
Constructing Tool Chains Based on SPEM Process Models

Matthias Biehl, Martin Törngren
Embedded Control Systems

Royal Institute of Technology
Stockholm, Sweden

{biehl,martin}@md.kth.se

Abstract—The development of embedded systems requires a
number of tools and it is widely believed that integrating the
tools into an automated tool chain can improve the productivity
of development. However, tool chains are not accepted by
practitioners if they are not aligned with the established
development culture, processes and standards. Process models
exist for a variety of reasons, i.e., for documenting, planning
or tracking progress in a development project and SPEM is
the standardized formalism by the OMG for this purpose. We
explore in how far a SPEM process models can be used for
creating the skeleton of a tool chain, which is aligned with the
process. We identify a number of relationship patterns between
the development process and its supporting tool chain and show
how the patterns can be used for constructing a tool chain.
In two case studies, we examine the practical applicability of
the patterns, when tailoring the design of a tool chain to a
development process.

Keywords-Generative Approach; Model Driven Development;
Process Modeling; Tool Integration; Embedded Systems.

I. INTRODUCTION

The engineering of an embedded system requires experts
from a number of different engineering disciplines. Each
engineering discipline prefers a different set of development
tools that excel in that particular discipline [1]. The use of
single, specialized tools has the potential to improve the
development process, depending on the degree of automation
they provide [2]. Since engineers need to exchange data
and these tools do not interoperate well, a software external
to the tools – a tool chain – is needed to facilitate the
integration. Multiple tools have the potential to improve the
productivity in the development process, depending on how
well they are integrated with each other and their degree of
automation [3]. Tool chains can provide different coverage of
the development process; therefore, we distinguish between
task-oriented tool chains with a small coverage and lifecycle-
oriented tool chains with a larger coverage.

Many existing tool chains cover only one task in the
development process, e.g., the tool chain between source
code editor, compiler and linker. We call these tool chains
task-oriented. The tools are used in a linear chain, so that
the output of one tool is the input for the next tool. These
tool chains have a relatively small scope and integrate a
small number of tools from within one phase in the lifecycle.
Characteristic for these traditional tool chains are their linear

connections, using a pipes and filter design pattern [4].
In contrast, lifecycle-oriented tool chains have a larger

scope, they focus on supporting the complete lifecycle from
requirements engineering over verification and implemen-
tation to maintenance. In embedded systems development,
these tool chains may span multiple disciplines such as
software engineering, hardware engineering and mechanical
engineering. These tool chains integrate a large number of
different development and lifecycle management tools. In
addition, modern development processes put new demands
on the tool chain: processes might be agile, iterative or
model-driven, which implies that the supporting tool chain
cannot be linear.

When building a tool chain, it is thus important to study
which development tools need to be connected. This infor-
mation about the relationship of development tools is often
already available in a formalized model. The Software &
Systems Process Engineering Metamodel (SPEM) [5] can be
used to describe the lifecycle. A SPEM model might already
be available independently from a tool integration effort,
e.g., as it is the case development with the Automotive Open
Software Architecture (AUTOSAR) [6]. The information
available in process models forms the skeleton of a tool
chain, i.e., which tools are involved and how are they
connected in the process. To construct an executable tool
chain as a software solution, more detailed information is
needed than is available in process models, e.g., information
about the data of tools, how to access it, how to convert it
and how to describe the relation between data of different
tools. In this paper we evaluate to what extent information
from existing SPEM models can be used for constructing a
tool chain.

This paper is organized as follows: In Section II, we
explain our approach for creating an initial design of a tool
chain from a SPEM process model. We introduce SPEM for
describing the processes and TIL to describe the architecture
of a tool chain in Section II-A. This allows us to describe
the relationship between process and tool chain as patterns
in Section II-B and introduce ways of using the patterns
in Section II-C. We apply the approach in two case studies
in Section III. In the remaining sections, we discuss our
approach, relate it to other work in the field, sketch future
work and consider the implications of this work.

267Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

II. APPROACH

Tool chains are intended to increase the efficiency of
development by providing connections between tools [3].
Ideally, connections for all tools used throughout the devel-
opment process are provided; and in this case the tool chain
supports the development process. The process provides
constraints and requirements for the construction of the tool
chain. While generic process models are available, e.g., the
SPEM models for the Rational Unified Process (RUP) [7] or
for AUTOSAR [6], companies also create individual process
models for various purposes, e.g., to customize these generic
models to their individual environments, to document the
development process, to plan the development process, to
track the progress in the development or to document their
selection of tools.

If the process and the tool chain are described in a
model, information from the process model can be reused for
constructing a tool chain model. This approach ensures that
the tool chain and the process are aligned. Process models
only contain some, but not all information necessary for
specifying tool chains. Especially the type of the connection
between tools needs to be added later on.

A. Formalized Description of Processes and Tool Chains

In this section, we introduce modeling languages that are
used for both the process and the design of the tool chain.
We select two specific modeling languages, which on the
one hand limits the scope of the work, on the other hand
is a necessary preparation for formalizing and using the
relationship between process and tool chain (cf. future work
in Section VI).

1) Modeling the Product Development Process: There
are both formal and informal processes in companies, doc-
umented to different degrees and there is an increasing
trend to model processes. Several established languages
exist for modeling processes or workflows. These languages
have various purposes, BPMN [8] and BPEL [9] describe
business processes and SPEM describes development pro-
cesses. We apply SPEM, since it is a standardized and
relatively widespread language for modeling development
processes with mature and diverse tool support. A SPEM
model describes both the product development process and
the set of tools used and can thus be applied to describe the
process requirements of a tool chain. An example model is
provided in Figure 2. A number of concepts are defined in
SPEM, we introduce here the core concepts that are relevant
in the context of tool chains: a Process is composed of
several Activities; an Activity is described by a set of linked
Tasks, WorkProducts and Roles. A number of relationships,
here represented by �.�, are defined between the con-
cepts of the metamodel: a Role, typically an engineer, can
�perform� a Task and a WorkProduct can be marked as
the �input� or �output� of a Task. A WorkProduct can
be �managed by� a Tool and a Task can �use� a Tool.

2) Modeling the Design of the Tool Chain: We need an
early design model that describes all important design deci-
sions of a tool chain and chose to use the Tool Integration
Language (TIL) [10], a domain specific modeling language
for tool chains. TIL allows us not only to model a tool
chain, but also to analyze it and generate code from it.
The implementation of a tool chain can be partly synthe-
sized from a TIL model, given that metamodels and model
transformations are provided. Here we can only give a short
overview of TIL, for an elaborated description of concrete
graphical syntax, abstract syntax and semantics we refer to
[10]. TIL has two basic types: Components and Channels,
where Components are connected by Channels. The most
important Components are ToolAdapters. For each tool, a
ToolAdapter describes the set of data and functionality that
is exposed by that tool in form of a tool adapter metamodel.
Events can be triggered by Users. The relation between the
tool adapters is realized as any of the following Channels:
a ControlChannel describes a service call, a DataChannel
describes data exchange by a model transformation and a
TraceChannel describes the creation of trace links.

B. Relationship Patterns between Process and Tool Chain

If the process and tool chain are formalized as a model, we
can also model the relationship between them more formally.
A process described in SPEM might provide several oppor-
tunities for tool integration. Such an opportunity involves
two tools and a direct or indirect connection between them.
The tools and the connections found in SPEM are included
into the tool chain architecture as ToolAdapters and Chan-
nels. The direction of the data flow can be determined by
the involved work products, which have either the role of
input or output of the task. Tasks connected to only one
tool or tasks dealing with work products connected to the
same tool do not require support from a tool chain; in these
tasks engineers work directly with this tool, e.g., by using
the GUI of the tool. To describe this relationship in more
detail, we list patterns of both SPEM and TIL models and
their correspondences.

Table I
CORRESPONDENCES BETWEEN SPEM AND TIL METACLASSES

SPEM Metaclass TIL Metaclass
RoleDefinition User
ToolDefinition ToolAdapter
TaskDefinition Channel

The relationship patterns consist of a SPEM part, which
matches a subgraph of a process model in SPEM, and a
TIL part, which will become a new subgraph in the tool
chain model in TIL. In the following, we show four SPEM
patterns that describe tool integration related activities, they
are illustrated in Figure 1, (1) - (4). The corresponding
TIL pattern is the same for all SPEM integration patterns,

268Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 1. SPEM and TIL Patterns

visualized in (5). This mapping is established by pairs of
model elements from both SPEM and TIL, whose name
attribute is equivalent and whose types are of the metaclasses
presented in Table I.

• Task-centered Integration Pattern: For each TaskDefi-
nition in SPEM that has associated WorkProducts as
input and output, where the input WorkProduct has
a different associated ToolDefinition than the output
WorkProduct, this pattern produces ToolAdapters and
a Channel between them in the TIL model. The SPEM
pattern is shown in (1) and can be observed in case
study 1 in Figure 2 for the Task TraceReq2UML con-
necting the WorkProduct RequirementsDatabase and
the WorkProduct UMLFile.

• Multi-tool Task-centered Integration Pattern: For each
SPEM TaskDefinition with two SPEM ToolDefinitions
associated with it, this pattern produces ToolAdapters
and a Channel between them in the TIL model. The
SPEM pattern is illustrated in (2).

• WorkProduct-centered Integration Pattern: For each
SPEM WorkProduct that is both input and output
of its associated TaskDefinitions, which have a dif-
ferent associated ToolDefinition, this pattern produces
ToolAdapters and a Channel between them in the TIL
model. The SPEM pattern is illustrated in (3) and
can be observed in case study 2 in Figure 4 for the
WorkProduct ECUConfigurationDescription, which is
output of the Task GenerateBaseECUConfiguration and
input to the Task GenerateRTE.

• Multi-tool WorkProduct-centered Integration Pattern:
For each SPEM WorkProduct in SPEM that is as-
sociated to two different ToolDefinitions, this pattern
produces ToolAdapters and a Channel between them in
the TIL model. The SPEM pattern is illustrated in (4).

For all relationship patterns, the following constraints
need to be fulfilled: For each RoleDefinition in SPEM that
is connected to the TaskDefinition, we create a User model
element in the TIL model. If a ToolAdapter corresponding to
the ToolDefinition already exists in the TIL model, the exist-
ing ToolAdapter is connected, otherwise a new ToolAdapter
is produced.

1) Implementation as Model Transformations: The im-
plementation of the patterns offers possibilities for automa-
tion of the pattern usage. We implement the relationship
patterns as model transformations, with SPEM as the source

metamodel and TIL as the target metamodel. We chose the
model-to-model transformation language in QVT-R, with the
mediniQVT engine, and the Eclipse Modeling Framework
(EMF) for realizing the metamodels. We use the SPEM
metamodel, which is provided by the Eclipse Process Frame-
work (EPF) under the name Unified Method Architecture
(UMA), and for the visualization of SPEM models we use
Enterprise Architect. For modeling and visualization of TIL,
we use the TIL Workbench described in [10].

Patterns (1) to (5) are graphical representations of the
relational QVT model transformation rules. Since QVT
relational is a declarative language, the implementation
describes the source patterns (1) - (4) and the target pattern
(5) in the form of rules. Additionally, the attributes between
source and target pattern are mapped, as described in Table
I. Due to space constraints, the QVT rules are not included
here.

C. Usage of Relationship Patterns

The relationship patterns can be used in different ways.
Here, we apply the relationship patterns for constructing the
initial design of a new tool chain starting from a process
model. Other forms of using the relationship patterns are
possible, but are not considered in depth here. We can use the
patterns, e.g., for verification: based on a process model and
a tool chain model we check if the requirements provided
by the process are realized by the tool chain model.

The focus of this paper is the application of the re-
lationship patterns to create an initial tool chain design
in TIL from the process requirements expressed in the
SPEM model. The patterns can be applied to a SPEM
model that is complete and contains all necessary references
to ToolDefinitions. The patterns ensure that the design of
the tool chain is aligned with the process, a necessity for
acceptance of the tool chain with practitioners. This design
of the tool chain can be created in an automated way and
might need to be iteratively refined by adding details.

The process model only provides the skeleton for the
specification of a tool chain, such as the tools, which tools
are connected and which user role is working with the
tools. The process model does not provide the nature of
the connections and the exact execution semantics of the
automated tool chain. The nature of the connection can
be data exchange, for creating trace links between tool
data or for accessing specific functionality of the tool. This

269Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

information needs to be added manually by configuring and
choosing the right type of channel in TIL, a DataChannel,
TraceChannel or ControlChannnel. Also, events need to be
specified that trigger the data transfer or activate the tracing
tool. For each ToolAdapter, a metamodel describing the data
and functionality of the tool need to be added to the TIL
model. For each DataChannel, a model transformation needs
to be added.

To handle these cases, we add a refinement step, which
complements the automated construction. Once this infor-
mation is added, the TIL model can be used as input to a
code generator for tool chains, as detailed in [11].

III. CASE STUDIES

In this section, we apply the identified relationship pat-
terns between a process model and a tool chain in two
industrial case studies. This gives us the opportunity to study
different ways of using the patterns and to explore the impact
of different modeling styles.

A. Case Study 1: Construction of a Tool Chain Model for
a Hardware-Software Co-Design Process

This case-study deals with an industrial development
process of an embedded system that is characterized by
tightly coupled hardware and software components. The
development process for hardware-software co-design is
textually described in the following:

• The requirements of the embedded system are captured
in the IRQA1 tool. The system architect designs a UML
component diagram and creates trace links between
UML components and the requirements.

• The UML model is refined and a fault tree analysis is
performed by the safety engineer. When the results are
satisfactory, the control engineer creates a Simulink2

model for simulation and partitions the functionality
for realization in software and hardware.

• The application engineer uses Simulink to generate C
code, which is refined in the WindRiver3 tool. The
data from UML and Simulink is input to the IEC-
61131-3 conform ControlBuilder tool. The data from
ControlBuilder, Simulink and WindRiver is integrated
in the Freescale development tool for compiling and
linking to a binary for the target hardware.

• A hardware engineer generates code in the hardware
description language VHDL from Simulink and refines
it in the Xilinx ISE4.

Based on the description of the process, we have created the
corresponding SPEM model visualized in Figure 2.

We apply the model-to-model transformation that realizes
the relationship patterns on the SPEM model in Figure 2.

1http://www.visuresolutions.com/irqa-web
2http://www.mathworks.com/products/simulink
3http://www.windriver.com
4http://www.xilinx.com/ise

This yields a tool chain model that is aligned with the
process, as shown in Figure 3. By applying the task-centered
integration pattern shown in (1), we identify integration
tasks that are linked to two work products that in turn
are linked to different development tools (e.g. the task
Trafo UML2Safety). Some other tasks are not concerned
with integration, they are related to one tool only (e.g. the
task Use UML).

The TIL model resulting from application of the rela-
tionship patterns is internally consistent; this means that
there are no conflicts, missing elements or duplications
in the model. All tools mentioned in the SPEM model
are also present in the TIL model as ToolAdapters and
all ToolAdapters are connected. In addition, the approach
ensures that the design of the tool chain matches the process.

Since the tool chain is modeled, we can easily change,
extend and refine the initial model before any source code
for the tool chain is developed. The TIL model is relatively
small compared to the SPEM model, thus hinting at its effect
to reduce complexity. When using the simple complexity
metric of merely counting model elements and connections,
we see that in the TIL model their number is reduced by
2/3 compared to the SPEM model (cf. table II).

Table II
SIZE OF THE SPEM AND TIL MODEL OF CASE STUDY 1

Count Model Elements Connections
SPEM Model 43 71
TIL Model 13 26

The important architectural design decisions of the tool
chain (such as the adapters and their connections) can be
expressed in TIL, while the complexity has been decreased
compared to a SPEM model (cf. table II). The tool chain
model can be analyzed and - after additional refinement
with tool adapter metamodels and transformations - can be
used for code generation, as detailed in [11], [10]. Moreover,
the presented model-driven construction of the tool chain
ensures that the tool chain is aligned with the process.

B. Case Study 2: Verification of a Tool Chain Model for
AUTOSAR ECU Design

In this case study, we model a tool chain for AUTOSAR.
AUTOSAR is developed by the automotive industry and de-
fines an architectural concept, a middleware and in addition
a methodology for creating products with AUTOSAR. The
AUTOSAR methodology describes process fragments, so
called capability patterns in SPEM. Generic AUTOSAR tool
chains are implemented in both commercial tools and open
frameworks, however, it is a challenge to set up tool chains
consisting of tools from different vendors [12] and tool
chains customized to the needs of a particular organization.

The SPEM process model is provided by the AUTOSAR
consortium and is publicly available, which contributes to

270Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 2. Case Study 1: Product Development Process of the Case Study as a SPEM Model

Figure 3. Case Study 1: Tool Chain of the Case Study as a TIL Model

271Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 4. Case Study 2: Excerpt of the AUTOSAR Methodology for
Designing an ECU [6].

Figure 5. Case Study 2: AUTOSAR Tool Chain for Designing an ECU
as a TIL Model

the transparency of this case study. An excerpt of this
model that is relevant for the design of a ECU, is depicted
in Figure 4. We use this excerpt of the SPEM model to
initialize a tool chain. Applying the patterns creates the
tool chain model in TIL, illustrated in Figure 5. Out of the
four different SPEM parts of the relationship patterns (1)
- (4), only the workproduct-centered integration pattern (3)
matched several times in the SPEM model. This is due to the
modeling style used in the AUTOSAR methodology, where
WorkProducts are used as an interface for integrating tools.

The generated skeleton of the tool chain lays the founda-
tion for ensuring that the AUTOSAR methodology can be
realized by this tool chain. The skeleton can now be refined
with metamodels, model transformations and the behavior.

IV. DISCUSSION

This approach assumes that an appropriate process model
for tool chains is available. We assume that the process
model does not contain any integration related overhead,
i.e., explicit representation of a model transformation tool
and intermediate data model. We assume that tools have
been assigned to process activities. The choice for certain

tools is usually independent of automating the tool chain,
the choice merely needs to be documented in the process
model.

The use of the presented patterns is limited to processes
represented in SPEM and tool chains modeled in TIL.
However, the patterns could be adapted to similar process
metamodels.

While it is possible to describe a part of the require-
ments for a tool chain with SPEM, SPEM models are not
executable. We thus extract the relevant information from
SPEM models to ensure that all tools and connections are
represented in the tool chain. Based on this information, we
generate a TIL models, which can be made executable by
following a well-defined process, described in [10].

We have evaluated the approach in two case studies from
the area of embedded systems. We do not see any reason
why the patterns could not be applied for creating tool chain
from process models in other application areas in the future.

V. RELATED WORK

Related work can be found in the areas tool integration
and process modeling. There are a number of approaches
for tool integration, as documented in the annotated bibli-
ographies [13], [14]. Most of the approaches do not take
the process into account; in this section we focus on those
approaches that do. We also take approaches from process
modeling into account and classify them according to two di-
mensions: The first dimension comprises different execution
mechanisms, which can be interpretation vs. compilation.
The second dimension comprises different process modeling
languages, which can be proprietary vs. standardized.

Interpretation-based approaches [15], [16], [17] use the
process definition for tool integration. This technique is also
known as enactment of process models. Since the description
of the process is identical to the specification of the tool
chain, no misalignment between process and tool chain is
possible. There are two preconditions for this approach: the
process model needs to be executable and the access to
data and functionality of the development tools needs to
be possible. The use of a proprietary process model for
interpretation in tool chains is introduced in [18], as the
process-flow pattern. Approaches that extend SPEM make
the process model executable [15], [16]. The orchestration
of tools by a process model is shown in [17]. However,
the interpretation of integration related tasks is often not
possible, since the interfaces to the development tools are
not standardized. Thus, the use of process enactment to build
tool chains is limited.

Compilation-based approaches transform the process
model into another format, where the process model serves
as a set of requirements. Proprietary process models provide
great flexibility to adapt them to the specific needs of tool
integration. An integration process model is developed in
[19], where each process step can be linked to a dedicated

272Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

activity in a tool. For execution, it is compiled into a low-
level process model. The proprietary process model needs to
be created specifically for constructing a tool chain. In this
work, we use the standardized process metamodel SPEM
[5], which allows us to reuse existing process models as a
starting point for building tool chains and as a reference for
verification for tool chains.

VI. CONCLUSION AND FUTURE WORK

Process models exist for a variety of reasons, i.e., for
documenting, planning or tracking progress in a develop-
ment project and SPEM is the standardized formalism by
the OMG for this purpose. In this paper, we recognize
the development process modeled in SPEM as a set of
requirements for the architecture of tool chains. We devise a
number of patterns for creating the skeleton of a tool chain,
which is aligned with the process.

In this work, we have selected specific languages to ex-
press the patterns; in the future, we would like to experiment
with additional languages for describing the process model,
such as BPMN. This might help us to further generalize the
patterns.

Acknowledgement

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment 100203.

REFERENCES

[1] J. El-khoury, O. Redell, and M. Törngren, “A Tool
Integration Platform for Multi-Disciplinary Development,” in
31st EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 442–450, 2005.

[2] T. Bruckhaus, N. H. Madhavii, I. Janssen, and J. Henshaw,
“The impact of tools on software productivity,” Software,
IEEE, vol. 13, no. 5, pp. 29–38, Sep. 1996.

[3] M. Wicks and R. Dewar, “A new research agenda for
tool integration,” J. of Sys. and Sw., vol. 80, no. 9, pp.
1569–1585, Sep. 2007.

[4] M. Shaw and D. Garlan, Software architecture. Prentice
Hall, 1996.

[5] OMG, “Software & Systems Process Engineering Metamodel
Specification (SPEM),” ”OMG”, Tech. Rep., Apr. 2008.

[6] AUTOSAR Consortium. (2011, Apr.) Automotive open
software architecture (AUTOSAR) 3.2. [Online]. Available:
http://autosar.org/

[7] P. Kruchten, The Rational Unified Process. Addison-Wesley
Pub (Sd), 1998.

[8] OMG, “Business Process Model And Notation (BPMN),”
”OMG”, Tech. Rep., Jan. 2011.

[9] OASIS, “OASIS Web Services Business Process Execution
Language (WSBPEL) TC,” ”OASIS”, Tech. Rep., Apr. 2007.

[10] M. Biehl, J. El-Khoury, F. Loiret, and M. Törngren, “On
the Modeling and Generation of Service-Oriented Tool
Chains,” Journal of Software and Systems Modeling, vol.
275, 2012 [Online]. Available: http://dx.doi.org/10.1007/
s10270-012-0275-7

[11] M. Biehl, J. El-Khoury, and M. Törngren, “High-Level
Specification and Code Generation for Service-Oriented Tool
Adapters,” in ICCSA2012, pp. 35–42, Jun. 2012.

[12] S. Voget, “AUTOSAR and the automotive tool chain,” in
Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’10, pp. 259–262, 2010.

[13] M. N. Wicks, “Tool Integration within Software Engineering
Environments: An Annotated Bibliography,” Heriot-Watt
University, Tech. Rep., 2006.

[14] A. W. Brown and M. H. Penedo, “An annotated bibliography
on integration in software engineering environments,”
SIGSOFT Softw. Eng. Notes, vol. 17, no. 3, pp. 47–55, 1992.

[15] A. Koudri and J. Champeau, “MODAL: A SPEM Extension
to Improve Co-design Process Models New Modeling
Concepts for Today’s Software Processes, LNCS vol. 6195,
ch. 22, pp. 248–259, 2010.

[16] R. Bendraou, B. Combemale, X. Cregut, and M. P. Gervais,
“Definition of an Executable SPEM 2.0,” in APSEC, pp.
390–397, 2007.

[17] B. Polgar, I. Rath, Z. Szatmari, A. Horvath, and I. Majzik,
“Model-based Integration, Execution and Certification of De-
velopment Tool-chains,” in Workshop on model driven tool
and process integration, pp. 36–48, Jun. 2009.

[18] G. Karsai, A. Lang, and S. Neema, “Design patterns for open
tool integration,” Software and Systems Modeling, vol. 4,
no. 2, pp. 157–170, May 2005.

[19] A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, Horváth,
I. Majzik, A. Pataricza, B. Polgár, I. Ráth, D. Varró, and
G. Varró, “Workflow-driven tool integration using model
transformations,” in Graph transformations and model-driven
engineering, pp. 224–248, 2010.

273Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

