations are both effectively mitigated and
sufficiently tested. Following Bach, risk-based testing aims
at testing the right things of a system at the right time [1].
He further states that each test process is actually carried out
in a risk-based way due to its sampling characteristics. In

most cases, the consideration of risk is rather made
implicitly, though.

A critical situation is not necessarily dedicated to safety-
or security-critical systems (though it is often used in the
context of such systems), but applies actually to any kind of
system. For example, the most critical situation for a text
processor application might be the save functionality, since
a malfunction may cause the user to switch to the product of
a competitor. However, in the area of safety-critical
systems, critical situations represent sensitive points in time
during the execution of a system, where a malfunction may
lead to harm of environment, human life, financial loss etc.
No matter what kind of system is tested, the idea of risk-
based testing remains the same, whereas the impact of a bad
test case selection may differ dramatically, of course.

Even though risk-based testing is deemed helpful to deal
with scarce resources, it is a matter of fact that there is only
little literature available that provide the tester with a
systematic and reproducible approach on how to actually get
to a risk-optimized set of test cases. We seek to address the
lack of well-founded methodologies for systematic and
applicable risk-based testing approaches. Therefore, we are
using semi-formal models to describe both the functional-
related requirements and a risk-optimized test model.
Furthermore, we show how formal test directives are
coupled with risk to automate the risk-based test case
generation.

The scientific contributions of this paper are:
- Outline of a coherent methodology that combines

information from risk analysis and assessment
activities with requirements engineering activities

- Use of formal requirements models to incorporate
risk-information for further exploitation

- Specify how test case derivation strategies are
being coupled to various risk levels in combination
with a risk matrix using test directives

- Describe a prototype tooling landscape including
complete set of modeling notations for the
proposed methodology

However, this paper does not claim to be an industrial
evaluation report. The remainder of the work is structured as
follows: Section 2 summarizes the state of the art of relevant
risk-based-testing approaches to the knowledge of the

636Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

authors. Section 3 describes the main contribution of this
paper, i.e., our methodology for model-based risk-based
testing. At first, we give a definition of relevant terms in the
realm of risk-based testing. We, then, briefly introduce
Behavior Engineering as the basis of our approach. Next, we
describe how risk information is incorporated into the
resulting requirements models. Afterwards, we show how
those risk-annotated requirement models are further
exploited for systematic test case generation. Section 4
briefly summarizes a prototype tooling landscape and
findings from a first application of the methodology.
Section 5 and 6 provide an outlook to future work and
conclude eventually.

II. RELATED WORK

The principles of risk-based testing have been addressed
by several often quoted publications before (such as
[1][2][4]). These articles are mainly dedicated to the
clarification of the terms and concepts that belong to risk-
based testing. The authors provide justified arguments why
risk should always be considered in structuring testing
processes. Amland presented a concrete example how risk-
based testing had been performed within a project in a
financial domain [6]. None of these articles, however,
provide precise statements or event suggestions how test
design techniques shall be chosen due to an identified and
given risk, which is a main contribution of our approach.

Stallbaum and Metzger made a first step towards
automated generation of risk-based test suites based on
previously calculated requirements metrics (e.g., [8][9]). A
prototype research tool called RiteDAP has been presented
as being able to generate test cases out of weighted activity
diagrams in a two-stage process. At first, paths through the
activity are derived in a non-risk based way. Secondly, the
paths are ranked due to the risk they include. The traversal
algorithm of the test case generator is predefined and not
adjustable. The risk-based selection of test cases in that
approach is a simple ordering of paths due to their
subsumed risk exposures, what might be not sufficient. Our
approach, in contrast, envisages that already the traversal
algorithm shall be assigned to a certain risk level.

Bauer and Zimmermann have presented a methodology
called sequence-based specification to express formal
requirements models as low-level mealy machines for
embedded safety-critical systems (e.g., [10] [11]). By doing
so, they build a system model based on the requirements
specification. Afterwards, the outcome of a hazard analysis
is weaved into the mealy machine. The correctness of the
natural language requirements is actually assumed to hold,
so that there is no rigorous approach to verify or validate the
natural language requirements prior to performing the
hazard analysis. Finally, they describe an algorithm that
derives test models that include critical transitions out of the
system model for each single identified hazard in order to
verify the implementation of a corresponding safety
function. What they do not present is how to rank the

critical transitions in the test models with respect to their
risk priority. It is also not clear, whether and how the
algorithm they present can be modified in order to vary the
test case generation process. Apparently, this approach has
ever produced a prototyping tooling beyond research
projects.

Kloos has described an approach for transitioning from a
fault tree as produced by a fault tree analysis (FTA) [12]. It
is used in combination with a system model, expressed as
mealy machine, to generate a test model. A test model is in
their definition a system model with failure modes and
critical transitions leading to the failure modes. As explicitly
stated, this approach is dedicated to risk-based testing of
safety functions for safety-critical systems. Although the
authors claim their methodology to be risk-based, a clear
method how the test case generation is actually influenced
or guided by the identified risk is not provided.

The most recent approach to risk-based security testing
using models is given by Zech for cloud environments [7].
The presented methodology is in a very early state, though.
The author claims to fully automate the transition from
system models over risk models to misuse cases and
eventually to test code. The risk analysis is also planned to
be carried out completely automatically by using a
vulnerability repository. Neither one of the involved models
has been described in greater detail, nor have the involved
transformations been specified so far.

Chen discussed an approach for risk-based regression
testing optimization [13]. In his approach the author applies
a risk value to each test case to prioritize them. Based on
these risk values, the test cases are comparable and can be
prioritized to either be included in, or excluded from, a re-
running regression testing process.

The Behavior Engineering (BE) methodology describes
an approach to derive formalized requirements models, so
called behavior trees (BT) out of informal, i.e. textual,
requirements specifications. It was invented and firstly
described in a series of paper (e.g., [17] [18]). Although BE
is not related to risk analysis in the first place, we based our
approach on it, since we are convinced that the rigorous
methodology for requirements formalization is a good
starting point to conduct testing in general, and risk-based
testing in particular.

Although most of the literature presented above is
dedicated to the ideas, principles or theories of risk-based
testing, we do see a fundamental lack of concrete
methodology on how to integrate the various pieces of
information in a systematic way in order to guide the
activities of test case derivation. We seek to provide testing
experts with comprehensible instructions and a continuous
toolset that is based on the principles of model-driven
requirements engineering and model-based testing.

III. RISK-BASED TESTING IN A MODEL-BASED WAY

Our approach strives to be generic and applicable for
both systems that include functional-related risk mitigation

637Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

measures (like counter-measures or safety, respectively
security functions) and systems that do not include such
measures. The latter kind of systems mostly refer to non-
safety/security-critical systems, where certain execution
paths are deemed critical nevertheless and need intensive
testing as well.

In Figure 1, a high-level sketch of our methodology is
depicted. In short, the steps are the following:

1. Formalize the requirements specification as
integrated behavior tree

2. Augment the integrated behavior tree with risk
information

3. Identify for each risk exposure in the integrated
behavior tree an appropriate test directive and link
them together

4. Pass both the risk-augmented integrated behavior
tree and the test directive definition into a test
generator

A. Definitions of risk, risky situation and risk exposure

Industry-relevant standards (such as [26][28][29]) for
systems and software engineering or testing define risk (r)
as a function of likelihood (l) or probability that a situation
occurs during the execution of a system, which is deemed
critical, multiplied by the severity (s) of the consequences
that may happen if the risky situation is not mitigated, i.e.,

f(R) = l * s.
Beside the term risk, there are two other terms denoted

in industry standards that apply to the above given
definition: Risk factor [27] and risk exposure [26].

Figure 1. Overview of the presented methodology

As mentioned before, risk-based testing aims at testing

the most critical situations at first and more thoroughly.

However, we find that the term critical may cause
misunderstandings since people may implicitly think of
safety-critical systems. To prevent the reader’s confusion,
we rather use the term risky situation instead. A risky
situation may occur in any kind of system (safety-critical or
not) and describes a foreseeable sequence of events that
leads to a situation where a failure of the systems causes an
inacceptable loss (of data, reputation, life, money etc.) [25].
Finally, we use the term risk to denote an uncertain event or
condition that, if occurs, has a negative effect on the system,
and the term risk exposure as the comparable value that
determines how risky a certain situation really is compared
to other situations.

B. Towards risk-annotated requirements models

Risk management activities are performed on an
information source that provides the risk experts with
indications what might go wrong in the system in the field.
Each system development project starts usually with a set of
requirements that the intended system shall realize.
Requirements are normally captured in software/system
requirements specifications (SRS) that are structured in a
certain way [30]. As already mentioned before, risk analysis
activities or simple prioritization considerations are part of
almost any development project. At the level of functional-
related risk analysis, the SRS deemed to be one of the
important information sources, risk experts should take into
account. Once the risk analysis has been performed, the risk
exposure is usually integrated with the SRS. This leads to a
risk-annotated SRS.

Unfortunately, today’s requirements specifications are
mostly still textual. That entails some inherent problems
such as ambiguity due to informal and imprecise textual
specifications or the lack of human beings to grasp complex
and comprehensive textual specifications. Most recent
activities in the realm of requirements engineering strive to
employ model-based techniques in order to produce less
ambiguous and inconsistent SRSs. As mentioned before,
one of these approaches is BE. It is an intuitive yet effective
methodology to formalize the functional aspects of natural
language requirements for further validation and/or
verification activities. BE has been proven extremely
beneficial in large-scale industry projects [19]. BE defines
two core phases to transform informal requirements into
formalized BTs, expressed with the Behavior Modeling
Language (BML [36]). The first activity is called
requirements formalization and provides a well-defined
formalization strategy that is, each informal requirement
will be translated into a Requirements Behavior Tree (RBT).
A premise of BE is to stick as close as possible with the
vocabulary which was used for expressing the natural
language requirement with the advantage of removing any
ambiguity being present in the natural language. An RBT
comprises the behavioral flow of only one single
requirement, namely the requirement it originated from.
This keeps the complexity manageable, even of extremely

638Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

large-scale systems. Hence, the complexity of an entire
translation of large-scale requirement specifications is
narrowed to the complexity of translating single
requirements solely and in a repetitive manner. Myers [37]
called this “… an approach with a minimized local problem
space that remains constant regardless of the size of the
global problem space.”

After finishing the formalization of each requirement,
the key phase for revealing and detecting flaws in the
requirements specification takes place, the Fitness-for-
Purpose (or simply integration) phase. Requirements
commonly interact with other requirements, meaning, in a
consistent requirements specification without gaps there are
intersection points where requirements can be integrated
with each other. To identify these points and to continually
and rigorously integrate the RBTs with each other is the
purpose of the integration phase. Integration is done by
seeking parts in the RBTs which are logically identical. In
practice, it is often the case that the root node of one RBT
occurs elsewhere in another (or multiple) RBTs. Once such
potential integration points are identified, the involved
RBTs are integrated with each other [17]. The outcome of
this activity is the so called Integrated Behavior Tree (IBT),
expressing a behavioral and compositional overview of the
requirements specification of the system. During the
integration of RBTs, gaps and ambiguities within the
requirements specification can be effectively identified,
since a missing or ambiguously stated natural language
requirement leads to situation in which an RBT cannot be
integrated. If such a situation is detected, an issue has to be
recorded and involved stakeholders have to decide how to
resolve this situation. Thus, integration aims at improving
the quality of the original requirements specification as well
as creating an entire overview of the compositional and
behavioral intention of the intended system. At this point in
time, the requirements specification comprises all
information being relevant for the development team to start
their activities.

The starting point of our methodology is the outcome of
the requirements integration phase with BE, which results in
a requirements model expressed as integrated behavior tree
(see Figure 1). The requirements model is passed afterwards
to the risk experts, which also benefit from the integrated
view on the requirements. It allows experts to consider
potential failure (no matter if safety/security-critical or not)
by traversing or even simulating the behavior of the system
captured in a BT. For example, Grunske has presented
approaches on how BTs can be leveraged for semi-
automated hazard analysis [21]. How the actual risk analysis
task is performed is not addressed by our methodology.

Risk analysis copes with risky situations by identifying
risk mitigation actions. Risk mitigation may target several
aspects of a development project such as organizational,
process-related, functional or technical aspects. An
organizational mitigation of risk might be to allocate only
experienced and certified personnel to stem the project [2]; a

process-related one that sufficient testing and manual
inspections must be performed, whereas a technical
mitigation action might be to rely on well-known and
already established software technologies solely. Functional
risk mitigation often includes the identification of functional
counter-measures that reduce the risk exposure by the
system, if correctly implemented. In case there have been
functional counter-measures defined that shall mitigate risky
situations, they have to be included into the requirements
model together with the risk exposure. We end up with a
functional-related requirements model that is augmented
with risk exposures for risky situations. We call this a risk-
annotated behavior tree (Figure 2).

Figure 2. Risk-annotated BT (taken from [31])

C. The role of risk levels and risk matrices

An important concept in our methodology of risk-
optimized test case generation is risk level. Following the
ISTQB glossary [28] a risk level indicates the importance of
an identified and assessed risk, so it serves the purposes for
comparing risks with other risks. Risk levels can be
expressed either qualitatively or quantitatively. An often
used qualitatively scale for risk levels is low, medium,
high;however, there is actually no restriction on the number
of risk levels being used.

One possible approach, especially in qualitative risk
assessment, is to combine risk levels with a risk matrix. A
risk matrix is a two-dimensional table for combining
likelihood and severity of a risk. An example for risk levels
and risk matrixes is shown in Figure 3.

The uppermost table depicts a risk matrix with qualified
values for both likelihood and severity (see also [25]) and
assigned risk exposures. The middle table assigns cells of
the upper risk matrix with risk levels. For the sake of
simplicity, we will stick with the aforementioned three risk
levels high, medium and low.
Afterwards, the actual risk exposures to risk level
assignment can be derived out of the two previous tables.

639Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The result is kind of an instantiation of the risk matrix
template plus the assigned risk levels for its cells. Risk
exposures that are classified by the same risk level are
considered to have an equally negative impact on the system
if the corresponding risky situation leads to a system failure.
This is shown in the lower table of Figure 3.

Figure 3. Risk levels, risk matrix, risk assignment

D. Systematic test case derivation using test directives

A test directive is an additional piece of information
within the test model that describes precisely what test
derivation technique and strategy shall be used by the test
generator to generate test cases for a certain risk level. This
implies that test directives are bound to risk levels and
transitively to the risky situation in the model. Utting [20]
provides a good overiew of test derivation strategies for
formal, graph-based models such as transition or state
coverage.

In risk-based testing, we want to ensure that more risky
situations are tested more thoroughly, because they are
deemed more critical. It holds true for all risky situations
that test cases try to provocate the risky situation to evaluate
whether they appear or not. A simple and intuitive
interpretation of more thoroughly tested for the example
depicted in Figure 2 is that we want to ensure that test cases
for the risk exposure RE_3 are more elaborated in terms of
both structure and data than the ones for RE_3. There are

many ways to come to those more elaborated test cases, for
example by using different data coverage strategies (e.g.,
simple equivalence classes for RE_3 in opposite to
boundary value analysis for RE_1) or structural coverage
criteria (e.g., shortest path into the risky situation RE_3 in
opposite to a path that is longer for RE_1). In our
methodology, we capture the information on how to derive
test cases for a certain risk level (and thus risk exposures) in
a test directive. They are the fundamental means in our
methodology to enable an automated derivation of risk-
optimized sets of test cases as depicted in Figure 1. They
make the entire test design activities more systematic,
understandable and even more important reproducible.
Additionally, the entire test generation process can be easily
adjusted to changed needs by just re-defining a test
directive’s strategy.

The task of defining test directives for certain risk levels
is most crucial in our methodology, since it has a crucial
impact on the entire risk-based approach. This task requires
the intellectual power of experienced personnel in both the
current domain and testing. We believe it should not, or
even cannot, be performed automatically. However, the
actual test case generation approach according to the test
directives bears an enormous automation potential. It allows
the labor-intensive, error prone and time-consuming manual
tasks to be outsourced to an automaton, such as a test case
generator.

Eventually, after test case generation has been carried
out automatically, a test model is created that contains all
the risk-optimized test cases that adhere to the test directive.
After execution, the test results analysis takes place. An
important outcome of the result analysis is whether the
initial assumptions on the risk were properly assessed. In
any case, the test results have to be taken into account for a
new development cycle, if there is one, in order to adjust the
initial assessments with empiric data taken from the test
process.

IV. TOOLS AND TECHNOLOGY LANDSCAPE

For the implementation of our methodology, a
consequent and integrated tooling landscape and modeling
notation are required. In former research projects (e.g., [31]),
we identified parts of that tooling landscape. Augmented
with the needs for the further elaborated methodology
presented in this article, the current tooling landscape and
modeling notations are required:

- A language to specify behavior trees based on the
Unified Modeling Language (UML) [24] and
tooling to perform BE [1]

- Risk extension for behavior trees
- A language and tooling to capture risk matrices,

risk levels and testing directives
- A language and tooling to express test models
- A language for executable test scripts

Our own premise for the implementation is to rely on

established and well-known technologies and modeling

640Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

notations instead of reinventing the wheel by using another
proprietary solution. We decided to apply UML for all parts
of the methodology by using so called profiles. A profile is a
subset of the UML that adds domain-specific concepts and
semantics to UML.

For the BE-related parts of the methodology, we
specified a UML profile for the BML (called UBML) that
already integrates risk information following the proposed
method by Bran Selic [38]. A BT represents the behavioral
description of single or integrated requirements. The tree
itself is embedded into a surrounding, virtual frame that co-
ordinates the process flow. Each node in a BT has a tight
interlinking with a component contained in the composition
tree, expressing that the behavior exhibited by that node will
be executed on the linked component. There is an almost
identical diagram type in the UML, namely the activity
diagram. Activities describe control (and data) flows similar
to BTs. Activities are constructed out of actions and edges.
An action represents the fundamental and indivisible unit of
an executable functionality that may operate on objects.
Edges connect actions with each other. Given those
ingredients, an activity appears appropriate to be customized
for expressing BTs. To keep the analogy with BML, for
each behavior node of BML [36] a direct counterpart
stereotype has been created in UBML, such as
BehaviorTree, Selection, Guard, Event. Structural aspects
like components and messages are included, too, partially
represented as stereotype (e.g. the stereotype Message
extends the UML metaclass Signal) and partially reusing
plain UML (e.g. UML metaclass Component and the
component diagram are used to model BE components). As
example, see the BT expressed as UBML in Figure 4. It is
very similar to the original BML notation as depicted in
Figure 2.

The test model artifact, as depicted in Figure 1, is
expressed with the UML Testing Profile (UTP) [23]. UTP
extends UML with test-relevant artifacts, which suits our
needs. As test execution language we rely on the Testing and
Test Control Notation version 3 (TTCN-3) [35]. All of these
technologies are fostered by non-profit organizations (e.g.,
OMG [32], ETSI [34]), what guarantees vendor and
methodological independence as well as continuous
maintenance.

We have not yet specified precisely on how to express
model risk matrices, risk levels and test directives in UML.
In addition, the dependencies among risk exposure (as part of
UBML), risk level and test directives have to be established
as well. An early implementation of test directive guided test
case generation has already been presented [15], and a more
elaborated one will be presented in [16]. There is currently
an ongoing discussion in the UTP working group [33]
whether test directives might be incorporated into the
specification. All modeling languages and tooling facilities
mentioned above are or will be integrated into our test
modeling environment Fokus!MBT, a UTP-based test
modeling tool.

V. CONCLUSION AND FURTHER WORK

In that paper, we presented an overview of a noval risk-
based testing approach that relies on the principles of model-
based testing. Our idea is based on test directives as
interpretation of test case derivation techniques that support
systematics, transparency and reproducibility of the test
derivation task. We do not claim that our methodology is
completely automated, because we do believe there is a need
for intellectual creativity that can only be carried out
manually, even if we rely on the principles of model-based
engineering. We doubt the feasibility of just pressing a magic
button and a risk-optimized set of test cases will be generated
automatically. However, there is great potential in expressing
suitable key artifacts of a system development process with
semi-formal models. It allows capturing the intellectual
power of experts in a computer-readable format, so that
labor-intensive tasks can be carried out by an automaton.

We are going to apply this approach to more case studies
in order to get empirical results for our methodology. What
we have done so far was a proof-of-concept, so there have
been some lessons learned that have impact on the
refinement of the modeling methodology. Another important
work to be done is to describe the entire modeling approach
on a more technical level in order to explicitly show how
things are interconnected with each other semantically and
technically.

Further technical work will, in particular, address the
target in particular the definition of a precise and stable
methodology for doing BE with UBML.

The main focus, however, will be set to the combination
and integration of test directives and risk levels, since this is
the main contribution of our risk-based methodology and
actually the most added value to the current state of the art in
the realm of risk-based testing.

Figure 4. Behavior Tree as stereotyped UML activity

diagram

641Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

ACKNOWLEDGMENT

This work was partially supported by the projects
ROTESS [31] and BTTest (DAAD project number
50449190).

REFERENCES
[1] G. J. Bach, “Heuristic Risk-Based Testing”, Software Testing and

Quality Engineering Magazine, November 1999, pp. 96-98.

[2] F. Redmill, “Exploring Risk-based Testing and Its Implications”, 1.
Software Testing, Verification & Reliability, 14(1), 2004, pp. 3-15.

[3] F. Redmill, “Theory and practice of risk-based testing”, Software
Testing, Verification & Reliability, 15(1), pp. 3-20 2005.

[4] S. Åmland, “Risk-based testing: Risk analysis fundamentals and
metrics for software testing including a financial application case
study”, Journal of Systems and Software 53(3), 2000, pp. 287-295.

[5] S. Åmland, “Risk Based Testing and Metric”, 5th International
Conference EuroSTAR 1999, Barcelona, Spain, 1999.

[6] S. L. Pfleegr, “Risky business: what we have yet to learn about risk
management”, Journal of Systems and Software 53(3), Elsevier,
2000, pp. 265-273.

[7] P. Zech, “Risk-Based Security Testing in Cloud Computing
Environments”, 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST), 2011, pp. 411-
414.

[8] H. Stallbaum and A. Metzger, “Employing Requirements Metrics for
Automating Early Risk Assessment”, In: Proceedings of the
Workshop on Measuring Requirements for Project and Product
Success, MeReP07, at Intl. Conference on Software Process and
Product Measurement, Spain, 2007, pp. 1-12.

[9] H. Stallbaum, A. Metzger, and K. Pohl, “An Automated Technique
for Risk-based Test Case Generation and Prioritization”, In:
Proceedings of the 3rd Workshop on Automation of Software Test,
AST'08, at 30th Intl. Conference on Software Engineering (ICSE),
Germany, 2008, pp. 67-70.

[10] T. Bauer et al., “From Requirements to Statistical Testing of
Embedded Systems”, In: Software Engineering for Automotive
Systems, (ICSE), 2007, pp. 3-10.

[11] F. Zimmermann, R. Eschbach, J. Kloos, and T. Bauer, “Risk-based
Statistical Testing: A Refinement-based Approach to the Reliability
Analysis of Safety-Critical Systems”, In: Proceedings of the 12th
European Workshop on Dependable Computing (EWDC), France,
2009.

[12] J. Kloos, T. Hussain, and R. Eschbach, “Risk-Based Testing of
Safety-Critical Embedded Systems Driven by Fault Tree Analysis”,
In: Proceedings of the IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST 2011), IEEE
Computer Society, Berlin, 2011, pp. 26-33.

[13] Y , Chen,. R. Probert, and P. Sims, “Specification-based Regression
Test Selection with Risk Analysis”, In: Proceedings of the 2002
conference of the Centre for Advanced Studies on Collaborative
research (CASCON '02), 2002, pp. 1.

[14] M.-F. Wendland, I. Schieferdecker, and A. Vouffo Feudjio,
“Requirements-driven testing with behavior trees”,. In: Proceedings
of the Fourth IEEE International Conference on Software Testing,
Verification, and Validation Workshops (ICST 2011), IEEE
Computer Society, 2011, Germany, 2011, pp. 501-510

[15] M.-F Wendland, J. Großmann, and A. Hoffmann, “Establishing a
Service-Oriented Tool Chain for the Development of Domain-
Independent MBT Scenarios”, In: Proceedings of 7th Workshop
System Testing and Validation (STV’10), IEEE Press, 2010, pp. 329-
334.

[16] M.-F. Wendland, M. Kranz, A. Hoffmann, and I. Schieferdecker,
“Integration of arbitrary test case generators into UTP-based test
models”, 2nd ETSI Model-Based Testing User Conference (MBTUC),
Tallinn, Estonia, 2012.

[17] R. G. Dromey, “From Requirements to Design: Formalising the Key
Steps” (Invited Keynote Address), In: IEEE International Conference
on Software Engineering and Formal Methods (SEFM'03), Brisbane,
Australia, 2003, pp. 2-11.

[18] R. G. Dromey, "Genetic Design: Amplifying Our Ability to Deal
With Requirements Complexity", in S. Leue, and T.J. Systra,
Scenarios, Lecture Notes in Computer Science, LNCS 3466, 2005,
pp. 95 - 108.

[19] D. Powell, “Requirements Evaluation Using Behavior Trees:
Findings from Industry”. In: Australian Conference on Software
Engineering (ASWEC’07), Australia, 2007.

[20] U. Utting and B. Legeard, “PracticalModel-Based Testing – A Tools
Approach”. Morgan Kaufmann Publ. (2007)

[21] L. Grunske, “An Automated Failure Mode and Effect Analysis based
on High-Level Design Specification with Behavior Trees”, In:
Proceedings of International Conference on Integrated Formal
Methods (IFM), 2005, pp. 129-149.

[22] K-S. Soon, T. Myers, P. Lindsay, and M.-F. Wendland, “Execution of
natural language requirements using State Machines synthesised from
Behavior Trees”, The Journal of Systems & Software 85, Elsevier,
2012, pp. 2652-2664.

[23] Object Management Group (OMG): Unified Modeling Language
(UML). http://www.omg.org/spec/UML/. Last visit: January 05, 2012

[24] Object Management Group (OMG): UML Testing Profile, Version
1.1 – Beta 1. URL: http://www.omg.org/cgi-bin/doc?ptc/2011-07-19,
Last visit:

[25] International Organisation for Standardisation (ISO): ISO:14971 –
„Medical devices -- Application of risk management to medical
devices“, http://www.iso.org/iso, Last visit: January 05, 2012

[26] International Organisation for Standardisation (ISO): ISO/IEC
16085:2006– Sytems and software engineering, 2006.

[27] International Organisation for Standardisation (ISO): ISO/IEC/IEEE
24765:2010 – Sytems and software engineering, Vocabulary, 2010.

[28] International Software Testing Qualifications Board (ISTQB):
ISTQB/GTB standard glossary for testing terms.
http://www.software-tester.ch/PDF-
Files/CT_Glossar_DE_EN_V21.pdf. Last visit: October 17, 2012.

[29] IEEE Standards Association (IEEE): 829-2008 – IEEE
Recommended Practice for Software Requirements Specifications,
2008.

[30] Institute of Electrical and Electronics Engineers (IEEE): 830-1998 –
IEEE Recommended Practice for Software Requirements
Specifications, 1998.

[31] ROTESS project: Risk-oriented testing of embedded, safety-critical
systems.
http://www.fokus.fraunhofer.de/de/motion/projekte/laufende_projekte
/ROTESS/index.html, last visit: October 17, 2012.

[32] Object Management Group (OMG): http://www.omg.org. Last visit:
October 17, 2012.

[33] Object Management Group (OMG) UML Testing Profile Revision
Task Force: http://www.omg.org/techprocess/meetings/
schedule/UTP.html (access restricted). Last visit: October 17, 2012.

[34] European Telecommunications Standards Institute (ETSI):
http://www.etsi.org. Last visit: October 17, 2012.

[35] Testing and Test Control Notation Version 3 (TTCN-3):
http://www.ttcn3.org/. Last visit: October 17, 2012.

[36] Behavior Modeling Language (BML): Behavior Tree Notation v1.0,
http://www.behaviorengineering.org/docs/Behavior-Tree-Notation-
1.0.pdf. Last visit: October 17, 2012.

[37] T. Myers, “The Foundations for a Scaleable Methodology for
Systems Design” , PhD Thesis, School of Computer and Information
Technology, Griffith University, Australia, 2010.

[38] B. Selic, “A Systematic Approach to Domain-Specific Language
Design Using UML”, In: Proceedings of the 10th IEEE International
Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC'07), USA, 2007, pp. 2-9.

642Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

