ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Tracing Requirements and Source Code during Software Development

Alexander Delater, Barbara Paech
Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{delater, paech} @informatik.uni-heidelberg.de

Abstract—Traceability links between requirements and
source code are often created after development. This re-
duces the possibilities for developers to use these traceability
links during the development process. Additionally, existing
approaches applied after development do not consider artifacts
from project management, which are used for planning and
organizing a project. These artifacts can serve as a mediator
between requirements and source code. In contrast to these
existing approaches, we present an approach that creates
traceability links between requirements and source code as the
development progresses by incorporating artifacts from project
management. In this paper, we make two key contributions.
First, a Traceability Information Model integrating require-
ments, source code and artifacts from project management.
Second, an approach for the (semi-) automatic creation of
traceability links between artifacts from the Traceability In-
formation Model achieving traceability between requirements
and source code during the development process. We identified
a catalog of information needs of developers from literature
regarding requirements, source code that realizes these re-
quirements, and work done by co-workers implementing these
requirements. The presented approach satisfies the information
needs of the developers during the development process, while
keeping the traceability links up-to-date.

Keywords-traceability; requirements; source code; software
development; information needs.

I. INTRODUCTION

Traceability information supports the software develop-
ment process in various ways, amongst others, program
comprehension, change management, software maintenance,
software reuse and prevention of misunderstandings [1].
Traceability between requirements and source code has been
extensively researched in the past years and much progress
has been made in this field. Because the manual creation of
traceability links between requirements and source code is
cumbersome, error-prone, time consuming and complex [2],
a major focus in research is on (semi-) automatic approaches.
Existing approaches use various techniques, e.g., informa-
tion retrieval [3] [4], execution traces [5], static/dynamic
analysis [6], subscription-based or rule-based link mainte-
nance [7] or combinations of them [8]. However, all these
approaches do not use artifacts from project management,
but such artifacts, e.g., sprints and work items, are widely
used in software development projects nowadays. Thus,

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Nitesh Narayan
Institute of Computer Science
Technical University of Munich
Boltzmannstrasse 3, 85748 Garching, Germany
narayan@in.tum.de

the first key contribution of this paper is a Traceability
Information Model (TIM) integrating requirements, source
code and project management artifacts.

Traceability links between requirements and source code
are often created after development [9] using the afore-
mentioned approaches. This reduces the possibilities for
developers not only to use their project knowledge to
improve the quality of the traceability links, but also to
use the traceability links during software development and
maintenance. Therefore, we argue that traceability links
between requirements and source code should also be cre-
ated during the software development process and not only
after development. Thus, the second key contribution of
this paper is a (semi-) automatic approach for creating
traceability links between artifacts from the TIM achieving
traceability between requirements and source code during
the development process.

Additionally, while creating traceability links between
requirements and source code, the information needs of the
developers during development should play a major role.
The importance of such information needs is presented by
Ko et al. [10] for collocated software development teams,
and Sillito et al. [11] on questions raised during a program
change task. We identified a catalog of information needs of
developers from the contributions of Ko et al. and Sillito et
al. regarding requirements, source code that realizes these
requirements, and work done by co-workers implementing
these requirements. The presented approach satisfies the
information needs of the developers during development
while keeping the traceability links up-to-date.

The paper is structured as follows: Section II provides
background knowledge about a model unifying system de-
velopment and project management that we built upon, and
the subset of artifacts from this model that we focus on
in this work. Section III defines a model for source code
representation and introduces the TIM integrating artifacts
from system development model, project management model
and source code model. Section IV introduces an approach
to (semi-) automatically create traceability links between
artifacts in the TIM. Section V provides a fictional example
project to highlight the benefits of the presented approach.
Section VI introduces a catalog of information needs and

274

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

how they are satisfied using the artifacts and relations
from the TIM created for the example project. Section
VII describes related work and Section VIII provides a
discussion of the presented contributions. Finally, Section IX
summarizes the contributions and discusses future work.

II. BACKGROUND

This section provides background knowledge about a
model unifying system development and project manage-
ment, and the subset of artifacts from this model that we
focus on in this work.

A. MUSE Model

In software development projects, two different types
of models are used for abstraction: the system model and
project model [12]. Artifacts from the system model describe
the system under construction, such as requirements, compo-
nents or design documents. Artifacts from the project model
describe the on-going project, such as work items, develop-
ers, sprints or meetings. These two models have already been
integrated within a model called MUSE: Management-based
Unified Software Engineering [12].

While the MUSE model describes the system under
development and its project management, it does not pro-
vide traceability to the source code. The MUSE model is
implemented in the model-based CASE tool UNICASE [13],
which is a plugin for the Eclipse integrated development
environment (IDE) and is developed in an open source
project [14]. For this work, we build upon the MUSE
model and extend it with a new code model to support
traceability to the source code. The code model is introduced
in Section IIL

B. Focus on Subset of Artifacts

The MUSE model supports a large amount of artifacts.
Therefore, we focus on a subset of artifacts that are required
by the information needs of the developers regarding require-
ments and co-workers implementing these requirements.
From the system model, we focus on the artifacts of feature
and functional requirement representing requirements at
different levels of detail. A feature is an abstract description
of a requirement, and it is detailed by one or more functional
requirements. From the project model, we focus on the
artifacts of developers, work items and sprints. Work items
represent a unit of work and are the task descriptions used in
software development projects (we use the term work item
instead of fask to avoid misunderstandings with the term
task used in requirements engineering). They can describe
work for new implementations and bug fixing. As they are
the basis of the daily work, they are regularly kept up-to-
date [15]. Developers are assigned to work items. Sprints
are used to organize work items in work packages and they
provide a time frame to realize the work items.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

III. MODELING CODE AND TRACEABILITY
INFORMATION

In this section, we define the representations of source
code that extend the MUSE model by a new code model.
Furthermore, we define a TIM integrating the artifacts we
focus on from the MUSE model and the representations of
source code from the code model.

A. Code Model

The code model contains file-based and change-based
representations of source code. We chose to use these
representations because they are widely used in software de-
velopment projects and are independent of any programming
language. This is supported by a comprehensive literature
survey by Kagdi et al. [16]. For file-based representations,
we focus on code files containing source code. For change-
based representations that are supported by a version control
system (VCS), we focus on revisions. Revisions themselves
contain changed code files. Other representations would be
possible, e.g., class, method or interface. However, not all
programming languages support these artifacts, reducing the
applicability of the code model. Table I shows the different
representations of source code and their attributes.

Table 1
ATTRIBUTES OF REPRESENTATIONS OF SOURCE CODE

Type Attributes
Code File | fileName, projectName, pathInProject
date, author, number, repositoryUrl, pathInRepository,
Revision commitMessage, changedCodeFiles [added, modified, or
deleted]

In the following, we describe the reasons for choosing
these attributes. For code files, we require the attributes
fileName, projectName and pathinProject to locate them
in a project. For revisions, we require the attributes date
and author to tell when and by whom the revision was
created. We also need the attributes number, repositoryUrl
and pathlnRepository to reliably locate the revision in a
VCS. Moreover, the attribute commitMessage is required to
describe the changes contained in this new revision. This
comment is usually written by the author of the revision and
is optional. The most important information of a revision is
stored in the list changedCodeFiles and each artifact in this
list has the same attributes as the artifact code file. Moreover,
each changed code file in the revision has a state [added,
modified, or deleted] that shows if the code file was newly
added, existed before and was only modified or was deleted
in the revision.

B. Traceability Information Model

Traceability in a project should be documented in and
driven by a Traceability Information Model [17]. A basic
TIM consists of two types of entities: traceable artifacts

275

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

and traceability links between these artifacts. It also defines
which types of artifacts are intended to be traced to which
related artifact types and by what type of traceability link.
We define a TIM that realizes the artifacts from the MUSE
model that we focus on and extends it by the two represen-
tations of source code. The TIM (see Figure 1) shows all
artifacts that we want to connect: system model artifacts
(feature, functional requirement), project model artifacts
(sprint, work item, developer) and code model artifacts (code
file, revision).

System Model | Project Model Code Model
TT T T Trelatedto T T [T —a— —] T 11
| Sprint Code File
: realized in ?aTe fileName
! T vfgrtlngns projectName
| athinProject
! 1.* dueDate P 1J
! Feature status o
1 name . . &1 contained in
L— description contained in . ol
il . e~
! ?”ort'.ty R Work Iltem Jate Revision
; Lunctiona’neqs identifier
| [author
! relatedio | Lame number
' description | creates.)
1 details lizedlin | @ssignee 1 17 repositoryUrl
| reatizeciin _ pathinRepository
1 1.*| dueDate ;
| status commitMessage
' LR A — changedCodeFiles
! Functiona assignedtofl =280 0 ————————————————
| Requirement 1. ! Legend !
! I
47 name Developer | Traceable artifact type :
-"| description name | Existin trace t |
. | xisting trace types |
feature assignments | Z-—- Inferred race types '

Figure 1. Traceability Information Model integrating system model, project
model and code model

Figure 1 depicts the core traceable components. A feature
is realized in a sprint and is detailed in one or more func-
tional requirements. Functional requirements are realized by
work items. A work item must have one or more linked
functional requirements. A feature can be related to a work
item, e.g. during bug fixing. Work items are contained in a
sprint and are assigned to developers. One work item can
create one or more revisions. A revision contains one or
more changed code files. All these traceability links between
the artifacts are represented as straight lines in Figure 1. All
artifacts from the TIM can be found in common software
development projects.

The central artifact is the work item, as it connects the
artifacts from the system model to artifacts from the code
model. Using work items, we can achieve traceability be-
tween requirements and source code by inferring traceability
links. An inferred traceability link between two artifacts is
derived from all artifacts in between these two artifacts. For
example, a functional requirement is realized in one or more
work items, and a work item creates one or more revisions
containing code files. Thus, we can infer traceability links
between the functional requirement and the code files. The

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

inference process and the used algorithm is explained in
detail in Section IV. The inferred traceability links are
represented as dashed lines between features, functional
requirements and code files in Figure 1.

IV. TRACING REQUIREMENTS AND SOURCE CODE
DURING SOFTWARE DEVELOPMENT

This section presents a (semi-) automatic approach for
creating traceability links between artifacts from the TIM
during the software development process, especially between
requirements and source code using work items.

We presume that the following situation is present in the
software development project. First, there exists a list of
features and detailing functional requirements. Second, a
project manager has planned the realization of the features
in sprints and s/he has broken down the realization of the
functional requirements into work items for the developers
in the software development project. Third, the work items
are already assigned to developers, e.g. manually by the
project manager or using an approach by Helming et al.
for semi-automatic assignment of work items [15]. For the
presented approach, we assume that all artifacts from the
TIM are available in one integrated environment supporting
traceability links between all artifacts. Such an integrated
environment can be supported by the model-based CASE
tool UNICASE [13].

A. Capturing Traceability Links

Figure 2 depicts the process of capturing traceability links
and every activity is described in detail in the following.
The core idea of creating traceability links between artifacts
of the TIM is letting the developers create these links
themselves. First, the developer selects a work item from
his/her list of assigned work items and tells the system that
s/he starts implementing source code. While working on
the work item, all features or functional requirements the
developer looks at during implementation are automatically
captured by the system, meaning that the system logs these
types of artifacts while a developer opens them during im-
plementation. The developer can look at the linked features
or functional requirements of the work item or look at
other artifacts of these types to get a better understanding
during implementation. After finishing the implementation
of a work item in the source code, the developer tells the
system that s/he has stopped implementation.

The developer does not immediately commit the changes
to the VCS. Instead, before the commit, s/he has to validate
two lists of artifacts: one list of all changed code files in
the source code, and another list of all captured features or
functional requirements that s/he looked at during implemen-
tation. While the former is standard in software development
and already supported by any VCS, the latter represents ad-
ditional work for the developers. This validation is necessary
to only create relevant traceability links between the work

276

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

[Implementation & Capturing Process ‘ [

Validation & Selection Process

Traceability Link ‘

‘ [Documentation ‘ [
Creation Process

Process

System captures code
files changed by the
developer during

implementation

implementation of the of changed code files
work item and captured F and R

Developer finishes H System presents lists

Developer selects

Developer validates
changed code files

System creates new
revision in VCS
containing selected
code files and links it

Developer may enter
commit message for
new revision

one assigned work
item and starts
implementation

i Legend !
3 C] mandatory C] optional i

| F=Feature R = Functional Requirement |

System captures F
and R the developer
looks at during
implementation

Developer validates
captured F and R

to work item @

System links selected
Fand R to work item

Developer may add
additional F and R

Developer may add

additional information

to description of work
item

Figure 2. Process of Capturing, Validating and Creating Traceability Links (UML Activity Diagram)

item and these artifacts. For example, a developer can look at
a functional requirement during development, which is not
directly involved in the implementation, but related to the
work item. During validation, a developer removes unrelated
artifacts from the list. Furthermore, an optional activity for
the developer is to select additional features or functional
requirements that are related to the work item, but that s/he
has not had a look at during implementation. Two other
optional activities are to enter a commit message for the new
revisions or add additional information to the description of
the work item.

After validating all artifacts and optionally adding further
features or functional requirements, the developer selects
to commit all information to the VCS. The system then
creates a new revision containing only the selected code
files. The work item is linked to the newly created revision,
and the attribute identifier of the work item is inserted at
the end of the commit message of the revision to achieve
bi-directional traceability between work item and revision.
Moreover, the system links all validated and selected features
and functional requirements to the work item.

B. Inferring Traceability Links between Requirements and
Source Code

The created traceability links are used to infer links
between requirements and code, specifically between fea-
tures, functional requirements and code files. The Algo-
rithm IV.1 for creating inferred traceability links is ex-
ecuted when the status of a work item is changed by
the developer from assigned to done. The algorithm con-
nects in a brute force manner all linked requirements
(features, functional requirements) of a work item with
all the code files in the linked revisions of the work
item. The statement workiltem.getLinkedRequirements() re-
turns all features and functional requirements. The statement
workltem.getRevisions() returns the linked revisions of a
work item sorted by attribute date in ascending order. This is
important because the algorithm applies change operations
to the artifacts which need to be in the order they occurred.
If the algorithm identifies already existing links, it does not
create them again. If a code file was modified, its informa-
tion consisting of the attributes fileName, projectName and
pathlnProject is updated for each linked requirement. If a
code file is deleted, the link to the requirement is removed.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Algorithm IV.1: INFERTRACES(workltem)

allReqs = workItem.get Linked Requirements()
all Revisions = workItem.get Revisions()
for each rev € allRevisions
allCodeFiles = rev.get AllChangedCodeFiles()
for each cf € allCodeFiles
state = cf.getState()
if state = ADDED
for each req € allRegs
if req.isNotConnectedTo(cf)
req.addLinkTo(cf)
if state = MODIFIED
for each req € allReqs
if req.isNotConnectedTo(cf)
req.addLinkTo(cf)
req.getLinkedCodeF'ile(cf)
.update(fileName, projectName
pathInProject)
if state = DELETED
for each req € allRegs
req.removeLinkTo(cf)
return (worklItem)

V. EXAMPLE

We use a fictional example project to highlight the benefits
of the presented approach and to support discussion. The
example project is a Java application called Movie Manager
that one can use to manage his/her movie collection. Users
can add, modify and delete movies as well as rate them.
The application supports importing data about performers
(actor/actress) of a movie from an Internet movie database.
Presenting all information about the artifacts in the project is
beyond the purpose of this paper. Therefore, we only provide
a list of used artifacts with short descriptions to support basic
understanding. There are two features (F) and six detailing
functional requirements (R) (see Table III). The project is
planned in two sprints with feature F1 developed in Sprint 1
and feature F2 developed in Sprint 2. Amy, Bill and Carl are
members of a team collaborating to develop the application
and they have eight work items (W) (see Table IV). Amy is
mainly focusing on the data objects within the application,
Bill is responsible for the user interface, and Carl is doing
bug fixing.

277

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table II
CHANGED CODE FILES AND CAPTURED TRACEABILITY LINKS OVER TEN REVISIONS OF MOVIE MANAGER

Cl1| C2|C3|C4|C5||R1L|R2|R3| R4 | R5| R6| F1| F2 })::;;k Dev. | Rev.| Commit Message
c LB CL Wi Amy | 1 Created Data Object "Movie” #W1
m c cL | 1B | LB CL W2 Bill | 2 Implemented basic UI for listing Movies
#W2
m cL | LB cL w2 Bill 3 Display and change information of Movie
#W2
. Added basic Rating Control and added it
m | c LB W3 Bl 4T Movies UT #W3
m LB CL W3 Bill 5 Completed 5 star Rating Control #W3
c LB CL || W4 Amy | 6 Created Data Object *Performer’ #W4
Display information of Performers for
m m LB W5 Bill 7 Movie, currently showing dummy data as
import needs to be implemented #W5
m LB CL W6 Carl | 8 BugFix for Rating Control #W6
c LB CL || W7 Amy | 9 Performer Import #W7
m LB CL || W8 Carl | 10 Bugfix for Performer Import #W8
¢ = created m = modified LB = Linked Before CL = Captured Link
Table III Table IV
FEATURES AND FUNCTIONAL REQUIREMENTS DEVELOPERS AND WORK ITEMS
Arti- Descripti Detaili Arti- Description Assigned To
fact escription etailing fact p g
Fl Movie Management: Add, modify and delete | Amy | Database Expert W1 W4 W7
movies as well as rate them Bill UI Expert W2 W3 W5
P Performer Management: Import performers from | Carl | Bug Fixing W6 W8
Internet movie database Artic
RI Users should be able to add and remove a movie Fi fact Description Realizing Sprint
from the list Wi Create Data Object for Movie R1 S1
R2 Users should be able to display and change the Fi W2 UI for Movies R2 R3 S1
textual information about‘ a se]ecte.d movie‘ W3 UI Control for Rating R4 S1
R3 User.s shot:jld ble able tofdlsplaﬁ/ al .llst of available F1 W2 Create Data Object Performer R6 S2
A movies ljm 7 select (;ne rom the I,St i W5 UI for Performers R6 S2
Esers s hou l(iiblj ab El totratf: movtle: ool W6 Bugfix for Rating Control R4 S2
sers shou e able to import textual infor-
RS mation about the performers of a movie from | F2 w7 Performer Import RS 52
Internet movie database W8 Bugfix for Performer Import RS S2
R6 Users should be able to display textual informa- | o, W = Work Item R = Functional Requirement
tion about the performers of a movie

F = Feature R = Functional Requirement

A number of code files are developed to achieve Movie
Manager: Movie.java (C1), MoviesUI java (C2), RatingCon-
troljava (C3), Performer.java (C4), Performerlmport.java
(C5). Table II provides an overview about the ten created
revisions, created (c) and modified (m) code files, used
traceability links (LB) from the TIM and captured trace-
ability links (CL) during the software development (in the
small example, there are no code files that needed to be
deleted). Furthermore, all three developers have entered
commit messages for each revision that roughly describe
how they have modified the source code.

The team used the presented process (see Figure 2) during
development. In the following, the creation of revisions 1
and 2 is shortly explained. All other revisions were created

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

in the same way. Work item W1 was assigned to Amy and
she had to implement the data object for storing movies.
First, she looked at the linked functional requirement R1 of
her work item to get a better understanding of the attributes
of the data object. She started implementing Movie.java (C1)
and looked at F1 for the feature description. She finished
implementation and validated and confirmed all captured
links to F1 and R1. Next, she entered a commit message
and the system created a new revision with the new code
file CI.

Work item W2 was assigned to Bill and he was supposed
to implement a user interface for listing the movies. Thus,
he first looked at the linked functional requirements R2 and
R3. Bill looked during implementation at feature F1 because
it was already linked to R3. Furthermore, he looked at R1
because this requirement was also linked to F1. Bill used

278

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table V

INFORMATION NEEDS ON REQUIREMENTS DURING DEVELOPMENT ACTIVITIES WITH USED TRACEABILITY LINKS
Nr. | Information Need on Requirement Development Activity Used Traceability Links
1. What is the program supposed to do? Implementation, Program Comprehension | F-R, F-W, R-W, F-C*, R-C*
2. Why was this code implemented this way? Program Comprehension C-Rev
3. What have my co-workers been doing? Change Awareness F-W, R-W, W-D, W-S
4, Which code is involved in the implementation of this feature? Maintenance F-C*, R-C*
5. To move this feature into this code, what else needs to be moved? Change Management F-C*, R-C*
6. What will be the impact of this change? Change Management F-R, F-W, R-W, F-C*, R-C*
F = Feature =~ R = Functional Requirement W = Work Item S = Sprint D = Developer C = Code File = Rev = Revision * = inferred

the inferred traceability link from F1 to Movie.java (C1) to
change Movie.java because it missed an attribute that Amy
forgot to implement, and created the code file MovieUI.java
(C2). The inferred traceability link was created after Amy
changed the status of her work item from assigned to done.
He finished implementation and validated and confirmed all
captured traceability links to R1, R2, R3 and F1. Finally,
he entered a commit message and the system created a new
revision with new code file C2 and modified code file Cl1.

Legend

I
: D Traceable artifact type
I
I
|

Existing trace types
Inferred trace types

Figure 3. Existing and Inferred Traceability Links

After the completion of each work item, traceability links
were inferred using the presented algorithm (see Algorithm
IV.1). In revision 10, this resulted in the traceability links be-
tween features, functional requirements and code files shown
in Figure 3. The straight lines show the traceability links that
existed before. Furthermore, the inferred traceability links
are shown as dashed lines.

VI. INFORMATION NEEDS ON REQUIREMENTS

Developers have various information needs during the
software development process. Ko et al. [10] identified
21 and Sillito et al. [11] identified 44 information needs,
respectively. From these 65 information needs represented
as questions, we have identified those which are asked
by developers during software development focusing on
requirements, code that implements these requirements, and
work done by co-workers related to these requirements.
We looked through all information needs and used the
following criteria for identification: a) mentioning terms that
are related to requirements, e.g., feature, concern, behavior
or expressions like supposed to, b) mentioning the term
impact in conjunction with a changing requirement, and

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

[Pttt 1
|

¢) mentioning terms like developer or co-worker. We have
identified six information needs (see Table V, Nr. 1-3 from
Ko et al. and Nr. 4-6 from Sillito et al.) that met these
criteria. All other information needs are rather specific for
implementation and do not focus on requirements, e.g. repro-
ducing a failure during bug fixing or understanding execution
behaviour. We defined in Table V for each information
need on requirements during what development activity the
information need occurs and the used traceability links.

A. Identified Information Needs on Requirements

In the following, we explain how these information needs
of developers can be satisfied by employing the TIM (see
Figure 1), the captured traceability links from the process
(see Figure 2) and the inferred traceability links (see Algo-
rithm IV.1) for the example project mentioned in Section V.

1) What is the program supposed to do?: The features
and functional requirements define what the program is
supposed to do. As a work item needs to have a relation
to functional requirements and can be related to features,
an assigned developer can use the linked artifacts during
implementation and program comprehension. For example,
Amy knows during implementation what attributes the data
object for movies requires since the functional requirement
R1 is linked to her work item W1. However, she forgot
to implement one attribute in revision 1; so, Bill had to
change the data object again in revision 2. Furthermore,
if a developer is interested in the purpose of a code file
during program comprehension, s/he can use the inferred
traceability links from the code file to the features and
functional requirements. For example, if Carl is interested
in the purpose of C3 (RatingControl.java), he can use the
inferred traceability links to F1 and R4 that were created
when Bill finished the work item W3 in revision 5.

2) Why was this code implemented this way?: Starting
from the code files, a developer can look at the linked
revisions. The commit messages may contain information
concerning why the code was implemented this way. For
example, Bill decided to implement the Rating Control
with a 5 star rating and documented his decision in the
commit message of revision 5. Documenting these decisions
as artifacts of type rationale would be part of future work.

279

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

3) What have my co-workers been doing?: Since all work
items are contained in a sprint and assigned to developers,
a developer is able to see on what features or functional
requirements his/her co-workers will be working on or have
been working on in the past, which is supporting change
awareness. Furthermore, a developer is able to see the co-
workers that have previously worked on the same feature
or functional requirement. Using this information, s/he can
seek further knowledge from these co-workers. For example,
Carl can see that Bill has worked previously on the Rating
Control and he can ask him for advice during bug fixing.

4) Which code is involved in the implementation of this
feature?: A feature is detailed in functional requirements.
A developer can use the inferred traceability links from
features and functional requirements to code files to quickly
identify code that is involved in the implementation of
a feature. For example, Carl can see that code files C4
(Performer.java) and C5 (PerformerImport.java) are involved
in feature F2 (Performer Management) during bug fixing
described in W8. This enables to identify not realized
features and functional requirements as well as the progress
of their implementation.

5) To move this feature into this code, what else needs
to be moved?: ’Moving a feature’ means that an entire
feature with all its detailing functional requirements and
realizing code can be moved from one development project
to another project. As one feature is connected to detailing
functional requirements, and these artifacts are connected by
inferred traceability links to code files, related code files can
be identified during change management. For example, the
code files C1, C2 and C3 are related to feature F1 through
their relations to the requirements R1, R2, R3 and R4 (see
Figure 3). Therefore, if a feature needs to be moved, all its
related functional requirements and the realizing code files
can be easily identified. However, this may require additional
code files to be moved that are required by the to-be-moved
code files. Additional work on integrating the moved code
files in the new environment may be necessary, as well.

6) What will be the impact of this change?: If a feature
or a functional requirement need to be changed to reflect
changed customer demands, all related artifacts maybe af-
fected by this change can be identified easily during change
management. For example, suppose R4 is changed to support
a different rating, it can be identified that W3, W6 and C3
are maybe affected by this change. Affected work items
can be identified, e.g. if a change in a feature or functional
requirement is comprehensive, the planning of the realization
in the work items needs to be adapted. An initial set of code
files can be identified potentially affected by this change.
The changes in the code files can result in additional changes
in other code files. The initial set of code files can be a
starting point for detailed change impact analysis.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

B. Frequently Unsatisfied Information Needs

Many of the frequent information needs are problematic,
because the searches for this information are often unsatis-
fied and have long search times. It is of particular interest
that the most difficult information needs to satisfy are ques-
tions regarding requirements and co-workers working on
these requirements [10]. Ko et al. have identified seven most
frequently unsatisfied information needs, from which three
are exactly the same information needs 1-3 from Table V that
met our criteria. For example, searches for the information
need I. Why was the code implemented this way? resulted in
44% of unsatisfied searches and a maximum of 21 minutes
of observed search time.

One of the most frequently sought and acquired infor-
mation by a developer includes what co-workers have been
doing, which corresponds to the information need 3. What
have my co-workers been doing?. To determine who to ask,
developers often identify co-workers by inspecting commit
logs, but such information is not always accurate [10]. Our
approach helps developers determining co-workers who have
worked on the same requirements as themselves in the past
to seek further information.

VII. RELATED WORK

Approaches related to our work can be divided into two
groups: approaches achieving traceability between require-
ments and source code after development and approaches
capturing traceability links as we do during development.

A. Traceability between Requirements and Source Code

In [18], a general overview about requirements traceability
is provided. As the manual creation of traceability links
between requirements and source code is error-prone, time
consuming and complex [2], research focuses on (semi-) au-
tomatic approaches. Existing approaches create traceability
links between requirements and source code using various
techniques, e.g., information retrieval [3], [4], [19], [20],
[21], execution-trace analysis [5], [22], [23], static/dynamic
analysis [6], subscription-based or rule-based link mainte-
nance [7] or combinations of them [8], or only create links
between work items and code [24]. However, no approach
uses artifacts from project management to create traceability
links between requirements and source code, as we do with
our approach using work items.

B. Capturing Traceability Links

An approach similar to ours for the automatic capturing
of links was presented by Omoronyia et al. [25]. They have
achieved traceability between use cases and source code.
In contrast, our approach supports features and functional
requirements. Their approach is based on tracing the oper-
ations carried out by a developer called navigation trails.
However, this approach requires an elaborate model with
rankings of navigation trails to derive the most relevant

280

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

links. Rankings of links are currently not supported by our
approach. Thus, in future work we want to analyze whether
the availability of work items can support this ranking.

Their approach is also able to identify which developer
is involved in the realization of a specific use case, which
is also supported by our approach. The contribution of
Omoronyia et al. shows that tracking changes displays some
advantages over the other approaches. For example, relating
a developer to the source code and requirements is almost
impossible with the other approaches, but very easy if
changes/operations are tracked, like in our approach. Fur-
thermore, their approach does not support work items from
project management and revisions in a VCS. However, such
artifacts are widely used in software development projects
nowadays. Therefore, our approach is more easily applicable
in practice compared to the approach by Omoronyia et al.

Omoronyia et al. [25] also claim to satisfy certain infor-
mation needs. However, they did not use a structured method
to identify these information needs like we did and only
proposed those that were satisfied by their approach. Fur-
thermore, their information needs are not based on project
management and co-workers within the project. The benefit
of our approach is that we can satisfy these information
needs of developers during the development process.

VIII. DISCUSSION

Egyed et al. [26] investigated the effort of recovering
traceability links between requirements and code after devel-
opment. In general, these traceability links were recovered
by project members who were not directly involved in
the realization of a particular requirement, but knew the
code base. Our approach distributes the effort of creating
traceability links over all developers actively participating in
the project while they perform their implementation work.
Using our approach, the developers are now involved in
the traceability process, they can use their expertise and
project knowledge to create reliable traceability links and
these links also help them to satisfy their information needs
during development. As a developer benefits not only from
these traceability links himself/herself, but also his/her co-
workers, we expect that they are better motivated to create
and validate traceability links during software development.

Additionally, one might ask: "Why is (manually) creating
links between requirements and work items, and between
work items and code files less complex compared to existing
work on linking requirements to source code directly?”. We
argue that our approach is less cumbersome and error-prone
than manually creating direct links between requirements
and code, because the only manual work is to establish initial
links between work items and requirements (which is typical
for issue management) and to validate the automatically
captured links (which should be easy as the links refer to the
work just finished). Creating direct links manually requires
the developer to keep every relationship in mind.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

In the current approach, developers might make mistakes
when adding non-related features or functional requirements
to a work item. However, this risk is reduced since we
let the developer validate all traceability links before they
are created. It has been shown that humans were better at
validating links as opposed to searching for missing links
[27]. This strengthens our approach of letting the developers
validate the links going to be created instead of recovering
links or searching for missing links. The additional work
of the developers introduced by validating traceability links
and manually adding additional ones is considered as small,
compared to the effort to establish traceability links after
development using various approaches mentioned before.

Currently we are developing tool support based on UNI-
CASE, which is a plugin for the Eclipse IDE. The Eclipse
IDE supports various programming languages through addi-
tional plugins, e.g. Java, C++, Python etc. By integrating
UNICASE and Eclipse with plugins for VCSs like Sub-
version or Git, a comprehensive tool environment can be
provided supporting developers while they perform various
development activities. By using these plugins, file-based
as well as change-based representations of source code
can be accessed. We looked at various research tools, e.g.,
TagSEA [28], and commercial tools, e.g., IBM Rational
Team Concert [29]. Some of these tools do support all the
elements that we have (requirements, work items, code).
However, our tool would provide, unlike all other tools,
complete traceability between all these elements as well as
(semi-) automatic linkage of requirements and code.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for tracing re-
quirements and source code during software development to
satisfy information needs of developers regarding require-
ments during development. We defined a TIM that inte-
grates requirements, source code and artifacts from project
management. We also presented an approach for the (semi-)
automatic creation of links between artifacts from the TIM.

In this work, we only focused on information needs of
developers. However, we are aware that also information
needs of other project participants can be satisfied with
the created links, e.g., of project managers or requirements
engineers, which is subject to future work. Furthermore, we
are aware that the algorithm for inferring links is very basic
and might create a lot of links. Therefore, we will investigate
possibilities for more advanced inference algorithms, e.g. an
algorithm providing a relevance ranking for each link based
on the change history of the artifacts connected by the link,
to identify relevant links from the large set of inferred links.
Currently we develop tool support based on our approach.
Once the tool is finished, we will empirically evaluate the
approach in the UNICASE project itself and apply it in
various case studies. We will compare our approach to
existing baseline approaches w.r.t. precision and recall.

281

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(1]

[12]

(13]

[14]

[15]

Copyright (c) IARIA, 2012.

REFERENCES

Egyed, A. and Griinbacher, P. Supporting software under-
standing with automated requirements traceability. Interna-
tional Journal of Software Engineering and Knowledge En-
gineering, vol. 15, no. 5, pp. 783-810 (2005)

Spanoudakis, G. and Zisman, A. Software traceability: A
roadmap. Handbook of Software Engineering and Knowledge
Engineering, World Scientific Publishing, pp. 395-428 (2004)

Hayes, J.H., Dekhtyar, A., and Osborne, J. Improving require-
ments tracing via information retrieval. International Confer-
ence on Requirements Engineering, pp. 138-147 (2003)

De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G. Re-
covering traceability links in software artifact management
systems using information retrieval methods. Transactions on
Software Engineering Methodology, vol. 16, no. 4, art. 13,
ACM (2007)

Eisenberg, A.D. and De Volder, K. Dynamic feature traces:
Finding features in unfamiliar code. In ICSM 05: Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance, pp. 337-346 (2005)

Antoniol, G. and Gueheneuc, Y.G. Feature identification: A
novel approach and a case study. In ICSM 05: Proceedings of
the 21st IEEE International Conference on Software Mainte-
nance, pp. 357-366 (2005)

Maeder, P. and Gotel, O. Towards Automated Traceability
Maintenance. Journal of Systems and Software, vol. 85,
no. 10, pp. 2205-2227 (2011)

Eaddy, M., Aho, A.V., Antoniol G., et al. CERBERUS:
Tracing requirements to source code using information re-
trieval, dynamic analysis, and program analysis. In ICPC 08:
Proceedings of the 16th IEEE International Conference on
Program Comprehension, pp. 53-62 (2008)

Cleland-Huang, J., Heimdahl, M., Huffman Hayes, J., Lutz,
R., and Maeder, P. Trace queries for safety requirements in
high assurance systems. In REFSQ 12: Proceedings of the
18th International Conference on Requirements Engineering:
Foundation for Software Quality, pp. 179-193 (2012)

Ko, A.J., DeLine, R., and Venolia, G. Information needs in
collocated software development teams. In ICSE 07: Pro-
ceedings of the 29th International Conference on Software
Engineering, pp. 344-353 (2007)

Sillito, J., Murphy, G.C., and Volder, K.D. Asking and an-
swering questions during a programming change task. IEEE
Trans. Softw. Eng., vol. 34, no. 4, pp. 434-451 (2008)

Helming, J., Koegel, M., and Naughton, H. Towards traceabil-
ity from project management to system models. In TEFSE 09:
Proceedings of the 2009 ICSE Workshop on Traceability in
Emerging Forms of Software Engineering, pp. 11-15. IEEE
Computer Society (2009)

Bruegge, B., Creighton, O., Helming, J., and Koegel, M.
Unicase - an Ecosystem for Unified Software, In ICGSE 08:
Distributed software development: methods and tools for risk
management, pp. 12-17 (2008)

UNICASE Open Source Project. http://www.unicase.org/ [re-
trieved: September, 2012]

Helming, J., Arndt, H., Hodaie, Z., Koegel, M., and Narayan,
N. Automatic Assignment of Work Items. In ENASE 10:
Evaluation of Novel Approaches to Software Engineer-

ing, Communications in Computer and Information Science,
vol. 230, pp. 236-250 (2011)

ISBN: 978-1-61208-230-1

[16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

Kagdi, H., Collard, M.L., and Maletic, J.I. A Survey and
Taxonomy of Approaches for Mining Software Repositories
in the Context of Software Evolution, Journal of Software
Maintenance and Evolution, vol. 19, pp. 77-131 (2007)

Maeder, P., Gotel, O., and Philippow, 1. Getting Back to Ba-
sics: Promoting the Use of a Traceability Information Model
in Practice. In TEFSE 09: Proceedings of the 2009 ICSE
Workshop on Traceability in Emerging Forms of Software
Engineering, pp. 21-25. IEEE Computer Society (2009)

Dahlstedt, A. and Persson, A. Requirements interdependen-
cies: State of the art and future challenges. In Engineering
and Managing Software Requirements, Aurum and Wohlin
(eds.) Springer, pp. 95-116 (2005)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering,
pp. 970-983 (2002)

Marcus, A. and Maletic, J.I. Recovering documentation-to-
source-code traceability links using latent semantic indexing.
In ICSE 03: Proceedings of the 25th International Confer-
ence on Software Engineering, pp. 125-135. IEEE Computer
Society (2003)

Marcus, A., Maletic, J.I., and Sergeyev, A. Recovery of
traceability links between software documentation and source
code. International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 5, pp. 811-836 (2005)

Egyed, A. A Scenario-Driven Approach to Trace Dependency
Analysis. Transactions on Software Engineering, vol. 29,
no. 2, pp. 116-132, IEEE (2003)

Burgstaller, B. and Egyed, A. Understanding where require-
ments are implemented. In ICSM 10: Proceedings of the 26th
IEEE International Conference on Software Maintenance,
pp- 1-5 (2010)

Anvik, J. and Storey, M.A. Task articulation in software
maintenance: Integrating source code annotations with an
issue tracking system. In ICSM 08: Proceedings of the 24th
IEEE International Conference on Software Maintenance,
pp- 460-461 (2008)

Omoronyia, 1., Sindre, G., Roper M., Ferguson J., and Wood,
M. Use case to source code traceability: The developer
navigation viewpoint. In RE 09: Proceedings of the 17th IEEE
International Requirements Engineering Conference, pp. 237-
242 (2009)

Egyed, A., Graf, F, and Griinbacher, P. Effort and quality
of recovering requirements-to-code traces: Two exploratory
experiments. In RE 10: Proceedings of the 18th International
IEEE Requirements Engineering Conference, pp. 221-230
(2010)

Kong, W.-K., Huffman Hayes, J., Dekhtyar, A., and Holden,
J. How do we trace requirements: an initial study of analyst
behavior in trace validation tasks. In Proceedings of the 4th
International Workshop on Cooperative and Human Aspects
of Software Engineering, In conjunction with CHASE 11,
pp. 32-39 (2011)

TagSEA. http://tagsea.sourceforge.net/ [retrieved: September,
2012]

IBM Rational Team Concert. http://www.ibm.com/software/
rational/products/rtc/ [retrieved: September, 2012]

282

