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Abstract—Component integration is a key process ac-
tivity during the development of Component-Based Soft-
ware (CBS). CBS integrators use software components
developed by either in-house or purchased off-the-shelf
to develop an application. CBS integration process often
requires adaption of selected components to meet the CBS-
to-be requirements as individual components are usually
developed for general purposes. Latest industrial studies
for CBS development have indicated that system integrators
reply on individual experiences to write the glue-code of a
CBS. Hence, there is a need for an integration framework
to handle the potential mismatches between individual
components and identify the functionalities not provided
by the available components for a CBS. In this paper,
we present an initial glue-code framework to specify the
glue-code required in integrating potentially mismatched
components and the missing functionalities required to meet
the requirements of a CBS.

Index Terms—Component Based Systems; Component
Integration; Glue-Code Specification; UML; Use Case
Model.

I. INTRODUCTION

Software component is a fundamental building block
for an application. CBS development focuses on integrat-
ing pre-existing software components to build a software
application [1], [2], [3], [4]. A system integrator puts
together software components developed by different ven-
dors who are usually unaware of each other [5]. Hence,
the integration phase of a CBS development life cycle is a
challenging activity as individual components are usually
designed for general purposes and they might not com-
pletely satisfy requirements of a CBS-to-be. Furthermore,
detailed documentation is rarely available for the majority
of components [5], [6] and system integrators have to
rely on component interface documentation during the
integration phase of a CBS.

The glue-code written during the integration phase
plays an important role in the overall success of a CBS.

The glue-code provides a platform to integrate potentially
mismatching components and implement the missing
functionalities required to meet requirements of a CBS.
CBS research [2], [6] has shown that system integrators
rely on their experience to write the glue-code and there
is a lack of glue-code development framework to support
the important integration phase of the CBS development
life cycle.

In this paper, we present an initial glue-code specifi-
cation framework for writing the glue-code of a CBS.
The glue-code specification framework will help system
integrators in early identification of potential mismatches
between component interfaces and missing functionalities
required to satisfy stakeholder requirements of a CBS.
We introduce the notation of use case conceptual map-
ping and component-based sequence mapping to specify
interactions between components of a CBS. We also use
a hotel reservation system [7] as a running example to
explain the glue-code specification framework.

The rest of this paper is organized as follows: Section
II reviews the related literature. In Section III, we present
the glue-code specification framework. We conclude the
paper and discuss future work in Section IV.

II. RELATED WORK

Vigder and Dean [8] presented the concept of wrappers
to glue software components by considering the ele-
ments of architecture during the integration process. Rine
et al. [9] used adapters to integrate components. Each
component has an associated adapter and components
request services from each other through their associated
adapters.

Dietrich et al. [10] used active rules to design wrappers
to adapt components. The wrappers are automatically
generated as components and they act as proxy objects.
These proxy objects intercept method calls and provide
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the functionality required by the overall component-
based system. Similarly, Canal et al. [11] presented a
model based approach for component adaptation using
synchronous vectors based notation to automatically gen-
erates adapter protocols during development of a CBS.

Kim et al. [12] proposed a process for CBS de-
velopment where component integration occurs at the
release phase. Zitouni et al [13] presented a contract-
based approach to analyze and model the properties of
components and their composition in order to detect and
correct composition errors. The approach allows to char-
acterize the structural, interface and behavioral aspects
of the components. Chi [14] defined the signature view
and behavior view of software components and used pi
calculus expressions to model behavior of components.

The current CBS development approaches lack a sys-
tematic process to bridge the gap between requirements
analysis and integration specification of a CBS. This
results in an integration phase that heavily relies on
system integrator’s skills which increase the challenges
associated with the glue-code specification of a CBS.

III. GLUE-CODE SPECIFICATION FRAMEWORK

The glue-code specification framework presents a sys-
tematic structure to identify the required interfaces and
specify interactions between components of a CBS. The
glue-code specification framework also helps reduce CBS
development risks by identifying the interface mismatches
between components and the missing functionalities re-
quired to implement a CBS.

The glue-code specification framework consists of two
phases, namely, use case conceptual mapping and compo-
nent based sequence mapping. The first phase - use case
conceptual mapping - starts with a process of modeling a
use case as a required interface and subsequently specifies
all the required and provided interfaces for a CBS. The
second phase - component based sequence diagram -
uses the extended UML sequence diagram to model
different scenarios associated with a use case to identify
mismatches between required and provided interfaces
of a CBS. Figure 1 shows the glue-code specification
framework.

A. Use Case Conceptual Mapping

The UCCM phase takes the Unified Modeling Lan-
guage (UML) use case diagram [15] and component in-
terface documentation as an input to develop a realization
mapping between software components and requirements
of a CBS. First, we adopt UML component specification
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Fig. 1. Glue-Code Specification Framework
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Fig. 2. ‘IMakeReservation’ System Interface

technique [7] to model each use case of a CBS as a ‘con-
ceptual interface’ which consists of a set of operations
corresponding to individual interactions of the use case.
Figure 2 shows ‘IMakeReservation’ system interface for
the hotel reservation system.

Second, each interface of a component is represented
as a ‘concrete interface’ which consists of a number of
concrete operations which are uniquely identified by a
‘concrete operation code’. A ‘concrete operation code’
consists of components’ name, interface number and
corresponding operation number. For example, the con-
crete operation code (B-I2-O2) will represent the second
operation of the second interface of component B.

Finally, a UCCM realization table is generated for each
‘conceptual interface’. A UCCM realization table shows
all conceptual and concrete interfaces that help realize a
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TABLE I
‘IMAKERESERVATION’ REALIZATION TABLE

Conceptual Operations Realization

askForReservation() Missing

selectReservation() Missing

providePrice() Partially(D − I2−O6)

getCustomerInfo() Missing

reservation() (A− I1−O1)AND

(D − I2−O8)AND

(B − I2−O5)OR(E − I2−O4)

refineReserveDetails() Missing

provideAlternative() refineReservDetails()AND

(D − I2−O6)OR(E − I5−O3)

acceptOrReject() Missing

failure() Missing

notifyBillingSys() Missing

‘conceptual interface’. Table I shows UCCM realization
table for the ‘IMakeReservation’ interface.

B. Component Based Sequence Mapping

The CompBSM phase uses UML sequence diagram
to present scenarios associated with each ‘conceptual
interface’ of a CBS. The sequence diagram developed
during the CompBSM phase has a glue-code component
that helps a system integrator in identifying the execution
precedence, missing functionalities and potential mis-
matches between a set of participating interfaces. In this
paper, we extend UML by introducing new stereotypes
to help system integrators in specifying the glue-code
required to integrate candidate components. The message
interaction stereotypes are as follows:

1) <<Initiation>>: To specify first/initial messages.
2) <<Missing>>: To specify missing functionalities.
3) <<LibraryImporting>>: To specify importing

header files and built-in libraries from components.
4) <<Adapter>>: To specify messages that involve

mismatched data types involved in an interaction.
5) <<TemporaryStorage>>: To specify interactions

that provides temporary variables to store values to
be used through a scenario.

<<Component>> 
Billing - (A)

<<Component>> 
DataType - (C)

<<Component>> 
ResSys - (E)

<<Component>> 
Glue-CodeGuest

askForReservation () <<Initiation>>

importDataType ()

(E-5-3) getRoomInfo (): ArrayList

refineReservationDetails () <<Missing>>

<<LibraryImporting>>

selectReservation () <<Adaptor>>

Fig. 3. ’IMakeReservation’ Sequence Diagram

6) <<ExceptionHandling>>: To specify interactions
that provides exception handling functionality for
the system.

Figure 3 shows a partial sequence diagram for the
IMakeReservation use case. A guest actor starts the
scenario by invoking method ‘askForReservation ( )’ from
the glue-code component of a CBS. The interaction is la-
beled with <<Initiation>> stereotype to indicate the first
interaction in the scenario. Next, glue-code component
makes a message call to ‘importDataTypes ()’ method of
the ‘datatype - (C)’ component. The interaction is labeled
with <<LibraryImporting>> stereotype to specify that
built-in datatype library is called form the ‘datatype
- (C)’ component. Next, ‘selectReservation ()’ method
is executed which is tagged with the <<Adaptor>>
stereotype. This indicates that some sort of adaptation
code needs to be written in the glue-code component to
collect the required information from the customer.

Furthermore, ‘refineReservationDetail’ () method is
tagged with <<Missing>> stereotype to indicate that
the required functionality is not provided by any available
component and it needs to be implemented in the glue-
code component of a CBS. Finally, ‘(E-5-3) getRoomInfo
()’method is invoked that shows that ‘getRoomInfo ()’
method associated with ‘ResSys’ component is called to
realize the desired functionality required for the IMak-
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eReservation use case.

IV. CONCLUSION AND FUTURE WORK

We have presented an initial glue-code specification
framework to help system integrators in understanding
potential mismatches between component interfaces and
missing functionalities required to meet stakeholder re-
quirements of a CBS. The glue-code specification frame-
work consists of two parts; namely, use case conceptual
mapping and component-based sequence mapping phases.
The use case conceptual mapping is used to specify the
component interfaces involved in realizing individual use
cases a CBS. Furthermore, component-based sequence
mapping phases uses UML sequence diagram to specify
the component interface mismatches and missing func-
tionalities required to successfully developing a CBS.

In this paper, we have presented a preliminary work on
the glue-code specification framework. For future work,
we plan to complete the framework by considering both
integration and composition issues related to the glue-
code of a CBS. There is a need to apply the framework on
real world case studies to better understand its potential
benefits for the system integrators of a CBS. We plan
to develop an automated tool for supporting glue-code
specification framework. Furthermore, there is also a need
to investigate the potential benefits of the complete glue-
code framework on integration testing, maintenance and
evolution phases of a CBS.
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