ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Intrusion Detection with Symbolic Model Verifier

Ines Ben Tekaya

PRINCE Laboratory
4011 Hammam Sousse, Tunisia
bentekaya.ines@voila.fr

Abstract— Many intrusions came from internal users. This
behavior can cause damage without human interventio
viruses, worms, trojan horses, etc. This paper desbes our
intrusion detection method in Linux/Unix commands sing
formal verification. The main features of this work are
twofold. It exploits formal method in the intrusion detection
field. It presents our tool TLID which can transform Linux
code to Symbolic Model Verifier.

Keywords-attacks; intrusion; security; scenarios; Linux
commands; model verifier.

[. INTRODUCTION
The intrusion field was introduced by Andersonwds

Mohamed Graiet

MIRACL, ISIMS
BP 1030, Sfax 3018, TUNISIA
mohamed.graiet@imag.fr

ecBir Ayeb

PRINCE Laboratory
4Hammam Sousse, Tunisia
ayeb_b@yahoo.com

empirical approach. This classification included tmoels
based on aggregative, training or experimental ghast. The
present work falls mainly within the model approadhe
data are not based in the past event but they csenpo
model. It is a theoretical representation of aeystvhich is
composed of elements and relation.

The reminder of the paper is organized as follogctiBn
2 deals with intrusion background. Section 3 désgsriour
method. Section 4 proposes practical tool and raxeatal
results for intrusion scenarios. Section 5 sumrearithe
paper, with concluding remarks.

II. INTRUSIONBACKGROUND
The next subsections summarize attacks topologyeso

defined as an attempt or a threat to be the palentidataset used in the literature for intrusion deacand show

possibility of a deliberate unauthorized attemptaiizess
information, manipulate information, or render asteyn
unreliable or unusable [1]. The difference betwigrusion
and attack consists of the fact that intrusion malicious,
externally or internally induced fault resultingffin an attack
that has succeeded in exploiting vulnerability, levlai fault is
the adjudged or hypothesized cause of an errorcabse of
which is intended to be avoided or tolerated. Aadk is a
malicious technical interaction fault aiming to &ip
vulnerability as a step towards achieving the faiah of the
attacker[2].

A statistical study shows that 98% of enterprisageha
firewall to be protected from external attacks; koer, 80%
of attacks came from internal users [3]. Deteciimgrnal
normal user behavior is a difficult problem becaasaser

can have much dynamic behavior and it will be atmos

impossible to create user profiles that determithesnormal

behavior. Using a system to distinct normal usemfr

intruders is necessary. This system is called s$idru
Detection System (IDS).

systems intrusions [4].

We choose to work with Unix/Linux operating system

because in people's minds, if it is non-Windowss isecure
[5]- This hypothesis will be countered here. Mostails for
Unix/Linux system can be found in [6].

The literature on detection using Linux/Unix commgsn

offers a variety of methods. Despite their diversiheir

common objective is: to distinguish between a nérma

behavior and an intrusive behavior. From an abistraov

point, we organize these work into one main apgroac

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

It is defined as a security
technology attempting to identify and isolate cotepu

detection methods using Unix commands

A. Attacks topology

Attacks take several forms to break one or moréhef
security properties. They can be grouped accorttinipeir
functionality as described in the following subsats [7]:

e Gathering Security-relevant Information: Before
experiencing an attack, a hacker tries to obtain
necessary information that is probably sensibleiabo
the targeted system, which can be employed later to
obtain access to this system. Useful informatiom ca
be obtained by different ways such as network
scanning and vulnerability scanning or even bygisin
public search engines such as Google or social
engineering methods.

» Access Gain Attacks: With information gathered by
the above methods, attackers try to obtain a
privileged access on a system by exploiting
vulnerabilities in the services or the applications
installed on this system or a bad configuratiothef
network. This kind of attacks primarily grants
unauthorized access to the targeted system. For
example, one of the configuration problems is the
use of weak passwords in systems where a bad
policy of password definition allows users to chmos
simple and easy guessable passwords. Otherwise, an
attacker can use cracking tools such as “john the
ripper” [8] to obtain passwords by brute-force.
Buffer-overflow attacks are another example that
allows attackers to execute arbitrary code on the
targeted hosts.

183

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

« Denial of service (DoS): DOS attacks are designed Another method, used statistical method, is called
to overload or disable the capabilities of a maghin uniqueness. It is based on the idea that commamotls n
or a network, and thereby render it unusable opreviously seen in the training data may indicate a
inaccessible. An example of denial of service is aattempted masquerade. Uniquely used commands &ccoun
fork bomb. It works by creating a large number offor 3% of the data. A command has popularity ixaetly i
processes very quickly in order to saturate theusers use that command. They group the commands suc
available space in the list of processes kept lay ththat each group contains only commands with theesam
computer's operating system. If the process tablpopularity. They define a test statistic that bsildn the
becomes saturated, no new programs may start untilotion of unpopular and uniquely used commands.yThe
another process terminates. assign the same threshold to all users. This thiésis

« Malware Attacks: This category of attacks can fesulestimated via cross validation: They split the ioagjtraining
in damages as simple as displaying a simple flickeglata in the SEA dataset into two data sets of 40@0D1000
to catastrophic damages such as completelgpommands. Using the larger data set as training, daey
formatting hard disks. It groups virus, worm, Troja assign scores for the smaller one. This is repdatedimes,

horse, spyware, rootkit [9] and spam. each time assigning scores to a distinct set of0100
. i commands. They set the threshold to the 99th plearf
B. Detection Using UNIX Commands the combined scores across all users and all fiossc

The object of intrusion can be files, data basesyork validations. For their data, the resulting thredhisl 0.2319
connection, Input/output systems or commands Lidni. [12][14].
In this paper we are interested about intrusionngisi Another method is called Bayes 1-Step Markov Motdel.
Linux/Unix commands because it can characterizer usds proposed by Schonlau, et al. The authors use the
behaviour more efficiently than other object. Tbidivings information of 1-step command transition probaieiit They
paragraphs present some works about methods using U build transition matrices for each user’s trainangl testing
commands. These works are classified into two elasthe data. The detector triggers the alarm when theren is
class of intrusion detection and the class of masgle considerable difference between the training detasttion
detection. matrix and the testing data matrix. This technigues the
llgun, et al. present the state transition analpséthod best performer in terms of correct detections failed to get
[10][11]. They used the known Unix intrusion to @@ a close to the desired false alarm rate [12].
penetration scenario. A penetration is viewed asquence Maxion use Naive Bayes classifiers and detect
of actions performed by an attacker that leads fsmme masqueraders by looking at the classifiers misifieston
initial stat on a system to a target compromisatestvhere a behavior [15]. This method use command occurrence
state is a snapshot of the system representingathes of all probability distribution modeling the UNIX sequencehe
volatile, semi-permanent and permanent memory imtst goal of the training procedure is to establish ifgsfof self
on the system. The initial state corresponds tethe of the and nonself, and to determine a decision threskotd
system just prior to the execution of the penetratiThe discriminating between examples of self and nondetir
compromised state corresponds to the state regd@iftim the each User X in the SEA dataset, a model of Not X @ao
completion of the penetration. Between the initadd be built using training data from all other victim§he
compromised states are one or more intermediatie staprobability of the test sequence having been gésabray
transitions that an attacker performs to achieve thNot X can then be assessed in the same way as the
compromise. probability of its having been generated by UserTXe
This method is based on sequence matching. Thiarger the ratio of the probability of originatimgth X to the
incoming stream event is segmented into overlapfikegl- probability of originating with Not X, the greatethe
length sequences. The choice of the sequence |ehgth evidence in favor of assigning the test sequencX.t®he
depends on the profiled user. In practical, it)edi to the exact cut-off for classification as X, that is thatio of
value | = 10 in the SEA dataset [12]. Each sequéntieen probabilities below which the likelihood that thegsience
treated as an instance in an I-dimensional spackign was generated by X is deemed too low, can be ditedchioy
compared to the known profile. The profile is a §&}, of a cross-validation experiment during which proligbiatios
previously stored instances and comparison is pedd for sequences which are known to have been gedebgte
between all {{T} and the test sequence via a similarity self are calculated, and the range of values tleggigmate
measure. Similarity is defined by a measure, Sinyjx, Sequences cover is examined.
which makes a point-by-point comparison of two ssopes, oo . -
x and y, counting matches and assigning greateghtvéd C. Limitations in existing methods
adjacent matches. The intrusion detection method in Linux/Unix commdan
The maximum of all similarity values computed formsusing formal verification seeks to improve on somwfe
the score for the test command sequence. Since Hoeses limitations that the authors observed in the %methOdS
are very noisy, the most recent 100 scores areaggdr If This section brIEﬂy identifies some of their chaemistics.

the average score is below a threshold an alaraisied. The The major weakness of these methods is that thegrde
threshold is determined based on the quantiles hef t ON aggregative, training or experimental past datae
empirica] distribution of average scores [13] results of statical methods are closed to the ItTglmjata

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 184

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

while the result of state transition analysis mdtieodepend
with the defined penetrations attacks which are vadnable
now.

statements or sentences to form more complicated
propositions, statements or sentences, as weleafogical
relationships and properties that are derived fribese

Another limitation is they are based on analysingmethods of combining or altering statements.

command by command (line per line). This local gsial
can not be equivalent to a global analysis (alinafs).

Lastly, they cannot make difference between thersrd
of commands in the sequence used. The staticalochetire
based on the command frequency while a state ti@msi
analysis method can't detect the attacks basedequéncy
such as deny of service.

In the following, we focus in these limitations fgoesent
our method based on model using formal verificatigth
Symbolic Model Verifier (SMV).

[ll. INTRUSIONDETECTIONIN LINUX/UNIX
COMMANDS WITH SMV

This section presents our method. It combines tests
the direct and indirect ways to detect the intmsiolt
focuses on global analysis. The following propositplays a
central role here.

Proposition 1 A global analysis can not be realized in k
local analysis.

Example 1.Let GAis a global analysis andA={u, W,

..., W} a k local analysis. Suppose ti@A can be realized in
k local analysis. In this case, if GA is false, mest have
one or moray is false

This supposition is false because we can find Gilse
while LA is true. The example is here: We have tygers X
and Y. User X can execute the following actionsodify all
executable files, named F and that he have writeigsion,
owned by user Y. X append some code to files F. Mérgy
users, that have write permission in these fileceate F, all
F files will be infected. These actions can be:

1. X search all Y executables files, that X have
write permission,

2. X append some legal code to infect files
3. Any authorised users execute ond-diles
4. All Ffileswill be infected

The local analysis for actions 1, 2 and 3 are leBhaky
have a true value, but the global analysis gividse value:
all F files will be infected.

To perform a global analysis we should specify wdrat
the anti-properties that characterize an attadtscr

The anti-properties (AP) are unwanted propertias ¢an
cause damage in our system. They can be:

AP1: Execute some illegal commands,

AP2: Change source or command destination,
AP3: Execute illegal actions (parameters, etc.),
AP4: Having infinite loop,

AP5: Having auto-replication,

APG6: Detain a resource infinitely

The”s;ystem specification are formalizes using the A
They can be expressed in proportional logic or taap
logic.

Propositional logic is the branch of logic that dies
ways of joining and/or modifying entire propositin

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The temporal logic is used within the frameworktloé
reagent systems, which where the software is sepbus
maintain a relation of coherence between the ifiputs and
the output flows. The temporal logic allows expiegsthe
state evolution of a system.

We choose the temporal logic because temporal lisgic
an extension of propositional logic. Either in teorgd logic,
propositions are qualified in terms of time.

The following paragraph explains how to write theia
properties AP to properties (P) using temporaldogi

AP1: Execute some illegal commands

The AP1 consider that user can execute some
commands. For example, if the user is an administtar,
he can execute commands like adduser, userdel, etc.

P1: Do not execute some illegal commands

P1 ={(Ui,Cjyuid U et CjO C}

where: U: set of users

C: set of illegal commands

(Ui, Cj): Ui can use Cj

Use(Ui, Cj) - (Ui, Cj) O P1

AP2: Change source or command destination

The AP2 consider that the command path was
modified.

P2: Do not change source or command destination

P2 = {(Ui, F)/Uid U et FjO F}

where: U: set of users

F: set of illegal folder

(Ui, Cj): Ui can't write on Fj

Write(Ui, Fj) - (Ui, Fj) O P2

An example is: write(userl, /bin/cp)

AP3: Execute illegal actions (parameters, etc.),

The AP3 consider that some user can use or modify
objects of other users that he don’t have a permigs.

P3: Do not execute illegal actions (parameters.) et

P3 ={(Ui,0j)/Ui 0 U et Oj0 O}

where: U: set of users

O: set of illegal objects.

(Ui,0Oj) : Ui can read Qj

Read (Ui,0j)- (Ui,0j) O P3

AP4: Having infinite loop

The AP4 consider that user can modify the system
performance. So they consume memory to overload ¢h
system.

P4: Do not have infinite loop

AP4 = G "~(ai Maj)

let:G: always

~: and operator

=: not operator

ai : loop and aj: loop condition

An example is: while(true), while(i :=i+1), etc.

Some others anti-properties can be formalized sagh

having auto-replication detain a resource infigiteitc.

185

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The user observed behavior is the possible behdviier
deduced from Linux/Unix terminal. We are interesidubut

a script not about a line of commands.

In this paper, we concentrate on formal verificatio

technique that is based on temporal logic, becahsé
allows in general less involvement of the user e t

verification process: model checking.

Our basic idea is to exploit model checking. Thisdel

use algorithms, executed by computer tools, tofywetie

TABLE I. VARIABLES AND CONSTANTS CASES

Type LSc SMV
Integer variable varname = valeur VAR <signal> mher ;
Variable of an| foriin01234 VAR <signal>: 0.4 ;
interval
Constant SIZE=32 #define SIZE 32
Initialisation signal = ready init(signal) := reagdy
Modification signal = busy next(signal) := busy ;

correctness of our system. The user inputs a geiseriof a
model of the system (the possible behavior) anesaription
of the requirements specification (the desirableabi®r) and
leaves the verification up to the machine. If anoreiis
recognized the tool provides a counter-example sipw
under which circumstances the error can be gemkeratee

Table 1l shows the transformation in arrays cases.

counterexample consists of a scenario in whichntioglel

behaves in an undesired way.

In the rest of this paper, we use the term Linukijctv
can be interchanged with Unix. Our method is baseithe

TABLE II. ARRAYS CASES
Type LSc SMV
Array declare -a nametab <nametab> : array <x>..cy>
of <type> ;
Matrix char mat[2][2] mat : array 0..1 of array@.|
of boolean ;

user's observed behavior and in the system spataific The
user's observed behavior is modeled by a Linuypsdtiwill
be transformed into SMV code. However Linux scdifters

from SMV code. We propose LSc2SMV (Linux Script to

Symbolic Model Verifier) tool to do the transforricat.

Table Il shows the transformation in expressicases.

TABLE IIl.

--The user observed behavior is transformed by our

EXPRESSIONS CASES

proposed tool, named LSc2SMV (Linux Script to Syfitho

Type

LSc

SMV

Model Verifier), to SMV code.
We obtain a SMV program containing logical propesti

Boolean operators

-a (and) -o (or)
!(not)

(“and”,“or”,“not”)

which we verify by SMV tool. The result will be vied
properties if the behavior is normal or violatedp®rties if

the behavior is intrusive. Figure 1 illustrates thchema.

User ohserved behaviour Systermn specification

Condition operators if-then-else if-then-else
case switch case switch
Arithmetical operators| +,-*,/, % +, -*, /,mod
Comparison operators -eq, -ne, -It, -gt, S e
-le, -ge “<=")

Seript Linux

Rewriting in termpaoral logi
LSc25hy

SMY code

Lagical properties

Result

Table IV shows the transformation in the functiase

form.
TABLE IV. FUNCTION CASE
Type LSc SMV
function function name() MODULE name(input, output
{3 {..}

Table V shows the transformation in the conditiow a
loop cases form.

Figure 1. A diagram tracing our method. TABLE V. CONDITIONS AND LOOP CASES
The LSpZSI\/IV tool will convert Linux script to an SM Type LSc SMV
code. It will be in the form of main module (). Beow the [Condition if<condition>] <stmt1> elsé if(<condition>) <stmt1>
transformation in constant, in variables, in arrays <stmt2> fi else <stmt2>
expressions, in functions, and in loops and comkti Tables | Case case $variable in case{<cond1>: <stmtl>
I, 11, 11, IV and V give this direct transformatio vall) stmtl> ; ; .. <condn> : <stmftn>
......) <stmtn> ; ; esac [default : <dftlstmt>]}
. . Switch switch(<expr>) switch(<expr>){
Table | shows the transformation in constants and <casel> ' <stmtl> breaksw| <casel> : <stmtl> ...
variables. <casen> : <stmtn> breaksw| <casen> : <stmtn>

default : <dftlstmt> breaksw

[default : <dftlstmt>]}

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

186

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

endsw TLID can do a local analysis a global analysis lesmv
for for var in $files ; for(var = init ; cond ; var| ysers.

do = nS:?m» Intrusion scenario Sc between users can be dedisied
while while condition ; do <stmt> Sc={A, V, S} with:

done B A: an attacker

V: a victim
The indirect transformation is based on properties S ={sl, s2... sn}: a set of steps , .

verify and in Linux script. Every step is a sequence of commands with their

Some other conversion in the file name or in tHddio ~Parameters. The next paragraph shows an example of
name can be made. This is because SMV cannot gupp@cenario. It have been developed and tested inxLived
some character like . or / in the variable nambe Table Vi~ Hat Enterprise version 5 and we use TLID and SMY fo
gives some conversion.

=
Choose a user: | ines -]
TABLE VL. NAME TRANSFORMATION Choose a day: [may > |[zs =][z011 =]| e |
Type LSc SMV
File letc/passwd,/etc/inittab, etcpasswd,etcinittab,
name [etc/ld.so.conf, etcldsoconf,etcliloconf,
etc/lilo.conf,etc/group etcgroups
Folder | /var,/usr/bin,/dev, var,usrbin,dev,etcsecurity,
name letc/security, varspool,etc,usretc,usr,
Ivar/spool,/etc, usrlib,slash
lusr/etc,/usr,/usr/lib,/
[] P1:Execute some illegal commands
[_] P2:Change source or command destination
" ‘:i P3:Use illegal parameters
[] P4:Having infinite loop
IV. TLID: TOOLFORLINUX INTRUSION Il v s lenticn
DETECT'ON ["] P6:other properties 1o be defined
There are two solutions to survey a user:
= The first solution consists in using the file]
bash_history. But this file cannot give a Figure 2. TLID
strengthened and real-time history because when you — e
N . ', { Intrusion Det Commands. W
use other shell, like csh,, this method cannot saee AC Snitier Dets
history. Either when you tape kill -9. Choose a user: [ines =
= The second solution is to develop a patch. It Gssi IO may > |[[10 v |[z0n ~][ox |

to modify file system which are bashhist.c, e ey e e e st
histexpand.c, histfile.c, history.h and historyto (
obtain the patch e-mail : bentekaya.ines@voila.fr).
When a user writes anything in the console, it bl
saved in a file using his nam&his patch can be
used in every system to survey a command user.
Figure 2 gives some functionality of TLID. You can
choose a user, a day and we obtain the behavias It
composed by time, PID and commands.
After that you can choose a property to verify.this

example, we choose to verify the use of illegalpsaters. :f‘ e gl s BN
The button LSc2SMV became enabling. When we click e Tt araimatiars
below, we obtain the SMV file. This file containget APTRPEItE [i Having ininte loop

verification of action 1: cd /tmp and action 2: cp lud e Hrelng sita s lEticn

letc/ld.so.conf /tmp. It consists to verify the méssion of R R

using folder /tmp and /etc/ld.so.conf file. Thisgven by e)

SMV file in Figure 4. The two properties we speaifiare

file confidentiality (conf) and folder confidentigi (confo). Figure 3. Observed ines behavior in May-10-2011
We choose “Prop|Verify all" to verify if the penties we

specified in fact hold true or false for all tim&he result is

given by Figure 5. The conf property should begabnd a

counterexample appears in the trace page. Thisibedaes

user use a file that he don’t have a permission.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 187

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

BT — BB Using TLID, we choose to the anti property: Having
s B infinite loop. If we don’t know how a property thh@ose, we
paramfo : {tmp}; . . .

R . can mark all checkbox. The result is given by Fégiir
: e |, < cone W) =]
e Eile Prop View Goto History Abstraction Help
nlammfm - Browser | Properties | Results | Cone | Using | Groups
e Property | Resutt |
param1 : {etclilocont}; loop false
file_nread_ussr1 ! {skcpasswd sicinittab etcldsoconfetcliloconfestegroups);
12:?5‘“3;3' = {=lclilocont};
F{::I\Iech::‘ H
next(lect) i= 0 Source | Trace | Log |
é’.l‘?..";.'n; e o) File Edit Run View
; S
_bougleivhiles
|condition| true
Figure 4. SMV file .
Figure 7. The result
Sm =
View Goto History Abstraction Help V CONCLUS|ON
Browser | Properties | Results | Gone | Using | Groups | . . .
e e | In this paper, we are interested by attacks usiimgix_
oo commands. We have presented their topology. We have
shown that their impact can be inoffensive or cestidy
information system.
We have proposed a method that exploits model

e [checking. This model use algorithms, executeddmyputer

= tools, to verify the correctness of our systemcdibines
i 2 security field with formal verification. The usenputs a

L sretlons description of a model of the system (the posdieleavior)
B e and a description of the requirements specificatftire

desirable behavior) and leaves the verification tapthe
machine. If an error is recognized the tool proside

Figure 5. Verification with SMV counter-example showing under which circumstandes t
error can be generated. The counterexample corwisss
L .. scenario in which the model behaves in an undesiesd
We have two users. The victim is named ‘troismille’ " This method is applied to distinct normal user bidra
(user-id: 3000) and the attacker is named ‘inesefdd: from intruders’ behavior. It has lead to the TLIDot
5502). development. We give some experimental resultshtiws
[root@localhost ~]# cat /etc/passwd how the TLID works under some attacks.
Result:ines:x:5502:5502::/home/ ines:/bin/bash There is another attacks group which can be named
troismille:x: 3000: 3000::/home/ troismille:/binkia unknown attacks. In this new group, attacks coaldse the

This scenario consists of sending many mail fromr us intrusion detection systems crash and thus incdample
ines to user troismille to saturate his mail. Iistbase, the testing. It becomes clear that present approachesaluate
user troismille cannot access to his e-mail. Trenado is intrusion detection system are limited to some kmow

given by Figure 6. attacks.
We divide our future work into two main parts: refi
e x| and improve attacker competence and extend scet@rio

Session Edition Affichage Signets Configuration Aide Include multl_attacks and e(',]UIva|ent attaCkS
[tines@localhost ~1s while true; [~

= do

> mutt -5 "subject" -a fiche.txt troismille@localhost.localdomain <corps.txt;

> done &)

REFERENCES

[]| @ rerminal | 1 [1] J. P. Anderson, “Computer Security Threat Monitgramd

- Surveillance, " Technical report, Washing, PA, Jani
Anderson Co., 1980.

[21 D. Powell and R. Stroud, “Conceptual Model and
Architecture of MAFTIA”, Eds., MAFTIA (Malicious ath
Accidental Fault Tolerance for Internet Applicagrproject
deliverable D21, LAAS-CNRS Report 03011, 2003.

Figure 6. An example of scenario

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 188

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

(3]

[4]

(5]

(6]
(71

(8]

[9]

(10]

(11]

[12]

(13]

[14]

[15]

C. Mathei,. (2004) “Ouverture des réseaux IP daprise :
risques ou opportunité = ?” [Online]. Available:
http://www.awt.be/contenu/tel/res/IPforum23-04_Rése
unifié et sécurisé.pdf.

B. E. Cloete and L. M. Venter, “A comparison ofrirsion
Detection systems” Computers & Security, vol 2Guks 8,
pp. 676-683, Dec. 2001.

A. Patrizio. (2006) “Linux Malware On The Rise. Ofiline].
Available: http://www.internetnews.com/dev-
news/article.php/3601946.

M. Santana, “Chapter 6 - Linux and Unix Securitpn@uter
and Information Security” Handbook 2009, pp. 79-92

M. E. S. Gadelrab, “Evaluation des Systémes de dhéte
d'Intrusion,” thése, Université de Toulouse - PSabatier,
France, Dec. 2008.

M. F. Krafft (2007) “John the Ripper password crck
[Online]. Available: http://www.openwall.com/john/.

G. Hoglund, and J. Butler, “Rootkits: Subvertingeth
Windows” Kernel, Addison-Wesley Professional, 2005.

Koral llgun , Richard A. Kemmerer , Phillip A. Pas.
“State Transition Analysis: A Rule-Based Intrusidatection
Approach. ” Journal IEEE TRANSACTIONS on Software
EngineeringyVol. 21,No. 3, pp.181-199, 1995.

K. llgun. “USTAT - A Real-time Intrusion DetectioBystem
for UNIX,” Master's Thesis, University of Californiat Santa
Barbara, Nov. 1992.

M. Schonlau, W. DuMouchel, W. H. Ju, A. F. Karr, Wheus
and Y. Vardi. “Computer Intrusion: DetectingMascpbes”
Statistical Science, Vol. 16, No. 1,pp 1-17, 2001.

T. Lane and C E. Brodley. “Sequence matching aachleg

in anomaly detection for computer security.” In ARA
Workshop : Al Approaches to Fraud Detection andkRis
Management, pp. 43—49. AAAI Press (1997).

M. Theus and M. Schonlau. “Intrusion detection basa
structural zeroes.” Statistical Computing and Greph
Newsletter 9, pp. 12-17, 1998.

M. Roy. “Masquerade detection using enriched condnan
lines.” In: Proceedings of international conferenca
Dependable Systems and Networks (DSN-03), pp. SHlde
2003.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

189

