
MobiTest:

 A Cross-Platform Tool for Testing Mobile Applications

Ian Bayley, Derek Flood, Rachel Harrison, Clare Martin
Oxford Brookes University,

[ibayley, derek.flood, rachel.harrison, cemartin]@brookes.ac.uk

Abstract— Testing is an essential part of the software
development lifecycle. However, it can cost a lot of time and
money to perform. For mobile applications, this problem is
further exacerbated by the need to develop apps in a short
time-span and for multiple platforms. This paper proposes
MobiTest, a cross-platform automated testing tool for mobile
applications, which uses a domain-specific language for mobile
interfaces. With it, developers can define a single suite of tests
that can then be run for the same application on multiple
platforms simultaneously, with considerable savings in time
and money.

Keywords – Mobile Application; Testing; MobiTest.

I. INTRODUCTION

The increasing prevalence of mobile applications
(hereafter, apps) continues as the use of mobile phones
becomes ubiquitous. By the end of 2010, there were an
estimated 5.3 billion mobile subscriptions worldwide. In
developed countries there are on average 116 subscriptions
for every 100 inhabitants [1].

The applications that facilitate this, known as apps, are
typically developed in a relatively short time span and on
low budgets, often because the unit price of the app is very
small or zero. This appears to greatly diminish the usability
of many of the apps that are sold to users. This is unfortunate
because a recent survey [2] has identified usability as being
one of the most important factors when selecting a mobile
app.

The annual cost of an inadequate infrastructure for
testing in the US is estimated to range from $22.2 billion to
$59.5 billion [3]. This cost is partly borne by users in the
form of strategies to avoid and mitigate the consequences of
errors. The remainder is absorbed by the software developers
themselves, who have to compensate for inadequate tools
and methods. The absorbed cost is even higher when one
takes into account the damage that low software quality can
bring to the reputation of the producer.

The problems noted above are further exacerbated by the
need to target multiple platforms at once. In particular, a test
suite for one platform must be rewritten for any other
platform for which it is required. This problem has been
addressed in the desktop domain through the use of the USer
Interface eXtensible Markup Language (USIXML) [12],
which allows developers to create a user interface using a
common language that can then be translated to any
platform.

This paper proposes a multi-platform testing tool that
takes a description of the tests to be performed on an app and
generates a test suite for every platform on which the app is
to be tested. Consequently, the tests will only need to be
specified once. They are described in a simple language,
specialised to the domain of mobile devices. Here, we
concentrate on GUI testing; but, the ideas expressed here
could be extended to other forms of testing at a later date.

The rest of this paper is structured as follows. Section II
details the related work of this research. Section III outlines
our research objectives. Section IV provides an overview of
the MobiTest tool. Section V highlights some of the
challenges for implementation. In Section VI, the plan for
progression is detailed and Section VII concludes this paper.

II. RELATED WORK

A. Software Testing

In The Mythical Man Month, Brooks [4] says that he
assigns half of his development time for testing. This
includes both component testing (of individual elements of
the system) and system testing (of the complete system). His
advice highlights the importance of testing; since, if it is not
done adequately, the results can be very serious or even (in
safety critical systems) fatal.

The waterfall model [5], one of the first software
development methodologies, proposed that the testing phase
should happen after the implementation phase has been
completed. In contrast, Beck [6] proposes that the two phases
be more tightly coupled, advocating the use of Test Driven
Development (TDD).

TDD involves the writing the tests before writing the
code, then executing the tests, and then fixing the code if the
test has failed. This enables the developer to know exactly
where the failing code is (as code is written in small
increments). It also forces the developer to think continually
about the design of the system. The collection of tests
thereby accumulated can be run automatically whenever
retesting is required.

George and Williams [7] found that TDD produced
software that passed 18% more black box tests than software
built using the waterfall model. However, this higher
percentage comes at the cost of development time, which is
longer by 16%.

Whichever approach is adopted, the use of automation
reduces the time taken for testing. The alternative of manual
testing is not only time-consuming, but also error prone.

619Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Mobile applications

Mobile applications are different from traditional
applications in several ways. They are adversely affected by
the limitations of mobile devices, some of which have been
highlighted by Zhang and Adipat [8] as follows:

• Mobile Context: When considering mobile
applications the user is not tied to a single
environment. The environment will also include
interaction with nearby people, objects and other
elements which may distract a user’s attention.

• Connectivity: With mobile devices connectivity is
often slow and unreliable and therefore will impact
the performance of mobile applications which utilise
these features.

• Small Screen Size & Different Display
Resolution: In order to provide portability mobile
devices contain very limited screen size and so the
amount of information that can be displayed is
drastically reduced.

• Limited Processing Capability and Power: In
order to provide portability, mobile devices often
contain less processing capability and power. This
has the effect of limiting the functionality of
applications for mobile devices.

• Data Entry Methods: The input methods available
for mobile devices are restricted and require a certain
level of proficiency. This problem increases the
likelihood of erroneous input and decreases the rate
of data entry.

Thus, mobile applications typically contain less
functionality than traditional desktop applications. This is
mainly due to the limitations of the platform, but is also
affected by the context in which these applications are used.
Mobile applications are designed to be used while on the
move, and, as such, complex interactions are undesirable as
this negatively affects usability.

In addition to this, mobile applications tend to be
developed in a short period of time. This has been facilitated
by the availability of better source libraries and development
tools for creating mobile apps.

III. RESEARCH AIM

The aim of this research is to develop a mobile application
testing tool that can be applied to all mobile platforms. As
each mobile platform contains different components, it is
necessary to first understand the components on each
platform and how these relate to one another. In order to do
this, the following two research questions (RQ) have been
defined:

• RQ1: What components are available on each
mobile platform?

• RQ2: Which of these components are common
across the platforms?

To answer RQ1, a thorough examination of each of the
mobile platforms will be performed. During this examination
each of the components together with their associated events

and attributes will be identified. These will then be compiled
into a comprehensive profile of the platform.

Using the platform profile produced by RQ1, RQ2 will
be answered through a comparison of these profiles. This RQ
will aim to identify how the components on one platform
relate to those on the other platforms. For example, the
TextView component on Android [9] is equivalent to the
Label component on the iOS platform [11].

Additionally, a third research question has been defined
to investigate how these components can be combined into a
platform independent testing tool.

• RQ3: How should these components be modelled
in a platform independent testing tool?

By investigating the third research question, we will
bring together all components from all platforms into a
single platform independent representation. This is in
contrast to USIXML as RQ3 incorporates all components not
just a subset of them. The common components identified in
RQ2 will have a single representation with a mapping to the
concrete components used by the underlying platforms.
Using this representation it will then be possible to construct
the platform-independent testing tool, which we call
MobiTest.

IV. MOBITEST

The MobiTest tool is designed to address some of the
difficulties associated with the automated testing of mobile
applications, by using a single set of unit tests to test the
application on multiple platforms.

The initial version focuses on testing through the
interface as this should be similar (although not exactly the
same) on all platforms. In this way, the need for platform-
specific code can be minimised. In this section we present a
sample app on which MobiTest can be used, and then outline
the proposed system architecture.

A. Sample Application

The Log In screen illustrated in Figure 1, which could be
used on a number of applications, such as apps for logging
medical data, invites the user to enter a username and
password, which is checked against a database, and displays
a message indicating whether these credentials have been
accepted or not.

Assuming that (“ian”, “brookes”) is a valid (username,
password) pair, a possible test of this app is as follows:

1. click in the username text field
2. press the keys ‘i’, ‘a’, ‘n’
3. click in the password text field
4. press the keys ‘b’, ‘r’, ‘o’, ‘o’, ‘k’, ‘e’, ‘s’
5. click the OK button
6. assert the text component of the lower label is

“password accepted”

Figure 1. Sample Log In screen to be tested through MobiTest

620Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

When an assertion is false for any platform, this is
reported to the user of the tool so that they can take action to
correct the apparent error in the program. This is just one test
that may be run on this application. In practice many more
tests will be required. The benefit of MobiTest is that tests
only need to be specified once. The test suites will be
generated automatically for each platform, be it iOS,
Android or Blackberry.

B. System Architecture

To generate automated tests for concrete platforms, such
as Android or iOS, a virtual platform (called Mobi) will be
defined. For Mobi, a number of GUI components will be
defined through the answer to RQ3. For each such
component, a list of valid attributes and events will be
defined. Each concrete platform will have its components
defined in a similar way. The available GUI components
vary from platform to platform and even where the same
component is available, the name may be different. Let Pi for
i in 1..n denote the n different concrete platforms. To account
for the naming differences, a function Φi can be defined that
maps each Mobi component to its realisation in Pi. A similar
function Φi maps each component attribute and event to its
realisation in Pi. In the diagram below, n=2, P1 represents
Android and P2 represents iOS.

Similarly, let pi denote the set of actual components in
the app written for platform Pi. Each version has six such
components, as indicated in Figure 3.

Once a set of common components p is identified, a
mapping φ i from the components of p to those of pi can
thereby be deduced.

The tool MobiTest will operate as follows:
i. from the layout XML files of each version of the app,

MobiTest will deduce the mappings φ i and insert
them into an empty XML file tests.xml

ii. the user will then add test cases in the form event+

assert+ where event and assert are given as tags with
attributes and values in the normal manner and X+
signifies one or more occurrences of X. It is
anticipated that given the restricted nature of the
language, GUI support can make this process
exceptionally straightforward. This will be a major
advantage, as it focuses attention on the interface
which is unusual for conventional unit testing.

iii. MobiTest will produce a test class for each platform.
In it, for each test case, MobiTest will translate each
event into a piece of code that triggers that event and,
similarly, each assert into a piece of code that tests
that assert. This will be done using the definitions of
φi from the tests.xml file to identify the components
and using Φi to determine the events and attributes

iv. MobiTest will then run each test class on its
associated platform, and present the test report to the
user.

Figure 2. MobiTest System Architecture

Figure 3. MobiTest view of the Log In screen

621Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

V. CHALLENGES

The creation of this tool presents a number of challenges:
• Use of XML to specify components: although iOS

and Android can specify their layouts with XML, it
may be that some platforms do not. In that case, it
will be necessary to parse the code to obtain a list of
the components used.

• Incorrect assumptions about layout: for example,
suppose there are iOS and Android layout XML files
that both specify two buttons. Based on the order in
which components are specified in the file, it will be
assumed that the first button from one file
corresponds to the first button from the other. This
assumption may not be valid.

• Conflicting guidelines: both iOS and Android
provide a set of guidelines for user interfaces. These
guidelines are not always compatible. Furthermore,
adherence to such guidelines is often a requirement
for the app to be distributed through the app store.

• Platform-specific features: each mobile platform
has a number of components unique to that platform.
For example, the “back” button, to return users to the
previous screen, is physical for Android devices but
it is a GUI component on iOS. The MobiTest tool
will need to be able to identify these features and
allow users to access and test them.

• Inconsistent number of screens: a single screen on
one platform may correspond to multiple screens on
another. MobiTest will therefore need to allow
mappings between components on an application
level, rather than at screen level.

VI. PLAN FOR FUTURE WORK

1. Determine components, events and attributes for a
number of platforms by creating a compatibility matrix
which identifies which components are available on which
platform (RQ1) and how they correspond to components on
other platforms (RQ2). For example, a Picker in iOS has no
equivalent in Android but the ListView provides similar
functionality.

2. Define the virtual platform Mobi and the functions Φi
(RQ3). To help with this, an on-going study of existing
multi-platform applications will be used to provide insight
into how existing applications are created for cross-platform
use and to help identify common conventions that are used in
this context.

3. Write MobiTest for one platform, Android. To do this,
a comprehensive examination of existing unit testing tools
will be performed. This examination will focus mainly on
the Android testing API [9], a specialisation of JUnit [10],
and Logic Unit Tests for testing iOS applications [11]. Once
this has been done, MobiTest will be generalised to multiple
platforms.

VII. SUMMARY

This paper has proposed MobiTest, a testing tool for
cross-platform mobile application development, which uses a
domain-specific language for mobile interfaces. Short

development cycles and the wide range of platforms mean
that time available for testing is limited when developing
applications for mobile devices. MobiTest will address this
issue by allowing developers to specify a single set of tests
for applications that can then be used with each platform on
which the application is developed.

Conflicting guidelines and platform specific features are
just some of the challenges when developing such a
platform. If these challenges can be addressed, testing of
mobile applications can be simplified and performed more
easily leading to higher quality mobile applications and a
much more enjoyable, satisfying and effective user
experience.

Although this approach may not solve all of the issues
associated with automated testing of mobile applications, we
believe that it will help to address issues specifically relating
to application development across multiple platforms.

VIII. ACKNOWLEDGEMENTS

This research is supported by Oxford Brookes University
and the Science Foundation Ireland (SFI) Stokes Lectureship
Programme, grant number 07/SK/I1299, the SFI Principal
Investigator Programme, grant number 08/IN.1/I2030 (the
funding of this project was awarded by Science Foundation
Ireland under a co-funding initiative by the Irish Government
and European Regional Development Fund), and supported
in part by Lero - the Irish Software Engineering Research
Centre (http://www.lero.ie) grant 10/CE/I1855.

IX. REFERENCES

[1] ITU, "The world in 2010 ICT Facts and Figures," ITU, 2010.
[2] D. Flood, R. Harrison, D. Duce, and C. Iacob "Using Mobile
Apps: Investigating the usability of mobile apps from the users
perspective," International Journal of Mobile HCI (In Press) 2012.
[3] G. Tassey, "The Economic Impacts of Inadequate
Infrastructure for Software Testing," National Institute of
Standards and Technology 2002.
[4] F. P. Brooks, the mythical man-month: Addison-Wesley
Publishing Company, 1982.
[5] W. Royce, "Managing the Development of Large Software
Systems," in WESCO, 1970.
[6] K. Beck, Extreme Programming Explained: Embrace Change:
Addison-Wesley, Pearson Education, 2000.
[7] B. George and L. Williams, "An initial Investigation of Test
Driven Development in Industry," in ACM Symposium on Applied
Computing, Melbourne, FL, 2003.
[8] D. Zhang and B. Adipat, "Challenges, Methodologies, and
Issues in the Usability Testing of Mobile Applications,"
International Journal of Human-Computer Interaction, vol. 18, pp.
293 - 308, 2005.
[9] A. D. Guide, "http://developer.android.com/." vol. 2011, 2011.
(accessed 25/09/2012)
[10] JUnit, "http://www.junit.org/" 2011. (accessed 25/09/2012)
[11] i. D. Library, "http://developer.apple.com/." vol. 2011,
(accessed 25/09/2012)
[12] http://www.usixml.org (accessed 25/09/12)

622Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

