ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

MobiTest:
A Cross-Platform Tool for Testing Mobile Applications

lan Bayley, Derek Flood, Rachel Harrison, Clare tiar

Oxford Brookes University,
[ibayley, derek.flood, rachel.harrison, cemartinj@dikes.ac.uk

Abstract— Testing is an essential part of the software
development lifecycle. However, it can cost a lotfdime and
money to perform. For mobile applications, this prdlem is
further exacerbated by the need to develop apps ia short
time-span and for multiple platforms. This paper proposes
MobiTest, a cross-platform automated testing tool dr mobile
applications, which uses a domain-specific languader mobile
interfaces. With it, developers can define a singlsuite of tests
that can then be run for the same application on mitiple
platforms simultaneously, with considerable savingsn time
and money.

Keywords — Mobile Application; Testing; MobiTest.

l. INTRODUCTION

The
(hereafter, apps) continues as the use of mobilengsh
becomes ubiquitous. By the end of 2010, there vesre
estimated 5.3 billion mobile subscriptions worldeidin
developed countries there are on average 116 $otiises
for every 100 inhabitants [1].

The applications that facilitate this, known as spgre
typically developed in a relatively short time spamd on
low budgets, often because the unit price of theiaprery
small or zero. This appears to greatly diminish akability
of many of the apps that are sold to users. Thisfsrtunate
because a recent survey [2] has identified usglzikt being
one of the most important factors when selectingabile

app.

increasing prevalence of mobile applications I.

This paper proposes a multi-platform testing tdwtt
takes a description of the tests to be performedmapp and
generates a test suite for every platform on wthehapp is
to be tested. Consequently, the tests will onlydnte be
specified once. They are described in a simple uagg,
specialised to the domain of mobile devices. Have,
concentrate on GUI testing; but, the ideas expte$mre
could be extended to other forms of testing atex ldate.

The rest of this paper is structured as followstiSe Il
details the related work of this research. Sediiboutlines
our research objectives. Section IV provides amaee of
the MobiTest tool. Section V highlights some of the
challenges for implementation. In Section VI, tHanpfor
progression is detailed and Section VII concluthespaper.

RELATED WORK

A. Software Testing

In The Mythical Man Month, Brooks [4] says that he
assigns half of his development time for testindnisT
includes both component testing (of individual etens of
the system) and system testing (of the completiesys His
advice highlights the importance of testing; sintéd,is not
done adequately, the results can be very serioevenr (in
safety critical systems) fatal.

The waterfall model [5], one of the first software
development methodologies, proposed that the tegtiase
should happen after the implementation phase hasn be
completed. In contrast, Beck [6] proposes thatwwephases

The annual cost of an inadequate infrastructure fobe more tightly coupled, advocating the use of Tasten

testing in the US is estimated to range from $2illbn to
$59.5 billion [3]. This cost is partly borne by useén the
form of strategies to avoid and mitigate the conseges of
errors. The remainder is absorbed by the softweveldpers
themselves, who have to compensate for inadeqoals t
and methods. The absorbed cost is even higher when
takes into account the damage that low softwarditguezan
bring to the reputation of the producer.

The problems noted above are further exacerbatebeby
need to target multiple platforms at once. In pattr, a test
suite for one platform must be rewritten for anyhest
platform for which it is required. This problem hbagen
addressed in the desktop domain through the udediSer

Development (TDD).

TDD involves the writing the tests before writiniget
code, then executing the tests, and then fixingctte if the
test has failed. This enables the developer tavkexactly
where the failing code is (as code is written inadm
increments). It also forces the developer to thdoktinually
about the design of the system. The collectiontests
thereby accumulated can be run automatically whemev
retesting is required.

George and Williams [7] found that TDD produced
software that passed 18% more black box testssbfiware
built using the waterfall model. However, this high
percentage comes at the cost of development tirhishws

Interface eXtensible Markup Language (USIXML) [12], longer by 16%.

which allows developers to create a user interizgiag a

Whichever approach is adopted, the use of automatio

common language that can then be translated to amgduces the time taken for testing. The alternatfvananual

platform.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

testing is not only time-consuming, but also epane.

619

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Mobile applications

Mobile applications are different from traditional
applications in several ways. They are adversiédcted by
the limitations of mobile devices, some of whiclvédeen
highlighted by Zhang and Adipat [8] as follows:

 Mobile Context: When considering mobile

applications the user is not tied to a single

environment. The environment will also include

interaction with nearby people, objects and other

elements which may distract a user’s attention.
Connectivity: With mobile devices connectivity is
often slow and unreliable and therefore will impact
the performance of mobile applications which utilis
these features.

Small Screen Size & Different Display
Resolution In order to provide portability mobile

devices contain very limited screen size and so th&

amount of information that can be displayed is
drastically reduced.

Limited Processing Capability and Power In
order to provide portability, mobile devices often
contain less processing capability and power. Thi
has the effect of limiting the functionality of
applications for mobile devices.

Data Entry Methods: The input methods available
for mobile devices are restricted and require tager
level of proficiency. This problem increases the

and attributes will be identified. These will thba compiled
into a comprehensive profile of the platform.

Using the platform profile produced by RQ1, RQ2lwil
be answered through a comparison of these profilis.RQ
will aim to identify how the components on one fdah
relate to those on the other platforms. For exampllee
TextView component on Android [9] is equivalent ttoe
Label component on the iOS platform [11].

Additionally, a third research question has beeindd

to investigate how these components can be comlitec
platform independent testing tool.

RQ3: How should these components be modelled
in a platform independent testing tool?

By investigating the third research question, wél wi
bring together all components from all platformgoira
single platform independent representation. This iris
ontrast to USIXML as RQ3 incorporates all compdsemt
Just a subset of them. The common components famhtn
RQ2 will have a single representation with a maggothe
concrete components used by the underlying plagdorm
Using this representation it will then be possiioleonstruct
he platform-independent testing tool, which we | cal

obiTest.

IV. MOBITEST

The MobiTest tool is designed to address some ef th
difficulties associated with the automated testifignobile

likelihood of erroneous input and decreases the rat@Pplications, by using a single set of unit testsesst the

of data entry.

Thus, mobile applications typically contain less
functionality than traditional desktop applicatiorighis is
mainly due to the limitations of the platform, higt also
affected by the context in which these applicatiares used.
Mobile applications are designed to be used whiletre
move, and, as such, complex interactions are uraddsias
this negatively affects usability.

In addition to this, mobile applications tend to be
developed in a short period of time. This has Heeititated
by the availability of better source libraries atel/elopment
tools for creating mobile apps.

The aim of this research is to develop a mobileiegion
testing tool that can be applied to all mobile folahs. As
each mobile platform contains different componeittss

RESEARCHAIM

necessary to first understand the components oM eac

platform and how these relate to one another. dieroto do
this, the following two research questions (RQ)énéeen
defined:
mobile platform?
across the platforms?
To answer RQ1, a thorough examination of each ef th
mobile platforms will be performed. During this exaation
each of the components together with their assegtiavents

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

RQ1: What components are available on each

RQ2: Which of these components are common

application on multiple platforms.

The initial version focuses on testing through the
interface as this should be similar (although natcdy the
same) on all platforms. In this way, the need fiatfprm-
specific code can be minimised. In this sectionpnesent a
sample app on which MobiTest can be used, anddhtine
the proposed system architecture.

A. Sample Application

The Log In screen illustrated in Figure 1, whictuldobe
used on a number of applications, such as appkdging
medical data, invites the user to enter a usernant
password, which is checked against a databasejigplays
a message indicating whether these credentials haea
accepted or not.

Assuming that (“ian”, “brookes”) is a valid (usema,
password) pair, a possible test of this app i®bavis:
click in the username text field
press the keys 1’, ‘a’, ‘n’
click in the password text field
press the keys ‘b’, ‘r, ‘0’, ‘0, 'K, ‘e’, ‘s’
click the OK button
assert the text component of the lower label is
“password acqepted’;“

oukrwnhRE

Usemame

Password

Password Rejected

Figure 1. Sample Log In screen to be tested through MobiTest

620

ICSEA 2012 : The Seventh International Conference on Software Engineering

Advances

P tAndroid E/Maobl P05
f Button ' o f Button \ D /T\
[} 0. | Eveht

TentView o, TextLabel o, Label O Attribute

o,
O : O

mi

Echit Text o TextField
m!

o ———

@,

Figure 2. MobiTest System Architecture

When an assertion is false for any platform, ths i Once a set of common components p is identified, a
reported to the user of the tool so that they efie fiction to mappinge ; from the components g to those ofp; can
correct the apparent error in the program. Thjgssone test thereby be deduced.

that may be run on this application. In practicenynenore T
tests will be required. The benefit of MobiTesthat tests

only need to be specified once. The test suite$ lvdl
generated automatically for each platform, be itS,iO

he tool MobiTest will operate as follows:

i. from the layout XML files of each version of thepap
MobiTest will deduce the mappings; and insert
them into an empty XML fil¢ est s. xm

Android or Blackberry. ii. the user will then add test cases in the form évent

B. System Architecture

To generate automated tests for concrete platfosotd)
as Android or iOS, a virtual platform (called Mobijll be
defined. For Mobi, a number of GUI components void
defined through the answer to RQ3. For each such
component, a list of valid attributes and eventdl e
defined. Each concrete platform will have its comgrats
defined in a similar way. The available GUI compuise iii
vary from platform to platform and even where tlans
component is available, the name may be diffetesttR for
i in 1..n denote the n different concrete platfariis account
for the naming differences, a functidm can be defined that
maps each Mobi component to its realisation inPARsimilar
function ®i maps each component attribute and event to its

assertwhere event and assert are given as tags with
attributes and values in the normal manner afd X
signifies one or more occurrences of X. It is
anticipated that given the restricted nature of the
language, GUI support can make this process
exceptionally straightforward. This will be a major
advantage, as it focuses attention on the interface
which is unusual for conventional unit testing.

. MobiTest will produce a test class for each platfor
In it, for each test case, MobiTest will translateh
event into a piece of code that triggers that ewent,
similarly, each assert into a piece of code thstste
that assert. This will be done using the defingiaf
¢; from the tests.xml file to identify the components
and usingD; to determine the events and attributes

realisation in P In the diagram below, n=2,; Pepresents iv. MobiTest will then run each test class on its

Android and Rrepresents iOS.
Similarly, let p denote the set of actual components in
the app written for platform ;PEach version has six such
components, as indicated in Figure 3.
Py fAmdroid P

N YN

userrmeiey d @ o,

|

Figure 3. MobiTest view of

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

¢, — | ®
passerdbditiert ot % i -@
AT R ey Y.
e e \'h-...___labi-_s__...--"’ =L

associated platform, and present the test repdheto
user.

abi RJICS

usermamedabed

)

the Log In screen

621

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

V.

The creation of this tool presents a number oflehgks:
Use of XML to specify componentsalthough iOS
and Android can specify their layouts with XML, it
may be that some platforms do not. In that case,
will be necessary to parse the code to obtaint aflis
the components used.

Incorrect assumptions about layout:for example,
suppose there are iOS and Android layout XML files
that both specify two buttons. Based on the order i
which components are specified in the file, it vod
assumed that the first button from one file
corresponds to the first button from the other.sThi
assumption may not be valid.

Conflicting guidelines: both iOS and Android
provide a set of guidelines for user interfacesesen
guidelines are not always compatible. Furthermore

CHALLENGES

adherence to such guidelines is often a requirement

for the app to be distributed through the app store
Platform-specific features each mobile platform
has a number of components unique to that platfor
For example, the “back” button, to return usertho
previous screen, is physical for Android devices bu
it is a GUI component on i0OS. The MobiTest tool
will need to be able to identify these features an
allow users to access and test them.

Inconsistent number of screensa single screen on
one platform may correspond to multiple screens o
another. MobiTest will therefore need to allow

4

development cycles and the wide range of platfonnesn
that time available for testing is limited when dping
applications for mobile devices. MobiTest will adss this
issue by allowing developers to specify a singkeo$dests

iEor applications that can then be used with eaektfgrim on

which the application is developed.
Conflicting guidelines and platform specific feasrare

just some of the challenges when developing such a

platform. If these challenges can be addressetndesf
mobile applications can be simplified and perfornmedre
easily leading to higher quality mobile applicasoand a
much more enjoyable, satisfying and effective user
experience.

Although this approach may not solve all of theuéss
associated with automated testing of mobile apfiting, we
believe that it will help to address issues speaily relating
to application development across multiple platferm

VIIL.

This research is supported by Oxford Brookes Usitxer
and the Science Foundation Ireland (SFI) Stokesukeship

ACKNOWLEDGEMENTS

rT‘\Drogramme, grant number 07/SK/11299, the SFI Ryaici

Investigator Programme, grant number 08/IN.1/12@8
funding of this project was awarded by Science Eation
eland under a co-funding initiative by the IriGlovernment
nd European Regional Development Fund), and stggpor
in part by Lero - the Irish Software EngineeringsBarch
Centre (http://www.lero.ie) grant 10/CE/I1855.

n

IX. REFERENCES

mappings between components on an application

level, rather than at screen level.

VI.

1. Determine components, events and attributesafor
number of platforms by creating a compatibility mat
which identifies which components are availablevdrich
platform (RQ1) and how they correspond to companent
other platforms (RQ2). For example, a Picker in i@S no
equivalent in Android but the ListView provides miiar
functionality.

2. Define the virtual platform Mobi and the funetgdi
(RQ3). To help with this, an on-going study of ¢ixig
multi-platform applications will be used to providesight
into how existing applications are created for srpktform
use and to help identify common conventions thatuaed in
this context.

3. Write MobiTest for one platform, Android. To tas,
a comprehensive examination of existing unit testiools
will be performed. This examination will focus migiron
the Android testing API [9], a specialisation ofnitJ[10],
and Logic Unit Tests for testing iOS applicatiofd]f Once
this has been done, MobiTest will be generalisechudtiple
platforms.

PLAN FOR FUTURE WORK

VIl. SUMMARY

This paper has proposed MobiTest, a testing tool fo
cross-platform mobile application development, whises a
domain-specific language for mobile interfaces. rsho

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

[1] ITU, "The world in 2010 ICT Facts and Figureb[U, 2010.
[2] D. Flood, R. Harrison, D. Duce, and C. lacobsltiyy Mobile
Apps: Investigating the usability of mobile appsnir the users
perspective," International Journal of Mobile HEGI Press) 2012.
[3] G. Tassey, "The Economic Impacts of Inadequate
Infrastructure for Software Testing,” National ihge of
Standards and Technology 2002.

[4] F. P. Brooks,the mythical man-month: Addison-Wesley
Publishing Company, 1982.

[5] W. Royce, "Managing the Development of Largeft®are
Systems," iINWESCO, 1970.

[6] K. Beck, Extreme Programming Explained: Embrace Change:
Addison-Wesley, Pearson Education, 2000.

[7] B. George and L. Williams, "An initial Investd¢jon of Test
Driven Development in Industry," iACM Symposium on Applied
Computing, Melbourne, FL, 2003.

[8] D. Zzhang and B. Adipat, "Challenges, Methodaésg and
Issues in the Usability Testing of Mobile Applicais,”
International Journal of Human-Computer Interaction, vol. 18, pp.
293 - 308, 2005.

[9] A. D. Guide, 'http://developer.android.coiiol. 2011, 2011.
(accessed 25/09/2012)

[10] JUnit, "http://www.junit.orgf 2011. (accessed 25/09/2012)
[11] i. D. Library, 'http://developer.apple.cof/.vol. 2011,
(accessed 25/09/2012)

[12] http://www.usixml.org(accessed 25/09/12)

622

