
Improving IT Infrastructures Representation: A UML Profile

Luís Ferreira da Silva
1

luis.alexandre@campus.fct.unl.pt

Fernando Brito e Abreu
2,1

fba@iscte-iul.pt

Victor Moreira
2

vitor_hugo_moreira@iscte.pt

1
QUASAR Group, CITI, FCT/UNL

Universidade Nova de Lisboa

2829-516 Caparica, Portugal

2
DCTI, ISTA, ISCTE-IUL

Instituto Universitário de Lisboa

1649-026 Lisboa, Portugal

Abstract— IT infrastructures are most times informally

modeled. The resulting models are ambiguous to stakeholders,

cannot be checked for validity, and therefore are unable to

play their important role in design, deployment and

maintenance activities. The main reason for such a poor state-

of-the-art lies mainly in the absence of a modeling language

capable of representing IT infrastructures at the required level

of abstraction. Indeed, existing candidate languages are too

abstract, as shown in this paper by reviewing their

metamodels. The present paper mitigates this problem by

proposing a UML profile to describe the semantics of an IT

infrastructure.

Keywords – Information Technology; IT Infrastructures;

UML Profile; Modeling; Design Patterns

I. INTRODUCTION

An Information Technology Infrastructure (ITI), also

known as Technology Architecture in most Enterprise

Architecture frameworks, is the foundation on which

business processes that drive the success of an organization

are based [1] and has been defined as “all hardware,

software, networks and facilities, etc. that are needed to

develop, test, deliver, monitor, control or support IT

services” [2]. Some of the unique characteristics of the ITI

layer are:

 Is the foundation for all the other architecture layers,

meaning that a problem at this layer can influence all

the layers above;

 Provides services that are used by multiple applications,

processes, and users;

 Is usually not perceived as a layer that offers financial

benefits, but rather as an utility that enables business

processes to be performed.

The ability to streamline the conception, deployment and

maintenance of ITIs depends largely on our ability to model

them, as in most engineering endeavors, to produce complex

artifacts. The use of models was introduced in Computer

Science in the seventies to simplify complexity in Software

Engineering. Models convey a simplified representation of

part of the real world, which can be useful for analytical

purposes. The use of models provides a way to view specific

aspects of a system with multiple levels of abstraction

within different contexts.

To produce models, we require a modeling language

providing a set of composable constructs. The use of

informal modeling notations creates communicational

problems among stakeholders and ultimately makes ITIs

suffer the same problems of legacy software: undocumented

decisions, redundancy, inconsistencies and increased cost of

ownership. To mitigate these issues, we should adopt a

well-formed graphical notation, based on a formal grammar,

usually called a metamodel. The latter includes precise

definitions of constructs and their relationships, along with

composition rules that must be fulfilled for creating valid

models. Models are said to be metamodel instances since

they conform to it. Metamodels allow the development of

syntax checking editors and validation tools. With such a

support, models are then prone to provide a less ambiguous

and shared meaning to all relevant stakeholders, and

therefore play their expected role in ITI engineering.

Despite the aforementioned benefits on using a precise

modeling language, our experience in the field has shown

that most organizations depict their ITIs informally, either

using some ad-hoc templates or informal notation not

supported by a standard or framework, resulting in

ambiguous models without any kind of traceability features

like the one represented in Figure 1. Such ad-hoc models

frequently lead to discussions as each stakeholder has its

own interpretation.

Figure 1. Model of an IT infrastructure (source: [3])

In this paper, we propose an extension to the UML2

metamodel, provided as a profile, to describe the semantics

of ITI modeling constructs.

459Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

mailto:luis.alexandre@campus.fct.unl.pt
mailto:fba@iscte-iul.pt
mailto:vitor_hugo_moreira@iscte.pt

This paper is organized as follows: in the next Section

we review related work; in Section III we present the UML

profile itself, by overviewing its structure and stereotypes;

then, in Section IV, we briefly describe how we have

deployed the proposed profile in a professional modeling

tool; finally, in Section V, we present some conclusions and

future work.

This paper extends (by presenting related work and a

modeling example using the profile) and improves (by

providing more detail on the profile and on the future work)

a previous short paper of ours [4].

II. RELATED WORK

Several modeling languages provide constructs for

modeling ITIs with some precision. In this section, we will

overview those constructs, as defined in the metamodels of

three of the most well-known languages that can be used in

the context of IT infrastructures: UML, TOGAF and

ArchiMate.

A. UML Metamodel

UML is a general-purpose modeling language

embodying a collection of best engineering practices that

have proven successful in the modeling of large and

complex systems of a wide range of domains. Under the

stewardship of the Object Management Group (OMG),

UML has emerged as the software industry’s dominant

modeling language. IT infrastructures are modeled in UML

with Deployment Diagrams. The latter allows representing

the hardware for a system, the software that is installed on

that hardware, and the middleware used to connect

machines.

Since UML version 2 (UML2) has thirteen different

types of diagrams, our first endeavor was assessing their

relative usage at a global scale, based upon the hits provided

by several web search engines, either general purpose, or

academic / research oriented. Plotted values in Figure 2 are

represented in percentage of total hits. When available, we

split textual search hits from image search hits, but the

ranking in both cases does not differ significantly.

Figure 2. Ranking the use of the thirteen UML2 diagrams

As it can be observed in Figure 2, Deployment Diagrams

are among the less used UML2 diagrams. A possible

interpretation for this phenomenon is that UML2 offers

limited modeling constructs (e.g., nodes, components and

associations), that do not cope “as is” with the required

diversity for modeling ITIs.
There are four modeling elements in UML deployment

diagrams, represented as metaclasses in the corresponding
UML metamodel extract, as shown in Figure 3 and Figure 4.
Those constructs are: Nodes to represent a hardware
component, Components to represent software,
Dependencies to show that one component relies upon
another component and Links to connect nodes.

Figure 3. UML metamodel extract corresponding to deployment

diagrams.

As can be seen in Figure 3, Node is a central modeling

element. It can have other elements of type Node and

represents the environment in which a component or a set of

components execute. A Node is a generic concept and can

represent several things such as a physical hardware device,

an operating system or infrastructure software (e.g.,

database server, web server, application server) and is

connected through communication paths.

Figure 4. Metaclasses used to define the deployment component.

UML2 has a comprehensive coverage of the whole

lifecycle in software development. As a result, its large

specification, spanning more than 900 pages [5, 6] is in

some aspects too abstract. This is well the case of

Deployment Diagrams, and as a result they are not widely

used as other UML2 diagrams, as corroborated by our

survey. In short, “plain vanilla” UML provides no

specialized stereotypes for the many concepts and

association types used in any IT infrastructure, what makes

it a weak candidate for modeling ITIs.

B. TOGAF Content Metamodel

The Open Group Architecture Framework (TOGAF) is a

framework for enterprise architecture developed by the

Open Group Architecture Forum in the United States,

460Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

which provides a comprehensive approach for designing,

planning, implementation, and governance of an enterprise

information architecture. TOGAF is a high level and holistic

approach to design, which is typically modeled at four

levels: Business, Application, Data, and Technology. It tries

to give a well-tested overall starting model to information

architects, which can then be built upon. It relies heavily on

modularization, standardization and already existing, proven

technologies and products. Its latest release, at the time of

writing, also includes a metamodel called Content

Metamodel, that defines all types of building blocks that

exist within architecture and how they are related to each

other to allow architectural concepts to be captured, stored,

filtered and queried in a structured and consistent manner.

The IT infrastructure (called technology architecture in

TOGAF terminology) is part of the Content Metamodel and

its direct relationships are shown in Figure 5.

Figure 5. TOGAF 9.1 metamodel extract

From an IT infrastructure perspective, there are few

concepts in the content metamodel: the Platform Service

that represents the support for delivering applications, the

Logical Technology Component used to represent a class of

technology products and Physical Technology Component

to represent specific technology products. As with UML,

these general concepts from TOGAF’s Content Metamodel

allow, in theory, to model IT infrastructures. The lack of

specialized stereotypes and relationships appears to be a

serious hindrance for its effective adoption. Furthermore,

some authors argue that TOGAF’s Content Metamodel

lacks a formal ontology to mitigate its ambiguities and

inconsistencies [7].

C. Archimate Metamodel

ArchiMate is an open architecture modeling standard

with focus on the visualization of viewpoints and notations

on models. The metamodel encompasses several enterprise

architecture domains (Business, Application, Information,

Technology).

The ArchiMate metamodel was inspired in the UML 2.0

standard [5, 6]. As seen in Figure 6, Node is also the main

structural concept and is specialized in Device (e.g., servers)

and System Software (e.g., operating system called

“execution environment” in UML).

In fra s tru c tu re

In te r fa c e

N o d e
C o m m u n ic a tio n

P a th

D e v ic e

In fra s tru c tu re

S e rv ic e

S y s te m S o ftw a re

a s s o c ia te d w ith

u s e d b yc o m p o s e s

a s s ig n e d to

Is re a liz e d b y

N e tw o rk

a s s ig n e d fro m

c o m p o s e d o f u s e s

a s s o c ia te d w ith

u s e s

u s e d b y

re a liz e s

re a liz e d b y

a s s o c ia te d w ith

a s s o c ia te d w ith

re a liz e s

re a liz e d b y

a s s ig n e d to

a s s ig n e d fro m

A rtifa c t
a s s ig n e d to

a s s ig n e d fro m

a c c e s s e d b y

a c c e s s e s

Figure 6. ArchiMate metamodel extract corresponding to IT

Infrastructure modeling

The Infrastructure Interface is the “logical” location

where the Infrastructural Services offered by a Node can be

accessed by other Nodes. The Communication Path and

Network are used to connect interrelated components in the

technology layer. The Artifact (also taken from UML 2.0)

represents a physical piece of information and can be

deployed to a Node.

ArchiMate’s technology architecture metamodel extract

is more detailed than the corresponding TOGAF extract,

namely by allowing to model the hardware platforms and

communication infrastructure. However, it is still too

generic and with more focus on describing the relationships

between layers than providing clear guidelines and rules on

how to model the various components of the technology

architecture. It is argued in the ArchiMate [8]specification

that modeling infrastructure components such as routers or

database servers would add a level of detail that is not useful

at the enterprise level of abstraction .

III. UML PROFILE FOR IT INFRASTRUCTURES

UML makes provisions for its own extension, by

allowing “customization” to a specific area or domain, with

a so-called UML Profile. The latter is a coherent collection

of UML extensions (stereotypes, tagged values, and

constraints) that allows refining the standard semantics in

strictly additive manner (i.e. without contradicting it). For

instance, a profile may use a stereotype to refine the concept

of Node.

Several UML profiles have been proposed in the

literature and some of them have been endorsed by the

OMG itself. Examples include a profile for aspect-oriented

software development [9], a profile for requirements

management of software and embedded systems [10], a

profile for business process modeling [11] and a profile for

modeling real-time embedded systems [12].

According to Frank Ulrich, the existing tools and

methods for IT management are not suitable because they

focus on issues such as hardware and operational metrics.

This author claims further that there is a gap between the

technical level and IT management. He points out that a

mitigating strategy to cope with the complexity of this task

461Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

would be providing adequate support for the analysis and

communication among the various stakeholders. He

corroborates our observation that existing approaches are

too generic, therefore not providing the required level of

detail and stresses that the lack of formality not only leads to

communication problems among stakeholders, but also

limits the use of automatic problem detection or validation

techniques in existing infrastructures [13].

Due to the aforementioned limitations of existing

modeling languages, we have developed an UML profile for

IT infrastructures. The decision for extending UML, instead

of developing a domain specific language (DSL) from

scratch, was based on the following rationale:

 There is a large community, both in industry and

academia, that understands and actually uses the UML

language;

 Extending UML allows reusing existing UML modeling

elements, with well-defined syntax and semantics;

 There are tools that support the development of UML

profiles.

A. ITI Profile Structure

Figure 7 presents a conceptual view of the ITI profile,

where the software and hardware layers are represented with

different colors.

Figure 7. Layered structure of the ITI profile

The ITI Software Layer (Yellow) has three packages: ITI

Hypervisor, ITI Operating System and ITI Software, while

the ITI Hardware layer (Blue) has four packages: ITI

Facilities, ITI Network, ITI Nodes and ITI Storage.

ITI Nodes

ITI Software

ITI Networks ITI Facilities ITI Storage

*

ITI Operating

Systems

ITI hypervisorss

Figure 8. ITI packages and their relationships

Figure 8 provides an overview of the ITI packages and

their relationships in the ITI profile. In the software layer

the package ITI Software models software platforms such as

antivirus, application servers, backup, collaboration servers,

database servers, directory, and email servers, among others.

These ITI platforms execute upon an ITI Operating System

such as Windows, Linux, AIX. The operating system may

be deployed directly on hardware or it can be deployed on

top of an ITI Hypervisor such as XEN, Hyper-v or

VmWare, that executes directly on the ITI Nodes hardware.

The package ITI Nodes is a very important one since it

contains the constructs used to model systems such as

servers and their components. The metaclass Host inherits

the properties of an UML2 Node and was created with a set

of stereotypes to allow the representation of physical and

virtual servers, mainframes or supercomputers. The

metaclass Device is similar to Host but is used to represent

other equipment such as phones, tablets, slates, laptops, or

PDAs. The Peripheral metaclass represents the components

that may be connected to a Host or Device and includes

monitors, keyboards, mice, printers or smartcard readers,

among others. A Port is a built-in component in a Host or

Device such as a host-based adapters or a network card.

ITI Nodes

«metaclass»

Host

«metaclass»
Peripheral

«metaclass»
Port

«metaclass»
Device

ITIisPartOf

ITIisPartOf

ITIContains

ITIContains

ITIConnects

ITI Storage

«metaclass»
Storage Component

«metaclass»
Storage Network

Device

«metaclass»
Storage Protocol

«metaclass»
Storage Model

ITIuses

ITIuses

ITIContains

ITIConnects

ITIConnects

Figure 9. ITI Nodes and ITI Storage

The package ITI Storage represents the multiple Storage

Components such as storage LUNs, storage arrays and

pools, storage controllers and they may be configured in

different Storage Models such as Storage Area Network

(SAN) or Network Access Storage (NAS). These storage

components are connected to Hosts and Devices trough

Storage Networks using fiber channel or Ethernet routers or

switches that use specific Storage Protocols such as ISCSI,

Fiber Channel or Fiber Channel over Ethernet (FCoE)

among other protocols. Both ITI Nodes and ITI Storage

packages and their relationships are represented in Figure 9.

462Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Hosts and Devices from the ITI Nodes package can be

interconnected by Network Devices available in the ITI

Network Package. Network Devices includes, among others,

devices such as access points, firewalls, hubs, routers and

switches. Those devices are used to create different Network

Zones such perimeter networks, intranets or extranets and

they communicate using a specific Network Protocol such

as frame relay or Ethernet. The Network Devices may be

configured in multiple Network Types such as LANs,

WANs or Wi-Fi. All aforementioned components reside in

the ITI Facilities package. Both packages are shown in

Figure 10.

ITI Networks

«metaclass»
Network Type

«metaclass»
Network Device

«metaclass»
Network Zone

«metaclass»
Network Protocol

ITIUses

ITIConnects

ITICreates
ITIUses

ITIUses

ITI Facilities

«metaclass»
Location

«metaclass»
OtherPhysicalComp

onent

ITIResidesOn

Figure 10. ITI Network and ITI Facilities

B. ITI Profile Metaclasses and Stereotypes

To connect multiple ITI components, we require ITI

connectors that extend the metaclass Association or the

metaclass Composition, as represented in Figure 11.

ITI Connectors

Figure 11. IT Infrastructure Connectors Package.

Besides these two connector metaclasses, we also

extended UML2 metaclasses elements such as Class,

Location, Boundary, Device and Node. An example is the

package ITI Facilities, composed by the metaclass Location

and the metaclass OtherPhysicalComponents. A location

can be the Headquarters, a Datacenter, a Branch Office, or

a Regional Office. OtherPhysicalComponents includes

Cables to connect hosts, Racks to attach servers, Power

supplies and Cooling systems. Both metaclasses and their

extending stereotypes can be seen in Figure 12.

ITI Facilities

«metaclass»

Location

«stereotype»

DataCenter

«stereotype»

BranchOffice

«stereotype»

Headquarter

«stereotype»

RegionalOffice

«metaclass»

OtherPhysicalComponent

«stereotype»

Cable

«stereotype»

Cooling

«stereotype»

Power

«stereotype»

Rack

Figure 12. Package Facilities

To allow expressing as much information as desired in

the ITI domain, we enriched each stereotype with additional

attributes (called "tagged values" in earlier UML versions).

The attributes chosen for each stereotype were based on our

field experience and inspired on the standard Common

Information Model (CIM) [14] created by the Distributed

Management Task Force (DMTF). The latter is a worldwide

initiative spearheaded by industry-leading technology

companies such as AMD, Broadcom Corporation, CA,

Cisco, Citrix Systems, EMC, Fujitsu, HP, Huawei, IBM,

Intel, Microsoft, NetApp, Oracle, RedHat, SunGard and

VMware.

CIM was created to provide a common approach to the

management of systems, networks, applications and services

and enable multiple vendors to exchange semantically rich

management information between systems throughout the

network. This paper only includes a subset of the

stereotypes. The complete set of stereotypes, tagged values

and constraints will be available as a technical report on the

QUASAR group website [15].

IV. DEPLOYING THE PROFILE

We have deployed the proposed ITI profile in a widely

used modeling tool: Sparx Systems’ Enterprise Architect

[16] that supports the definition of profiles.

Figure 13 represents an ITI model produced with our

deployed profile. This example provides a first evidence that

our proposal reduces the ambiguity in modeling ITIs, while

providing the recurrent ITI concepts used by ITI architects,

such as data centers, servers, network types such as

perimeter, intranet, extranet, firewalls, routers or switches.

The increased preciseness facilitated by the use of a formal

metamodel is rendered possible by specifying well-

formedness rules upon it using OCL clauses.

463Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 13. Simple ITI model using the proposed profile

V. CONCLUSION AND FUTURE WORK

This paper introduces a UML profile for modeling IT

infrastructures, covering constructs at all required

abstraction levels (hardware, middleware, network and

software). Since the full profile has many stereotypes and

each stereotype is described by means of several attributes,

only a subset of the profile could be presented here.

Nevertheless, we present some evidence that this profile

mitigates the problems identified while reviewing existing

approaches for modeling IT infrastructures:

i) The widely used ad-hoc approaches produce

ambiguous models, do not facilitate knowledge reuse and

cannot support validation approaches;

ii) The existing formal approaches for modeling ITIs,

such as UML Deployment Diagrams, TOGAF or ArchiMate,

do not provide the required abstractions and, probably due

to that, are not used in practice.

Several future research threads relate to the availability

of this profile:

ITI models capture – Organizations often have IT

service management tools (e.g., CMDB – Configuration

Management Data Base) that store information on the ITI

elements. Being able to import that information and

generate preliminary layouts is a major research concern.

ITI models scalability - Models of real-world

infrastructures, even in medium-sized companies, can easily

reach hundreds or even thousands of modeling elements,

especially when software components are considered. In

such a case, a model can easily be rendered useless due to

excessive detail. We plan to mitigate this problem by using

zooming facilities like those available in GIS.

Reuse ITI modeling best practices: We have proposed

elsewhere the concept of ITI patterns [17, 18]. The

availability of this profile will allow granting more

preciseness to the formalization of those patterns.

ACKNOWLEDGMENT

This work is partly supported by grant PEst-OE/EEI/UI0527/2011 of

Centro de Informática e Tecnologias da Informação (CITI/FCT/UNL).

REFERENCES

[1] A. Gunasekaran, H. J. Williams, and R. E. McGaughey, "Performance
measurement and costing system in new enterprise," Technovation,

vol. 25, pp. 523-533, 5// 2005.

[2] OGC, IT Infrastructure Library (ITIL) - Service Design (Version 3).
London: The Stationery Office, 2007.

[3] http://www.oracle11grelease2.com/services/infrastructure-velolux/.

[4] L. Ferreira da Silva, F. Brito e Abreu, and V. Moreira, "A UML Profile
for Modeling IT infrastructures," presented at the INFORUM’2012,

Caparica, Portugal, 2012.
[5] OMG, "Unified Modeling Language (UML) Specification:

Superstructure (version 2.3)," ed, 2010.

[6] OMG, "Unified Modeling Language (UML) Specification :
Infrastructure, version 2.3," 2010.

[7] A. Gerber, A. Van der Merwe, and P. Kotze, "Towards the

Formalisation of the TOGAF Content Metamodel using Ontologies,"
presented at the Proceedings of the 12th International Conference on

Enterprise Information Systems, Funchal, Madeira, Portugal, 2010.

[8] The Open Group, "Archimate 2.0 Specification," ed. Zaltbommel: Van
Haren Publishing, 2012.

[9] T. Aldawud, A. Bader, and T. Elra, "UML profile for aspect-oriented

software development," presented at the The Third International
Workshop on Aspect-Oriented Modeling, 2003.

[10] T. Arpinen, T. Hamalainen, and M. Hannikainen, "Meta-Model and

UML Profile for Requirements Management of Software and
Embedded Systems," EURASIP Journal on Embedded Systems, 2011.

[11] B. List and B. Korherr, "A UML 2 Profile for Business Process

Modelling," presented at the Perspectives in Conceptual Modeling (ER
2005 Workshop), Klagenfurt, Austria, 2005.

[12] OMG, "A UML Profile for MARTE: Modeling and Analysis of Real-

Time Embedded Systems," vol. ptc/2008-06-09, ed: Object
Management Group, 2008.

[13] U. Frank, D. Heise, H. Kattenstroth, D. Ferguson, E. Hadar, and M.

Waschke, "ITML: A Domain-Specific Modeling Language for
Supporting Business Driven IT Management," presented at the 9th

OOPSLA workshop on domain-specific modeling (DSM), Helsinki,

Finland, 2009.
[14] DMTF, "Common Information Model (CIM) Infrastructure,"

November 2007.

[15] http://ctp.di.fct.unl.pt/QUASAR (accessed in 5/9/2012).
[16] http://www.sparxsystems.com (accessed in 5/9/2012).

[17] L. Ferreira da Silva and F. Brito e Abreu, "Software distribution to

remote locations," presented at the Proceedings of the 15th European

Conference on Pattern Languages of Programs, Irsee, Germany, 2010.

[18] L. Ferreira da Silva and F. Brito e Abreu, "An IT Infrastructure

Patterns Approach to Improve IT Service Management Quality,"
presented at the 7th International Conference on the Quality of

Information and Communications Technology (QUATIC'2010), Porto,

Portugal, 2010.

464Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://www.oracle11grelease2.com/services/infrastructure-velolux/
http://ctp.di.fct.unl.pt/QUASAR
http://www.sparxsystems.com/

