
Towards a Glue-Code Specification Framework for
Component-Based Systems

Sajjad Mahmood∗ and Mohammed A. Al-Qadhi†

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: smahmood@kfupm.edu.sa∗, moh6666 qadi@hotmail.com†

Abstract—Component integration is a key process ac-
tivity during the development of Component-Based Soft-
ware (CBS). CBS integrators use software components
developed by either in-house or purchased off-the-shelf
to develop an application. CBS integration process often
requires adaption of selected components to meet the CBS-
to-be requirements as individual components are usually
developed for general purposes. Latest industrial studies
for CBS development have indicated that system integrators
reply on individual experiences to write the glue-code of a
CBS. Hence, there is a need for an integration framework
to handle the potential mismatches between individual
components and identify the functionalities not provided
by the available components for a CBS. In this paper,
we present an initial glue-code framework to specify the
glue-code required in integrating potentially mismatched
components and the missing functionalities required to meet
the requirements of a CBS.

Index Terms—Component Based Systems; Component
Integration; Glue-Code Specification; UML; Use Case
Model.

I. INTRODUCTION

Software component is a fundamental building block
for an application. CBS development focuses on integrat-
ing pre-existing software components to build a software
application [1], [2], [3], [4]. A system integrator puts
together software components developed by different ven-
dors who are usually unaware of each other [5]. Hence,
the integration phase of a CBS development life cycle is a
challenging activity as individual components are usually
designed for general purposes and they might not com-
pletely satisfy requirements of a CBS-to-be. Furthermore,
detailed documentation is rarely available for the majority
of components [5], [6] and system integrators have to
rely on component interface documentation during the
integration phase of a CBS.

The glue-code written during the integration phase
plays an important role in the overall success of a CBS.

The glue-code provides a platform to integrate potentially
mismatching components and implement the missing
functionalities required to meet requirements of a CBS.
CBS research [2], [6] has shown that system integrators
rely on their experience to write the glue-code and there
is a lack of glue-code development framework to support
the important integration phase of the CBS development
life cycle.

In this paper, we present an initial glue-code specifi-
cation framework for writing the glue-code of a CBS.
The glue-code specification framework will help system
integrators in early identification of potential mismatches
between component interfaces and missing functionalities
required to satisfy stakeholder requirements of a CBS.
We introduce the notation of use case conceptual map-
ping and component-based sequence mapping to specify
interactions between components of a CBS. We also use
a hotel reservation system [7] as a running example to
explain the glue-code specification framework.

The rest of this paper is organized as follows: Section
II reviews the related literature. In Section III, we present
the glue-code specification framework. We conclude the
paper and discuss future work in Section IV.

II. RELATED WORK

Vigder and Dean [8] presented the concept of wrappers
to glue software components by considering the ele-
ments of architecture during the integration process. Rine
et al. [9] used adapters to integrate components. Each
component has an associated adapter and components
request services from each other through their associated
adapters.

Dietrich et al. [10] used active rules to design wrappers
to adapt components. The wrappers are automatically
generated as components and they act as proxy objects.
These proxy objects intercept method calls and provide

577Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the functionality required by the overall component-
based system. Similarly, Canal et al. [11] presented a
model based approach for component adaptation using
synchronous vectors based notation to automatically gen-
erates adapter protocols during development of a CBS.

Kim et al. [12] proposed a process for CBS de-
velopment where component integration occurs at the
release phase. Zitouni et al [13] presented a contract-
based approach to analyze and model the properties of
components and their composition in order to detect and
correct composition errors. The approach allows to char-
acterize the structural, interface and behavioral aspects
of the components. Chi [14] defined the signature view
and behavior view of software components and used pi
calculus expressions to model behavior of components.

The current CBS development approaches lack a sys-
tematic process to bridge the gap between requirements
analysis and integration specification of a CBS. This
results in an integration phase that heavily relies on
system integrator’s skills which increase the challenges
associated with the glue-code specification of a CBS.

III. GLUE-CODE SPECIFICATION FRAMEWORK

The glue-code specification framework presents a sys-
tematic structure to identify the required interfaces and
specify interactions between components of a CBS. The
glue-code specification framework also helps reduce CBS
development risks by identifying the interface mismatches
between components and the missing functionalities re-
quired to implement a CBS.

The glue-code specification framework consists of two
phases, namely, use case conceptual mapping and compo-
nent based sequence mapping. The first phase - use case
conceptual mapping - starts with a process of modeling a
use case as a required interface and subsequently specifies
all the required and provided interfaces for a CBS. The
second phase - component based sequence diagram -
uses the extended UML sequence diagram to model
different scenarios associated with a use case to identify
mismatches between required and provided interfaces
of a CBS. Figure 1 shows the glue-code specification
framework.

A. Use Case Conceptual Mapping

The UCCM phase takes the Unified Modeling Lan-
guage (UML) use case diagram [15] and component in-
terface documentation as an input to develop a realization
mapping between software components and requirements
of a CBS. First, we adopt UML component specification

Use Case
Model

Component
Interface

Documentation

Use Case
Conceptual

Mapping

Component-
Based

Sequence
Mapping

Glue-Code Specification

Fig. 1. Glue-Code Specification Framework

Make a
Reservation

Make a
Reservation

Identify Room
System Provides price
Request a reservation

...............
askForReservation ()
selectReservation ()
providePrice ()
........

<<Interface Type>>
IMakeReservation

Fig. 2. ‘IMakeReservation’ System Interface

technique [7] to model each use case of a CBS as a ‘con-
ceptual interface’ which consists of a set of operations
corresponding to individual interactions of the use case.
Figure 2 shows ‘IMakeReservation’ system interface for
the hotel reservation system.

Second, each interface of a component is represented
as a ‘concrete interface’ which consists of a number of
concrete operations which are uniquely identified by a
‘concrete operation code’. A ‘concrete operation code’
consists of components’ name, interface number and
corresponding operation number. For example, the con-
crete operation code (B-I2-O2) will represent the second
operation of the second interface of component B.

Finally, a UCCM realization table is generated for each
‘conceptual interface’. A UCCM realization table shows
all conceptual and concrete interfaces that help realize a

578Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

TABLE I
‘IMAKERESERVATION’ REALIZATION TABLE

Conceptual Operations Realization

askForReservation() Missing

selectReservation() Missing

providePrice() Partially(D − I2−O6)

getCustomerInfo() Missing

reservation() (A− I1−O1)AND

(D − I2−O8)AND

(B − I2−O5)OR(E − I2−O4)

refineReserveDetails() Missing

provideAlternative() refineReservDetails()AND

(D − I2−O6)OR(E − I5−O3)

acceptOrReject() Missing

failure() Missing

notifyBillingSys() Missing

‘conceptual interface’. Table I shows UCCM realization
table for the ‘IMakeReservation’ interface.

B. Component Based Sequence Mapping

The CompBSM phase uses UML sequence diagram
to present scenarios associated with each ‘conceptual
interface’ of a CBS. The sequence diagram developed
during the CompBSM phase has a glue-code component
that helps a system integrator in identifying the execution
precedence, missing functionalities and potential mis-
matches between a set of participating interfaces. In this
paper, we extend UML by introducing new stereotypes
to help system integrators in specifying the glue-code
required to integrate candidate components. The message
interaction stereotypes are as follows:

1) <<Initiation>>: To specify first/initial messages.
2) <<Missing>>: To specify missing functionalities.
3) <<LibraryImporting>>: To specify importing

header files and built-in libraries from components.
4) <<Adapter>>: To specify messages that involve

mismatched data types involved in an interaction.
5) <<TemporaryStorage>>: To specify interactions

that provides temporary variables to store values to
be used through a scenario.

<<Component>>
Billing - (A)

<<Component>>
DataType - (C)

<<Component>>
ResSys - (E)

<<Component>>
Glue-CodeGuest

askForReservation () <<Initiation>>

importDataType ()

(E-5-3) getRoomInfo (): ArrayList

refineReservationDetails () <<Missing>>

<<LibraryImporting>>

selectReservation () <<Adaptor>>

Fig. 3. ’IMakeReservation’ Sequence Diagram

6) <<ExceptionHandling>>: To specify interactions
that provides exception handling functionality for
the system.

Figure 3 shows a partial sequence diagram for the
IMakeReservation use case. A guest actor starts the
scenario by invoking method ‘askForReservation ()’ from
the glue-code component of a CBS. The interaction is la-
beled with <<Initiation>> stereotype to indicate the first
interaction in the scenario. Next, glue-code component
makes a message call to ‘importDataTypes ()’ method of
the ‘datatype - (C)’ component. The interaction is labeled
with <<LibraryImporting>> stereotype to specify that
built-in datatype library is called form the ‘datatype
- (C)’ component. Next, ‘selectReservation ()’ method
is executed which is tagged with the <<Adaptor>>
stereotype. This indicates that some sort of adaptation
code needs to be written in the glue-code component to
collect the required information from the customer.

Furthermore, ‘refineReservationDetail’ () method is
tagged with <<Missing>> stereotype to indicate that
the required functionality is not provided by any available
component and it needs to be implemented in the glue-
code component of a CBS. Finally, ‘(E-5-3) getRoomInfo
()’method is invoked that shows that ‘getRoomInfo ()’
method associated with ‘ResSys’ component is called to
realize the desired functionality required for the IMak-

579Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

eReservation use case.

IV. CONCLUSION AND FUTURE WORK

We have presented an initial glue-code specification
framework to help system integrators in understanding
potential mismatches between component interfaces and
missing functionalities required to meet stakeholder re-
quirements of a CBS. The glue-code specification frame-
work consists of two parts; namely, use case conceptual
mapping and component-based sequence mapping phases.
The use case conceptual mapping is used to specify the
component interfaces involved in realizing individual use
cases a CBS. Furthermore, component-based sequence
mapping phases uses UML sequence diagram to specify
the component interface mismatches and missing func-
tionalities required to successfully developing a CBS.

In this paper, we have presented a preliminary work on
the glue-code specification framework. For future work,
we plan to complete the framework by considering both
integration and composition issues related to the glue-
code of a CBS. There is a need to apply the framework on
real world case studies to better understand its potential
benefits for the system integrators of a CBS. We plan
to develop an automated tool for supporting glue-code
specification framework. Furthermore, there is also a need
to investigate the potential benefits of the complete glue-
code framework on integration testing, maintenance and
evolution phases of a CBS.

ACKNOWLEDGEMENT

The authors would like to acknowledge the research
support provided at King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran, Saudi Arabia.

REFERENCES

[1] S. Mahmood, R. Lai, and Y. S, Kim, “Survey of component based
software development,” IET Software, vol. 1, no. 2, pp. 57–66,
2007.

[2] J. Li, R. Conradi, O. P. N. Siyngstad, C. Bunse, M. Torchiano,
and M. Morisio, “Development with off-the-shelf components:
10 facts,” IEEE Software, vol. 26, no. 2, pp. 80 – 87, 2009.

[3] M. A. Khan and S. Mahmood, “Optimal component selection for
component-based systems,” in 2009 International Conference on
Systems, Computing Sciences and Software Engineering, pp. 467
– 472, 2009.

[4] M. A. Khan and S. Mahmood, “A graph based requirements
clustering approach for component selection,” Advances in En-
gineering Software, vol. 54, pp. 1–16, 2012.

[5] A. Cechich and M. Piattini, “Early detection of cots component
functional suitability,” Information and Software Technology,
vol. 49, no. 2, pp. 108 – 121, 2007.

[6] S. Mahmood and A. Khan, “An industrial study on the im-
portance of software component documentation: A system in-
tegrators perspective,” Information Processing Letters, vol. 12,
pp. 583–590, 2011.

[7] J. Cheesman and J. Daniels, UML Components A Simple Process
for Specifying Component Based Software. Addison-Wesley,
2001.

[8] M. R. Vigder and J. Dean, “An architectural approach to building
systems from cots software components,” in Proceedings of the
1997 conference of the Centre for Advanced Studies on Col-
laborative research, p. 22, IBM Press, 1997. Toronto, Ontario,
Canada.

[9] D. Rine, N. Nada, and K. Jaber, “Using adapters to reduce
interaction complexity in reusable component based software
development,” in Proceedings of the 1999 symposium on Soft-
ware reusability, pp. 37–43, ACM Press, 1999. Los Angeles,
California, United States.

[10] S. W. Dietrich, R. Patil, A. Sundermier, and S. D. Urban,
“Component adaptation for event-based application integration
using active rules,” Journal of Systems and Software, vol. 79,
no. 12, pp. 1725 – 1734, 2006.

[11] C. Canal, P. Poizat, and G. Salaun, “Model-based adaptation
of behavioral mismatching components,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 546 – 563, 2008.

[12] S. Kim, S. Park, J. Yun, and L. Y, “Automated continous inte-
gration of component-based software: An industrail experience,”
in Proceedings of 23rd IEEE/ACM International Conference on
Automated Software Engineering, pp. 423 – 426, 2008.

[13] A. Zitouni, L. Seinturier, and M. Boufaida, “Contract-based
approach to analyse software components,” in 13th IEEE In-
ternational Conference on Engineering of Complex Computer
Systems, pp. 237 – 242, 2008.

[14] Z. Chi, “Software components composition compatability check-
ing based on behaviour description,” in IEEE International
Conference on Granular Computing, pp. 757 – 760, 2009.

[15] K. Bittner and I. Spence, Use Case Modeling. Addison-Wesley,
2002.

580Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

