ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Towards Better Comparability of Software Retrieval Approaches
Through a Standard Collection of Reusable Artifacts

Oliver Hummel, Werner Janijic
Software Engineering Group
University of Mannheim
Mannheim, Germany
{oliver, werner}@informatik.uni-mannheim.de

Abstract — The idea of component-based software reuse as a software reuse, sufficiently sophisticated softweeieval

cornerstone of a more engineering-like approach tsoftware
development has been around for more than four decks.
Since software and its building blocks represent aimportant

and valuable intellectual asset for most companiesesearchers
have been struggling for nearly the same time to geheir

hands on a substantial amount of reusable materigb experi-
ment with. Only the advent of the open source moveemt miti-

gated this problem considerably and hence inspirehteresting

new research in this area within the last decade. d¢Wwever,
basically all novel software retrieval solutions ofthat period

have been developed and evaluated independently fmoeach
other and are thus by no means comparable with on@nother.

To address this flaw, an initiative was started tofoster the
creation of a reference reuse collection for softwa search and
retrieval, which is intended as a common baselineof future

comparison of software retrieval systems. In this aper we
explain the motivation for this initiative, identify and discuss
important foundations as well as open issues and @sent an
initial sketch of architecture, content and practi@al prere-

quisites of such a collection.

Keywor ds-component-based software development; software
reuse; software search; software retrieval; reference collection.

l. INTRODUCTION
Despite the immense benefits that are attributethéo

approaches and tools are necessary. Especially etisgimg
material was not initially intended for reuse (asthie case
with most open source software today), this willlyon
become accepted if developers are able to find saodss
useful components quick and easy. Consequenths thi
change of prerequisites has not only triggeredvawave of
interesting academic research to better deal vegiich and
retrieval of software artifacts (e.g. [10], [11L2]), but has
also created a new interest of commercial seargfines
(such as Koders, Krugle or formerly Google Coded®an
searching for source code and software. Although al
approaches available today are certainly imporaot have
brought a new momentum to the community, they sbhage
significant problem: to date, their evaluationsexisting at
all, are largely based on different and/or proprigtdatasets
and thus it is impossible to objectively compareirth
performance on a common basis. Since even researate
not able to assess the existing solutions and terstand
their strengths and limitations, it is no surprisat software
search and component reuse are still not widelytadoin
industrial practice.

Interestingly, this evaluation challenge is notiled to
component reuse alone; it is rather a problem lhatbeen
plaguing computer science (and especially softwergi-
neering) for a while. As observed by Tichy [13]mquuter

reuse of software [1] and a large number of seminaicientists perform relatively little evaluations dheir

approaches (such as by Zaremski and Wing [2],984 e.g.
Mili et al. [4] for a comprehensive overview) demeéd in
recent decades, Douglas Mcllroy’s initial idea efting up
market places with reusable components [5], [@l] lstis not
lived up to its full potential [7]. Neverthelessyen today’s
exploding amount of potentially reusable (open seur
software, freely available on the Internet, the chder
effective software search and retrieval solutiomet-only as
an enabling factor for reuse — is more apparemnt thzer:
open source repositories such as Sourceforge ate¢ndens
of thousands of software projects with millions asfifacts
and even the version control systems of larger cones
contain more files than a human can ever overlook.
Consequently, the so-called reuse repository pnotj&}
of not having enough material to fill repositoresd market
places with reusable components is no longer areisgce

the Internet and the World Wide Web can be used as

source for harvesting reusable material [9]. Howewe
order to use this “megastore” of information fostgmatic

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

approaches so that the experimental paradigm issetell
established in our world as, for example in medicior
physics. In other words, computer scientists ofteus too
much on the development of new approaches andittto |
on their systematic evaluation, which makes it hirdot
impossible to judge whether a new approach isyrdmdtter
than the previous ones. Certainly, the developménmtew
approaches is important, but nevertheless, repea¢afalu-
ations of new developments are at least as impdidagood
research, as e.g. stressed by Basili [14] abouttiwgears
ago: “Proposing a model or building a tool is not enough
There must be some way of validating that the modaiol
is an advance over current models or tool#i. order to
overcome this unsatisfying situation in the areaaffware
search and retrieval, the creation of a referentleation of
reusable artifacts was proposed recently [15]. Tian
motivation for this effort is to simplify the comgson of
software retrieval systems. Furthermore,
experienced in the text retrieval community suaolection

450

as already

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

will offer a good starting point for the developref new
and innovative tools as it freely provides the daaessary
for initial experiments [16].

The remainder of this paper, discussing motivatiod
early experience from setting up such a collectia,
organized as follows: First, we introduce the faatimhs of
retrieval techniques and their evaluation, whickefpuired to
better understand the contribution of this papertae usage
scenarios in which the proposed reference colleaten be
used (Section 2). Subsequently, we briefly survegtiag
tool evaluations and identify their common weaknbés$ore
we shed some light on reference collections frotated
areas and how their ideas can be transferred taraard
collection of reusable components (Section 3). iSect
introduces our approach for tackling this challeagd gives
an example supposed to illustrate the usability tho
approach before we conclude our paper in Section 5.

Il. FOUNDATIONS

The origins of software search and retrieval caarty
be seen in “classic” text information retrieval [4ind
therefore most early approaches for the former Igimp
applied techniques from document retrieval to safew
artifacts (cf. [17]). Software retrieval, however potentially
a far more complex undertaking than pure texterettli since
software does not only contain
information, but syntax and functional semanticswa|.
Zaremski and Wing were amongst the first reseasctiet
elaborated on signature [2] and semantics spetditd3]
matching as a way of identifying reuse candidaieaut ten
years ago, Mili et al. [4] have presented a welhwn survey
that identifies five general groups of techniquegliaable
for the retrieval of software artifacts, namely —

Information retrieval methods
Descriptive methods
Operational semantics methods
Denotational semantics methods
Structural methods

agrwnhE

The original listing contains a sixth group, caltegological
approaches, which from today’s point of view isheat an
approach for the ranking of search results thaetaewval
approach itself so that we have left it out in émeimeration.
It obviously makes sense to reuse methods frontrirdtion
retrieval to perform simple textual analyses ontvgafe
assets. Descriptive methods go one step furtheremare
additional textual descriptions of the asset likeset of
keyword or facet [18] definitions. Operational sertia
methods rely on the execution or so-called samili®g of
the assets. Denotational semantics methods usatsiga
(see e.g., [2]) or specifications [3] of artifaéte matching,
while structural methods do not deal with the coflehe
assets directly, but with program patterns or desi@verlap
between these classifications can occur at varjgases,
e.g., between (3), (4) and (5) as “behaviour sargpli19] of
components typically needs a specific signatusedik on.
Based on the numerous results that had been pedsient
the late 1990s some researchers were even conwimaiithe

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

most important software retrieval challenges haveady
been solved [20]. Existing prototypes were abledal with
the artifact collections available at that time ilgas
(containing, however, often merely a few dozen eleis).
On the contrary, other researchers were convincatithe
existing techniques would not be precise and usabeigh
when the amount of reusable material grows largégr [
which has been commonly seen as a required conditio
successful marketplaces with reusable artifactsTé latter
assumption has at least preliminary been prover abnost
ten years later when initial experiments [9] witintérnet-
scale” software collections have shown that thegesaf
merely one of the above mentioned retrieval teakesqis
usually not precise enough to deliver practicallyahle
results. These experiments showed, e.g., thatrdwspn of
signature matching quickly drops to under one perde
collections with millions of artifacts. Consequemnih recent
years, there has been an increasing interest imoirmy
software retrieval approaches that led to a numbfer
interesting approaches (as well as a number of-prigfile
publications [10], [11], [21]). Although their doewentations
include reasonable evaluations that demonstrate
prototypical applicability of the underlying appobes, it is
impossible to compare them with each other as thexe
developed independently and evaluated with totdifferent

the

linguistic semanticmethods and test collections. Even worse, the elenysed

to experiment with the prototypes are usually nabligly
available and hence it is extremely difficult tod@e the
actual effectiveness of the evaluations and bdgical
impossible to replicate the experiments performed.

Due to the conceptual proximity to information ietal
it is no surprise that common evaluation technigfrem
classic information retrieval are widely appliedli® context
of software retrieval. The two most prominent measuo
assess the quality of retrieval systems are Pogcisimea-
suring the fraction of relevant resultd, amongst all
delivered result®) and RecalRe (the fraction of delivered
relevant result®, amongst all relevant resuls:

|D, N D|

P(D,, D)= "———
Dl

|D, N D|

Re(Dy,R) = ———
R

Further well-known but not so commonly used measure
include Fallout (the fraction of non-relevant do@nts that
is retrieved from all non-relevant documents) ahd F1
measure (the weighted harmonic mean calculated from
Precision and Recall) [16].

Recall is typically more important on small coliects or
on large collections with very specialized que(igbere one
assumes to have only few useful results per querkjle
Precision becomes more important on large collestiwith
potentially numerous results. In this context, al tshould
clearly minimize the amount of false positives sinc
delivering only few relevant results amongst thowtsaof
irrelevant candidates will not only result in a pgoecision,
but also in a low user satisfaction. It is obvidhbat such a

451

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

behavior is not tolerable in the area of softwanese where
a careful assessment, selection and integratiopot#ntial
reuse candidates may demand significant effort frbmm
developer. Hence, a thorough assessment of a vadtrie
system typically requires the combination of atstetwo
measures, since otherwise a system can be optirfftizehe
and may fail in practice. The common approach tohioe
e.g., Recall and Precision in such evaluationsrsugh so-
called Recall/Precision curves [16] in which a argrea
under the curve indicates a well performing retilesystem.
If other practical aspects are of interest otheasuees can
be derived as well, including the search executime of a
query, for example.

A. Assessing Software Retrieval Tools

effort from a developer in order to finally detemaiwhether

it provides the desired functionality and is usalrethe
environment at hand. We believe, the ultimatéevance
criterion for determining the reusability of a component and
solving the make or buy dilemma [25] in favor ofy{ueuse)

is clearly the question whether a reusable artifaot be
integrated into a system under development “ad.&s’;, with
virtually “zero effort” and deliver the requiredrfationality.

To our knowledge, however, this relevance critetias
rarely been consequently defined in the literaggodar and
thus, most previous evaluations have been relymg &ind
of surrogate, namely the so-callethtching conditionthat
simply determines whether a search engine considers
document as relevant or not. Obviously, this dazsreveal
much useful information about the reusability of a

Although this general approach for the evaluatidn ocomponent in a given context.

software retrieval tools is undisputed, one aspiet
complicates the evaluation is the challenge ofniledi the
actual relevance of a reusable artifact. While reit@ing the
relevance of natural language documents is pretajght-
forward for a human (e.g., does a document tell fow
high Mount Everest is or not?), this task is muabrenchal-
lenging for software artifacts. As discussed beftre latter
typically have three facets that can be used foieréng
them, namely linguistic information, the syntax thieir
interfaces and their semantics, i.e. their concretec-
tionality. As already observed by Mili et al. [4he evalu-
ation of software retrieval tools and algorithmgased with
a serious problem when it needs to find a gooéroi that
determines the practical relevance of a deliveresult.

B. Usage Scenarios

Software development is a continuous and complex pr
cess that can benefit from software search at wsrio
occasions, which makes it important to identify aadear
in mind which usage scenarios exist for softwareieal
tools within the software development lifecycle.v@lsly,
the process of “reusing” an artifact as an insgratiuring
the design or implementation phase of a softwastesy is
totally different to the actual reuse of a concretenponent
that needs to adhere to a given specification. &Vhiktake-
holder may be satisfied with relatively “blurry” swts for
the former, the latter requires a perfect matctoiider to
make reuse more worthwhile than building the conapbn

Usually none of the three facets mentioned befare ifrom scratch, as explained before. Figure 1, tkem our

sufficient to achieve this on its own, as, e.gxt &xtracted
from a component not necessarily describes itstimality
in a precise and unambiguous manner; and even if
component with matching functionality has been thua
wrong interface might make its integration into &eg
environment hard or even impossible. In other woras
reusable component delivered by a state of theddrvare
search engine might still require a significant amtoof

earlier work [22], summarizes various archetypahges
scenarios for software retrieval systems and iflestithe
development activities where they are likely tonhest use-
ful. We used different shapes of lines, to illusrdistinction
between morespeculative (dashed) andiefinitive (solid)

searches. The most important usages scenarios totitext
of this paper are additionally highlighted in boygeface.

Software Life Cycle

Library identification

Open Source Lookup

Defect information

ArChetypeS Analysis Design Implementation Testing Deployment Maintenance
Code Inspiration
Design Prompter
Snippet reuse
Component reuse *
Library reuse * """"""""""" * """""
Search-Enhanced Testing
Test case reuse ’""'"% """"""" " '—°

i

Impact analysis

Program understanding

Figure 1. Overview of software retrieval usage scenariostheit possible times of application in the softwdexelopment life cycle.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

452

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The motivation for definitive searches is alway® th of this paper and our initial work for a referermmdlection is

concrete need for a specific artifact; let it beemsable
component described by a specification or a miskbrgry
that is required to overcome Java’'s infamous ClatsN
FoundException. Both require a search engine tivetehs
exact matches as possible and even near missessty
not perceived helpful by the user, since they déenoonly
be integrated with a substantial amount of modificg if
they can be integrated at all. On the other hanerevepecu-
lative searches are driven more by general infdomateed,
it is usually of interest whether any componensenvice is
available for a given task at all. The exact shapdhe
desired artifact is typically not important in tieentext of
such a speculative search, since the design aighkcation
it should be integrated into is still moldable [28jue to a
lack of space, we have to refer the interestederetal the
original publication for more details on this topibe focus

on definitive searches used for the retrieval ofi-gefined
reusable components.

1. SOFTWARERETRIEVAL EVALUATIONS SO FAR

As indicated in the introduction, most software seu
approaches that have been published so far corgain
reasonable evaluation that demonstrates theirbiéigsiand
leaves the interested reader at least with an afetheir
potential and of potential problems. However, asloa seen
in Table 1, that summarizes some of the best knmuse
tools of the last 20 years, most of these evalnatif.e.,
those that were performed on a component colleatiith
more than just a few hundred elements) were incetapl
from the perspective of classic information retalesas they
usually only calculated some kind of “top n Premisi

TABLE I. OVERVIEW OF EVALUATIONS OF PREVIOUS COMPONENT REUSEYSTEMS
Tool No. of | Content Input Relevanct Measures
Art efacts Criterion
Proteu: [17] ~10C | Unix command Keyworc-baser | Expert judgemer Precision, Recal
search tim
CodeBrokel [28] ~70C | Java Class! Signature anc Expert opinion Precision, Rece
keyword:
Spars [1(] ~180,00(| Java Source Clas: | Keyword: Expert opinion Top n Precisio
Maracati [[29]] ~4,00C | Java Source Clas: | Keywords, Expert’s opinion (base | Precision, Reca
facets on text matching) (only for subset of
200 artefacts)
Merobas [11] ~4 M | Java Source Class | Test Case Passing of test cas Top n Precisio
Sourcere[12] ~ 250,001 | Java Source Clas: | Keyword: Expert judgemet Hits per resul
page

This kind of “crippled” precision measure is tydiga
used for search engines that operate on very taiigctions
where it is not feasible to determine the relevaotall
(potentially thousands of) results that may berretd for a
query. Instead, human experts revise only the, €8@.
highest ranked results (n = 20) for their relevarteather
results and the Recall (for which knowledge ofralbvant
elements in a collection is required) are simplyoigd. This
procedure is usually justified by the habit of humeers of
internet-scale (commercial) search engines thatdilp do
not consider more than roughly the first 20 resitmwvever,
for a scientific comparison of search engines thss
obviously neither sufficient nor satisfying, es@dlgi in the
area of software retrieval where both, high predisand
high recall are essential as explained before.

A. Reference Collections so far

Tool evaluations in computing are often challengiag
they typically require expensive empirical inveatigns to
demonstrate that a tool is better than other teoklable
before [14]. However, software engineering is delyanot
the only discipline in computer science that hadeal with
somewhat fuzzy requirements to its tools. Therefibre idea
of creating reference collections that allow benatking of
tools is certainly not new. Take, for example, tBeemens

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Testing Suite” [30], a popular collection of progrs con-
taining known errors, which was widely used duritng
1990s to evaluate the effectiveness of test casbteat case
creation strategies. More specifically, the chajkenof
evaluating retrieval approaches is clearly knowrrelated
disciplines as well. First and foremost, it is agly the
information retrieval (IR) community [16] that fodritself in
trouble how to evaluate their emerging text retlev
algorithms some twenty years ago. At that timedheere a
lot of new and exiting ideas as well as prototypesund in
this community, but the proprietary (and often very
expensive) evaluations performed on them indiviguakre
usually not very helpful and especially not compsrawith
each other. Fortunately, the IR community was dabhle
overcome this challenge by defining so-called exiee
collections comprising a large set of documentsjtestantial
number of tasks for retrieval systems and the drpec
solutions for them. The most prominent one is pbbbthe
Text REtrieval Collection (TREC) [16] that has been
considered as a major success fostering IR ressarch its
creation tremendously. Although TREC as a text-thase
collection is not of direct use for the retrievdl software
artifacts, it can still be used to learn about sobasic
principles how to define and built such a referemot
lection. Furthermore, in the long term, the resgésed with

453

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

it might also be helpful by giving some insightsteuristics
that can help to improve text-based retrieval aflgors for
software retrieval tools with techniques such assting or
the use of thesauri [16].

are supposed to deliver all services that can dmdtely)
helpful for a query; the actual syntax of a serviceurrently
not taken into account. In other words, a defimitimatch
between query and result is highly unlikely in tbalection

A second group that has been struggling with theand a composition of various results may be redquime

comparability of its tools is the rather young coumity
trying to match and orchestrate (semantic) webigesy As
it is dealing with executable artifacts as wellisitobviously
more closely related to the retrieval of softwapenponents
than pure text retrieval. Given the enormous amaait
money that for instance was recently spent by the@ean
union (Kister and Kdnig [24] talk about 70 milli&@uros) to
support the research on semantic web services, ribi a
surprise that especially European researchers cgmeith
the idea of setting up a reference collection ohaetic
services to evaluate matching tools and have beemgl
this idea ever since. The so-called S3 (for Sern&rvice
Selection) collection is the initial result of teesndeavors.
The current version of S3 contains 1.083 semaiytiadth
38 ontologies) annotated web services and a 2 qfieries
for them. Various participants of the S3 contesid eelated
workshops have manually identified services
collection they considered relevant for each qureigrder to
create a set of relevant answers. To our knowledgether
with the OPPOSUM portal [24] (that subsumes S3afev
significantly smaller collections) it forms the gribaseline
that allows systematic comparison of (ontology-dase
software retrieval algorithms so far. To our knadge, there
exists no similar undertaking for a specific refexe
collection in the reuse area for the time being.

Limitations of Web Service Reference Collections
However, although this can also be seen as adfieft
towards a better evaluation of software retrievgbathms,
its applicability in the context of software reuds
questionable for a number of reasons. First arehiost, the
introduction of a graded relevance scheme andédhision
of the relevant results in the 2010 version of 88 col-
lection changed the perception of relevance coraldle and
it seems that there is still a large degree of extibje
judgment that influences the understanding of eelee
here. Thus, the risk that even this sophisticatatbation
does not contain a clear notion of relevance, ademeanded
it for the evaluation of software reuse tools, ighh Second,
most of the existing software retrieval and reuyggr@aches
operate on source code, which is by definition anatilable
from web services, while vice versa, source cocdlable in
open source repositories is usually not annotatitd any
kind of ontological information. Moreover, the sipé the
existing S3 collection is still rather limited (cpared with
current software reuse collections as introducedahle 1)
and the chance of substantially increasing it selews as
the definition of relevant results and the annotatdf the
indexed services with ontological information isfoef
manual activity. Given the size of state of the r@tse
collections that already goes into the millionssinot clear
whether the results obtained from such a smalkctitin can
be scaled up to internet-scale search engineslhyirnlae
current S3 collection is focused on speculativeches that

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

in the

create a service that is finally able to satisficancrete
request.

B. Requirements for a Reuse Reference Collection

Kuster and Konig [24] identified a number of deklea
characteristics for a semantic web service cobecin their
publication and obviously it makes sense to retfigtr work
as a starting point for a reference collection $oftware
reuse. In total they list the following five majooints:

1. Expressivity & Usability: contained elements need t
be described as precisely as possible in ordevdia a
room for interpretation of the results.

2. Scope: the collection should comprise elements from

as many different domains as possible in order to

maintain a high diversity and to allow making
statements, which approaches work under which
circumstances.

Scalability & Size: since large testbeds are remglito

properly evaluate retrieval approaches, the cadlect

must be kept scalable.

Automation: obviously, the use of the collection

should be automated as much as possible.

5. Decoupling: as many people as possible should
contribute to the endeavor in order to avoid
unintended bias in the collection.

w

e

In general we can accept this list of requiremeass
helpful for a reuse reference collection as wellhaugh
requirements 1) and 3) are clearly contradictincheazther in
the context of a very large collection. This facakes a
precise relevance criterion even more importanabge it is
not possible to manually investigate millions dfifacts for
their relevance. But nevertheless, it is importanpreserve
as much information as possible when content fa& th
collection is harvested, as different usage scesafor
software search engines may require slightly diffier
information to evaluate the retrieval algorithms.

Special Requirements in the context of Componemsd?

As discussed before, the main motivation for the afa
component collection from a reuse point of viewoidind a
concrete artifact that definitively fills an existji gap.
Besides other factors, it has been mentioned numdnmes
in the literature [25] that a reusable componenstrbe large
enough so that reusing it is cheaper and easier skH-
implementing it (often called the “make or buy démn”).
Otherwise the incentive for a developer to reuszbigously
low. While a component was initially seen as fumttby
Mclllroy [5] in his seminal reuse paper, the gramity of
components has continuously been growing since #meh
today a component is typically seen as an indeplyde
deployable part of a system [6], comprising numerou
classes (if developed in an object-oriented languaghind

454

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

a well-defined interface. At the same time, redeanas certainly a matter of weeks if not months: Irvinetdlection
started to investigate automated adaptation [26] ofomprises about 500,000 java source files from hmbug
components and automated orchestration [24] ofaflysu 13,000 open source projects, while our collectionststs of
semantically annotated) services or in other worlgn- about 3 million java files harvested from nearlyID open
mated “glue coding”. As the use of clever glue ogdis source projects. To our knowledge these two packémyen
likely to increase the haul of matching compondrasn a the largest body of open source software freelyilabla
collection (and thus to influence the number ofevaht today. Given its large size, it is likely that itlwnot only be
components) in the future, we believe it makes eseies facilitating experiments for software reuse, butrelated
consider the following three categories of automhagée areas (such as the community organizing the Mining
coding when competing search engines are to beateal in Software Repositories conference) as well.

the context of a reuse reference collection: .
B. Queries

1. No glue coding at all: only direct matches are As briefly mentioned before, we plan to start theation
allowed, no changes beyond simple path and packag¥ queries for the reference collection based utentest
configurations can be made to reuse candidates. ~ cases we created as input for evaluating our eaviiek [8]

2. Adaptational glue coding: adapters [27] that wrap &0 Which we have to refer the reader for furtheaitie due to
single component in a 1:1 fashion (or change thenthe limited space of this paper. To our knowledgst cases
internally) are allowed. are currently the best available technique thabweall

3. Compositional glue coding: the 1:n orchestration offormulating a semantically precise and automaicall
multiple sub-components behind a newly createdcheckable specification for reusable software camepts. A
interface in the sense of the facade pattern [87] ifurther advantage of test cases is that they cailyebe

allowed. “translated” into input for other retrieval apprbas as well.
Consider the following simple JUnit test case thsit
IV. PROPOSEDAPPROACH supposed to test an equally simple Stack datatstaic
The two most important “ingredients” for a reuse blic cl St ackTest extends Test Ca
reference collection are certainly a large coltectiof P 'gugl e gctegfgiﬁk?;‘f estGase {
reusable material and a large enough collectiotabfeast Stack s = new Stack();
some) non-trivial queries that can be used to ehgh assert True(s. i sEnpty());
search engines and is not under the suspicioninf teased s Pﬂzm § %J. ect g ; %J. ect %g f
for a particular engine. Moreover, a good way dédeining s Eush((Cb} ect) " Ob} ect3")
the relevance of retrieved candidates needs toohadf assertFal se(s.isEnpty());
Since we have already faced this challenge durimg t asser:Equa: SéS-p0p8, Egj ec:g::gi ec: g:g;

; ; " assert Equal s(s. pop(), j ec j ec ;
evaluatlon. of our Merobese search engine [11], aliebe a assert Equal (s, pop(). (Cbj ect) " Cbj ect 1)
good starting point for this is the collection et cases (e.g., assert True(s. i sEnpty());
written in JUnit) that can be used to doubtlessidge }
whether a delivered result is relevant or not. llgea search }

engine would directly support the use of such teses for
automating this assessment, as Merobase doessdompie.
The technique behind such a feature is known in th
literature as test-driven reuse [11] [21]. Thedwling two
subsections go into more detail on this before resent the
results of an exemplary query that demonstrateprifitical
usability of our approach and conclude this sectigthh a
brief discussion of our preliminary findings.

From this piece of code it is, for example, possitd
gxtract keywords (such as stack, push, pop, isEngstshe
complete interface of a stack required to satisfy test case
without much ado. Moreover, even the extraction aof
simplified description of the Stack’s behavior antained in
this test case. In addition to the above menticsetcof test
cases we are aware of two other recent publicatimtsused
test cases (or at least test data) for a similapqae and
A. Data Sets contain further evaluation challenges (cf. [21] 8]). We

In the context of the ICSE workshop on Search-arive have recently made all test cases that have beehfostest-
development: Users, Infrastructure, Tools and Eatwn driven reuse available as JUnit test cases vidteestg as
(SUITE) in 2010 a working group was formed with gl ar)other pillar for the reference reuse collectlesouilbed in
to evaluate the feasibility of creating a reuseemmice thiS paper. Since all three approaches are cuyrentla

collection. As a result, the groups of Christinakp at the Prototypical stage, there is no precision recalblysis
University of California in Irvine and our group #he available. Nevertheless, a sufficient quality of tlest cases

University Mannheim have agreed to make the cadast guarantees that retrieved candidates are ablelied¢he

forming the backbone of the software search enginegesired functionality. Reusable components that ehav
Sourcerer ([12], http://sourcerer.ics.uci.edu) eesipely actually been retrieved beyond simple data strastsuch as

Merobase ([11], http:/merobase.com) available hen\Web stacks or binary trees, include a validator forditreard
so that they can be downloaded via http:/resuie.o numbers, spreadsheet calculation and Blackjackc,logi

Currently, several hundred gigabytes of data awilable comprehensive overview can be found in the mentione
there and hence processing and indexing thesectolie is ~ Publications ([11], [12], [21]).

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 455

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

C. Examplary Results

Based on the test case we just introduced, weedaot
an exemplary analysis of various retrieval techesyun
order to show the expressivity improvement that were
able to achieve in comparison to the simple top@gision
determination used in earlier evaluations [11]pé&tticular,

100,00%
90,00%
80,00%
70,00%
60,00%

50,00%

Precision

40,00%

30,00%

20,00%

10,00%

0,00%
0,00%

we analyzed interface-based (only classes with tickn
interfaces, i.e. all names, parameter and retysastyhad to
match), name-based (only names of classes and dsetizal
to match) and signature-based (only the paramatereturn
types had to match, names were ignored [2]) seartdre
their Recall and Precision as shown in the follanfigure:

10,00% 20,00% 30,00% 40,00%

Recall
e— Name-Based Keyw ord-Based s |nterface-Based

Figure 2: Recall/Precision curve of different retal algorithms for the Stack test case from above.

In total, the signature required by the above teste
yielded a pool of 454,541 classes from the Merobas
collection that at least contained the three megigdatures

Q. Discussion and Forthcoming Steps
The approach we have just described already forms a

defined and thus theoretically had the potential Heing
usable as stacks. In practice, only a small fractibthem —
namely 163 — have been successfully tested andededi
this functionality with the current version of diesting tool
(supporting adaptation and
resolution, but no composition). Thus, 163 was used
calculate Recall and Precision. As visible in Feg@, the
relatively simple retrieval algorithms used for sthi
experiment suffer from either a low recall or a Iprecision
as summarized in the subsequent table.

TABLE II. COMPARISON OFRETRIEVAL ALGORITHMS.

Name Interface Signature | Keyword
Max. Recall 8.0 % 559 100 %o 28.2 %
Precision at 50.0 474 % <0.1% 5.89
max. Reca %
No. 13/36 9/19 163/ 46/ 3,000
Relevant / 454,541
Candidate

Copyright (c) IARIA, 2012.

ISBN: 978-1-61208-230-1

useful core for a reference collection of reusadntifacts.
Our preliminary results indicate that an evaluati@sed on
such a collection with results known as relevarfeasible
for internet-scale software repositories as wetl delivers

rudimentary dependencgignificantly better results than the top n premisi usually

calculated for such repositories. However, as lasgonly
one tool with potentially imperfect adaptation teen used
to identify the relevant results for a query, ihist sure that
all relevant results have actually been discovefzdly a
combination of various tools and approaches canagtee a
(nearly) perfect coverage of relevant results &g treate a
valid baseline for the calculation of Recall andd#sion.
Therefore, one central prerequisite for the creatba
viable reference collection is to have a large barfy
researchers and working groups contributing thizas and
tools. We would like to invite the community to deage,
discuss and extend the requirements and the cermérhe
collection in its current state. Although contagetjuests via
email are always welcome, we believe it makes sense
discuss the further proceeding personally with asnym

456

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

people as possible and hence plan to organize lstvgp on

this topic soon. Another important future stephis treation
of a web portal (similar to the one described byst€i and

Kdnig [24] for semantic web services) that offeasyaccess
to data sets and queries.

E. Open Questions

Compared with a simple text reference collectioeen
a web service collection, a generic reuse collacisofaced
with a number of additional questions we brieflyedeto
mention at this occasion.

suspicion. Moreover, the idea is that a future emibn is
extensible so that everyone interested is ablentribute his
own material to it.

V. CONCLUSION AND FUTURE WORK

Component-based software reuse is by ho means a new
concept and as widely demonstrated in the liteeatar
sophisticated software retrieval tool is an essémililding
block to make reuse work. However, despite decaifes
intensive research and the significant progress emiad
software retrieval in recent years, it is still hao compare

Although web service descriptions are by definitioneyisting reuse approaches, as there exists no corteatbed
programming language independent, the elements of @ this purpose. As we have discussed in this papeent

collection of reusable components, however, cacrbated
in any arbitrary programming language. In otherdsotheir
evaluation would require support for test-driveruse in
each of these languages. For the time being onlgeth
different prototypes of a test-driven reuse sysitetne Java
programming language exist. Clearly, it makes sdosset
up similar collections for other languages in ortteistudy
whether a different language will affect the perfance of
retrieval algorithms in any way.

efforts to set up a semantic web service refereotlection
are certainly a step in the right direction, howesgince the
prerequisites and goals of this community are diffe to
those of the component reuse community, it is ehjikhat
results gained with this collection can be transfirto
software component retrieval.

Thus, we have proposed to create a reference totlec
with reusable components based upon two recenbijghed
collections of files from more than 50,000 open rseu

Another issue closely related with the programmingyrgjects. Our proposal includes creating definitjueries for

language is the question whether an artifact ispilaivle
and executable at all. Often source files have ridgecies
on other source files and will not be testable witheither
complex dependency resolution algorithms as auailab
the Eclipse framework and used by e.g., Code Jé&Rgieor
without the complete metadata (build path, etc.)tlod
original project. Since most software search ergitoelay
still focus on individual classes (cf. table 1) vedy on the
simple dependency resolution mechanisms contaimexiii
tool right now and bear in mind that they are netfect.
Hence, it is likely that other tools might discoatditional
relevant results in the future through the use efteb
dependency resolution. However, a similar progoessif
relevant results has been observed during theianeat the
TREC collection, so that this is perfectly accefgtab

The TREC collection has another advantage over
software reference collection, namely the one tiets that
are once written (such as newspaper or researatieg)t
typically are not changed later. However, in thategt of
software retrieval it is very likely that the profe forming
the collection will be updated over time and herhke
question arises whether and how updates can bermexd.
Updating the collection itself is essentially natical as it
just calls for replacing, adding or removing filése actual
challenge is to identify all results that may hawscome
relevant or irrelevant after such an update.

A final issue to deal with is the question how &xide
what makes a component or project elevated enoagh
become part of a reference collection? We are ashre
that one may allege a certain bias for elementsded e.g.,
in our Merobase collection so far. However, we éadi that
the sheer size of about 3 million Java source fiealready
large enough to mitigate such allegations. Furtloeemit
only contains open source projects harvested fropular
open source hosters (such as SourceForge) and
specifically tailored projects that would hardenisth

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

concrete reusable artifacts in the form of tesesdbat can
be used to determine free of doubt whether a delive
candidate will be usable in a given context spedifby the
test case. Such test cases may be seen as a hatsér
relevance criterion for reusable software compaehtit
ultimately they are the only way to establish thieeks for
purpose of a component and in our understandirsgighthe
only way to lower the threshold currently still Haring
systematic reuse in practice. Moreover, we defitlege
classes of adaptation approaches that may be ostassify
the contestants that should be compared with aereus
reference collection.

Such a collection will not only be applicable for
comparing existing tools with full Recall / Preoisicurves,
it is also likely that it will simplify the creatioof and initial
8xperimentation with other innovative tools in thaure.
Furthermore, there is a high chance that the datavall be
useful for other communities (such as the oneithatining
software repositories, for example) as well andcbewe
invite researchers from all related areas to doute to the
efforts in setting up this collection as well.

REFERENCES

Krueger, C.W.: Software Reuse, ACM Computing Susyey

Vol. 24, Iss. 2, 1992.

[2] Zaremski, A.M. and Wing, J.M.: Signature Matchi#gTool
for Using Software Libraries. ACM Transactions asft®are

t Engineering and Methodology, Vol. 4, Iss. 2, 1995.

[3] Zaremski, A.M and Wing, J.M.: Specification Matcgimf
Software Components, ACM Transactions on Software
Engineering and Methodology, Vol. 6, No. 4, 1997.

[4] Mili, A., Mili, R., and Mittermeir, R.: A Survey oSoftware

Reuse Libraries. Annals of Software Engineerinyg®8.

Mcllroy, D.: Mass-Produced Software Componentsh&afe

Engineering: Report of a Conference sponsored @yNTO

Science Committee, Garmisch, Germany, 1969.

(1]

457

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

(6]
(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

(18]

[16]

[17]

(18]

Szyperski, C.: Component Software, 2nd Edition, i&dd- [19] Podgurski, A. and Pierce, L.: Retrieving Reusakiév@are
Wesley, Amsterdam, 2002. by Sampling Behavior, ACM Transactions on Software
Ravichandran, T. and Rothenberger, A.: Softwareseeu Engineering and Methodology, Vol. 2, Iss. 3, 1993.
strategies and component markets. In Communicatibtise [20] Poulin, J.: Reuse: Been There, Done That. Commfitheo

ACM, 46, 8, 2003. ACM, Vol. 42, Iss. 5, 1999.

Hummel, O.: Semantic Component Retrieval in Sofewar [21] Reiss, S.P.: Semantics-based Code Search. Int.. @onf
Engineering, PhD Dissertation, University of Maninme Software Engineering, 2009.

Germany, 2008. [22] Janjic, W., Hummel, O., and Atkinson, C.: More Aetypal

Hummel, O. and Atkinson, C.: Using the Web as asReu Usage Scenarios for Software Search Engines. Intkstop

Repository. In: Morisio, M. (ed.) Proceedings ofeth on Search-Driven Development, SUITE 2010.

International Conference on Software Reuse, LNCS940 [23] Crnkovic, ., Chaudron, M., and Larsson, S.. Congnn
Springer, Heidelberg, 2006. based Development Process and Component Lifedyote,
Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto,, T. of the Intern. Conf. on Software Engineering Adves)2006.

Matsushita, M., and Kusumoto, S.: Ranking Signfi@ of __ 54] Kiister, U. and Konig-Ries, B.. Towards standardt tes
Software Components Based on_Use Relations. IEEE ~ cojlections for the empirical evaluation of semantieb
Transactions on Software Eng., Vol. 31, Iss. 35200 service approaches. Int. Journal Semantic Computin 2,
Hummel, O., Janjic, W., and Atkinson, C.. Code Coei: Iss. 3, 2008.

Pulling Reusable Software out of Thin Air. IEEE ®ddre, [25] Clements, P.: From Subroutines to Subsystems: Coemto
Vol. 25, Iss. 5, 2008. Based Software Development. in Heineman, G., Cdyuk¢i
Bajracharya, S., Ossher, J. and Lopes, C.. Sourcére (eds..: Component-based Software. Eng. Ad.-Wegleg1.
internet-scale software repository. Int. WorkshopSearch- [26] Hummel, O. and Atkinson, C.: Automated Creation and
Driven Development, SUITE 2009. Assessment of Component Adapters with Test Casesnl

Tichy, W.: Should computer scientists experimentrefio Symposium on Component-Based Software Engineering,
IEEE Computer, Iss. 5, 2002. 2010.

Basili, V.. The Experimental Paradigm in Software [27] Gamma, E.; Helm, R.; Johnson, R., and Vlissided)Ddsign
Engineering. Experimental Software Engineering dssu Patterns. Elements of Reusable Object-Orientedw@od
Critical Assessment and Future Directions, Spring@93. Addison-Wesley, Amsterdam, 1995.

Hummel, O.: Facilitating the Comparison of Software [28] Ye, Y. and Fischer, G.. Reuse-Conducive Development
Retrieval Systems through a Reference Reuse Golhedht. Environments. Journal of Automated Software Enginge
Workshop on Search-Driven Development, SUITE 2010. Vol. 12, No. 2, Kluwer, 2005.

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Informati [29] Garcia, V., Lucrédio, D., Durado, F., Santos, EmAida, E.,
Retrieval, Addison-Wesley, 1999. Fortes, R., and Meira, S.: From Specification to
Frakes, W.B. and Pole, T.P.. An Empirical Study of Experimentation: A Software Component Search Engine
Representation Methods for Reusable Software Coersn Architecture, International Symposium on Comporased
IEEE Transactions on Software Engineering Vol. B8, 8, Software Engineering, CBSE 2006.

1994, [30] Hutchins, M., Foster, H., Goradia, T., and Ostraid,
Prieto-Diaz, R.: Implementing faceted classificatidor Experiments on the effectiveness of dataflow- aodtrol
software reuse. Communications of the ACM, Volurde 3 flow-based test adequacy criteria. Internationatf€ence on
Issue 5, 1991. Software Engineering, 1994.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 458

