
Intrusion Detection with Symbolic Model Verifier

 Ines Ben Tekaya Mohamed Graiet Bechir Ayeb
 PRINCE Laboratory MIRACL, ISIMS PRINCE Laboratory
 4011 Hammam Sousse, Tunisia BP 1030, Sfax 3018, TUNISIA 4011 Hammam Sousse, Tunisia
 bentekaya.ines@voila.fr mohamed.graiet@imag.fr ayeb_b@yahoo.com

Abstract— Many intrusions came from internal users. This
behavior can cause damage without human intervention:
viruses, worms, trojan horses, etc. This paper describes our
intrusion detection method in Linux/Unix commands using
formal verification. The main features of this work are
twofold. It exploits formal method in the intrusion detection
field. It presents our tool TLID which can transform Linux
code to Symbolic Model Verifier.

 Keywords-attacks; intrusion; security; scenarios; Linux
commands; model verifier.

I. INTRODUCTION

The intrusion field was introduced by Anderson. It was
defined as an attempt or a threat to be the potential
possibility of a deliberate unauthorized attempt to access
information, manipulate information, or render a system
unreliable or unusable [1]. The difference between intrusion
and attack consists of the fact that intrusion is a malicious,
externally or internally induced fault resulting from an attack
that has succeeded in exploiting vulnerability, while a fault is
the adjudged or hypothesized cause of an error, the cause of
which is intended to be avoided or tolerated. An attack is a
malicious technical interaction fault aiming to exploit
vulnerability as a step towards achieving the final aim of the
attacker [2].

A statistical study shows that 98% of enterprises have a
firewall to be protected from external attacks; however, 80%
of attacks came from internal users [3]. Detecting internal
normal user behavior is a difficult problem because a user
can have much dynamic behavior and it will be almost
impossible to create user profiles that determines the normal
behavior. Using a system to distinct normal user from
intruders is necessary. This system is called Intrusion
Detection System (IDS). It is defined as a security
technology attempting to identify and isolate computer
systems intrusions [4].

We choose to work with Unix/Linux operating system
because in people's minds, if it is non-Windows, it is secure
[5]. This hypothesis will be countered here. More details for
Unix/Linux system can be found in [6].

The literature on detection using Linux/Unix commands
offers a variety of methods. Despite their diversity, their
common objective is: to distinguish between a normal
behavior and an intrusive behavior. From an abstract view
point, we organize these work into one main approach:

empirical approach. This classification included methods
based on aggregative, training or experimental past data. The
present work falls mainly within the model approach. The
data are not based in the past event but they compose a
model. It is a theoretical representation of a system which is
composed of elements and relation.

The reminder of the paper is organized as follow. Section
2 deals with intrusion background. Section 3 describes our
method. Section 4 proposes practical tool and experimental
results for intrusion scenarios. Section 5 summarizes the
paper, with concluding remarks.

II. INTRUSION BACKGROUND

The next subsections summarize attacks topology, some
dataset used in the literature for intrusion detection and show
detection methods using Unix commands

A. Attacks topology

Attacks take several forms to break one or more of the
security properties. They can be grouped according to their
functionality as described in the following subsections [7]:

• Gathering Security-relevant Information: Before
experiencing an attack, a hacker tries to obtain
necessary information that is probably sensible about
the targeted system, which can be employed later to
obtain access to this system. Useful information can
be obtained by different ways such as network
scanning and vulnerability scanning or even by using
public search engines such as Google or social
engineering methods.

• Access Gain Attacks: With information gathered by
the above methods, attackers try to obtain a
privileged access on a system by exploiting
vulnerabilities in the services or the applications
installed on this system or a bad configuration of the
network. This kind of attacks primarily grants
unauthorized access to the targeted system. For
example, one of the configuration problems is the
use of weak passwords in systems where a bad
policy of password definition allows users to choose
simple and easy guessable passwords. Otherwise, an
attacker can use cracking tools such as “john the
ripper” [8] to obtain passwords by brute-force.
Buffer-overflow attacks are another example that
allows attackers to execute arbitrary code on the
targeted hosts.

183

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• Denial of service (DoS): DOS attacks are designed
to overload or disable the capabilities of a machine
or a network, and thereby render it unusable or
inaccessible. An example of denial of service is a
fork bomb. It works by creating a large number of
processes very quickly in order to saturate the
available space in the list of processes kept by the
computer's operating system. If the process table
becomes saturated, no new programs may start until
another process terminates.

• Malware Attacks: This category of attacks can result
in damages as simple as displaying a simple flicker
to catastrophic damages such as completely
formatting hard disks. It groups virus, worm, Trojan
horse, spyware, rootkit [9] and spam.

B. Detection Using UNIX Commands

The object of intrusion can be files, data bases, network
connection, Input/output systems or commands Linux/Unix.
In this paper we are interested about intrusion using
Linux/Unix commands because it can characterize user
behaviour more efficiently than other object. The followings
paragraphs present some works about methods using Unix
commands. These works are classified into two classes: the
class of intrusion detection and the class of masquerade
detection.

Ilgun, et al. present the state transition analysis method
[10][11]. They used the known Unix intrusion to create a
penetration scenario. A penetration is viewed as a sequence
of actions performed by an attacker that leads from some
initial stat on a system to a target compromised state, where a
state is a snapshot of the system representing the values of all
volatile, semi-permanent and permanent memory locations
on the system. The initial state corresponds to the state of the
system just prior to the execution of the penetration. The
compromised state corresponds to the state resulting from the
completion of the penetration. Between the initial and
compromised states are one or more intermediate state
transitions that an attacker performs to achieve the
compromise.

This method is based on sequence matching. The
incoming stream event is segmented into overlapping fixed-
length sequences. The choice of the sequence length, l,
depends on the profiled user. In practical, it’s fixed to the
value l = 10 in the SEA dataset [12]. Each sequence is then
treated as an instance in an l-dimensional space and is
compared to the known profile. The profile is a set, {T}, of
previously stored instances and comparison is performed
between all y∈{T} and the test sequence via a similarity
measure. Similarity is defined by a measure, Sim(x, y),
which makes a point-by-point comparison of two sequences,
x and y, counting matches and assigning greater weight to
adjacent matches.

The maximum of all similarity values computed forms
the score for the test command sequence. Since these scores
are very noisy, the most recent 100 scores are averaged. If
the average score is below a threshold an alarm is raised. The
threshold is determined based on the quantiles of the
empirical distribution of average scores [13].

Another method, used statistical method, is called
uniqueness. It is based on the idea that commands not
previously seen in the training data may indicate an
attempted masquerade. Uniquely used commands account
for 3% of the data. A command has popularity i if exactly i
users use that command. They group the commands such
that each group contains only commands with the same
popularity. They define a test statistic that builds on the
notion of unpopular and uniquely used commands. They
assign the same threshold to all users. This threshold is
estimated via cross validation: They split the original training
data in the SEA dataset into two data sets of 4000 and 1000
commands. Using the larger data set as training data, they
assign scores for the smaller one. This is repeated five times,
each time assigning scores to a distinct set of 1000
commands. They set the threshold to the 99th percentile of
the combined scores across all users and all five cross
validations. For their data, the resulting threshold is 0.2319
[12][14].

Another method is called Bayes 1-Step Markov Model. It
is proposed by Schonlau, et al. The authors use the
information of 1-step command transition probabilities. They
build transition matrices for each user’s training and testing
data. The detector triggers the alarm when there is a
considerable difference between the training data transition
matrix and the testing data matrix. This technique was the
best performer in terms of correct detections, but failed to get
close to the desired false alarm rate [12].

Maxion use Naive Bayes classifiers and detect
masqueraders by looking at the classifiers misclassification
behavior [15]. This method use command occurrence
probability distribution modeling the UNIX sequence. The
goal of the training procedure is to establish profiles of self
and nonself, and to determine a decision threshold for
discriminating between examples of self and nonself. For
each User X in the SEA dataset, a model of Not X can also
be built using training data from all other victims. The
probability of the test sequence having been generated by
Not X can then be assessed in the same way as the
probability of its having been generated by User X. The
larger the ratio of the probability of originating with X to the
probability of originating with Not X, the greater the
evidence in favor of assigning the test sequence to X. The
exact cut-off for classification as X, that is the ratio of
probabilities below which the likelihood that the sequence
was generated by X is deemed too low, can be determined by
a cross-validation experiment during which probability ratios
for sequences which are known to have been generated by
self are calculated, and the range of values these legitimate
sequences cover is examined.

C. Limitations in existing methods

The intrusion detection method in Linux/Unix commands
using formal verification seeks to improve on some of
limitations that the authors observed in the existing methods.
This section briefly identifies some of their characteristics.

The major weakness of these methods is that they depend
on aggregative, training or experimental past data. The
results of statical methods are closed to the training data

184

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

while the result of state transition analysis method is depend
with the defined penetrations attacks which are non valuable
now.

Another limitation is they are based on analysing
command by command (line per line). This local analysis
can not be equivalent to a global analysis (all of lines).

Lastly, they cannot make difference between the orders
of commands in the sequence used. The statical methods are
based on the command frequency while a state transition
analysis method can’t detect the attacks based in frequency
such as deny of service.

In the following, we focus in these limitations to present
our method based on model using formal verification with
Symbolic Model Verifier (SMV).

III. INTRUSION DETECTION IN LINUX/UNIX

COMMANDS WITH SMV

This section presents our method. It combines tests on
the direct and indirect ways to detect the intrusions. It
focuses on global analysis. The following proposition plays a
central role here.

Proposition 1. A global analysis can not be realized in k
local analysis.

Example 1. Let GA is a global analysis and LA={u1, u2,
…, uk} a k local analysis. Suppose that GA can be realized in
k local analysis. In this case, if GA is false, we must have
one or more ui is false.

This supposition is false because we can find GA is false
while LA is true. The example is here: We have two users X
and Y. User X can execute the following actions : modify all
executable files, named F and that he have write permission,
owned by user Y. X append some code to files F. When any
users, that have write permission in these file, execute F, all
F files will be infected. These actions can be:

1. X search all Y executables files, that X have
write permission,

2. X append some legal code to infect files F
3. Any authorised users execute one of F files
4. All F files will be infected

The local analysis for actions 1, 2 and 3 are legal. They
have a true value, but the global analysis gives a false value:
all F files will be infected.

To perform a global analysis we should specify what are
the anti-properties that characterize an attack script.

The anti-properties (AP) are unwanted properties that can
cause damage in our system. They can be:

• AP1: Execute some illegal commands,
• AP2: Change source or command destination,
• AP3: Execute illegal actions (parameters, etc.),
• AP4: Having infinite loop,
• AP5: Having auto-replication,
• AP6: Detain a resource infinitely
• …
The system specification are formalizes using the AP.

They can be expressed in proportional logic or temporal
logic.

Propositional logic is the branch of logic that studies
ways of joining and/or modifying entire propositions,

statements or sentences to form more complicated
propositions, statements or sentences, as well as the logical
relationships and properties that are derived from these
methods of combining or altering statements.

The temporal logic is used within the framework of the
reagent systems, which where the software is supposed to
maintain a relation of coherence between the input flows and
the output flows. The temporal logic allows expressing the
state evolution of a system.

We choose the temporal logic because temporal logic is
an extension of propositional logic. Either in temporal logic,
propositions are qualified in terms of time.

The following paragraph explains how to write the anti-
properties AP to properties (P) using temporal logic.

AP1: Execute some illegal commands
The AP1 consider that user can execute some

commands. For example, if the user is an administrator,
he can execute commands like adduser, userdel, etc.

P1: Do not execute some illegal commands
P1 = {(Ui,,Cj)/Ui ∈ U et Cj ∈ C}
where: U: set of users
C: set of illegal commands
(Ui, Cj): Ui can use Cj
Use(Ui, Cj) → (Ui, Cj) ∉ P1
AP2: Change source or command destination
The AP2 consider that the command path was

modified.
P2: Do not change source or command destination
P2 = {(Ui,,Fj)/Ui ∈ U et Fj ∈ F}
where: U: set of users
F: set of illegal folder
(Ui, Cj): Ui can’t write on Fj
Write(Ui, Fj) → (Ui, Fj) ∉ P2
An example is: write(user1, /bin/cp)
AP3: Execute illegal actions (parameters, etc.),
The AP3 consider that some user can use or modify

objects of other users that he don’t have a permission.
P3: Do not execute illegal actions (parameters , etc.)
P3 = {(Ui,Oj)/Ui ∈ U et Oj ∈ O}
where: U: set of users
O: set of illegal objects.
(Ui,Oj) : Ui can read Oj
Read (Ui,Oj) → (Ui,Oj) ∉ P3
AP4: Having infinite loop
The AP4 consider that user can modify the system

performance. So they consume memory to overload the
system.

P4: Do not have infinite loop
AP4 = G ^¬(ai ^aj)
let:G: always
^: and operator
¬: not operator
ai : loop and aj: loop condition
An example is: while(true), while(i :=i+1), etc.
Some others anti-properties can be formalized such as

having auto-replication detain a resource infinitely, etc.

185

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The user observed behavior is the possible behavior. It is
deduced from Linux/Unix terminal. We are interested about
a script not about a line of commands.

In this paper, we concentrate on formal verification
technique that is based on temporal logic, because that
allows in general less involvement of the user in the
verification process: model checking.

Our basic idea is to exploit model checking. This model
use algorithms, executed by computer tools, to verify the
correctness of our system. The user inputs a description of a
model of the system (the possible behavior) and a description
of the requirements specification (the desirable behavior) and
leaves the verification up to the machine. If an error is
recognized the tool provides a counter-example showing
under which circumstances the error can be generated. The
counterexample consists of a scenario in which the model
behaves in an undesired way.

In the rest of this paper, we use the term Linux, which
can be interchanged with Unix. Our method is based in the
user's observed behavior and in the system specification. The
user's observed behavior is modeled by a Linux script. It will
be transformed into SMV code. However Linux script differs
from SMV code. We propose LSc2SMV (Linux Script to
Symbolic Model Verifier) tool to do the transformation.

--The user observed behavior is transformed by our
proposed tool, named LSc2SMV (Linux Script to Symbolic
Model Verifier), to SMV code.

We obtain a SMV program containing logical properties
which we verify by SMV tool. The result will be verified
properties if the behavior is normal or violated properties if
the behavior is intrusive. Figure 1 illustrates this schema.

Figure 1. A diagram tracing our method.

The LSc2SMV tool will convert Linux script to an SMV
code. It will be in the form of main module (). We show the
transformation in constant, in variables, in arrays, in
expressions, in functions, and in loops and conditions. Tables
I, II, III, IV and V give this direct transformation.

Table I shows the transformation in constants and

variables.

TABLE I. VARIABLES AND CONSTANTS CASES

Type LSc SMV

Integer variable varname = valeur VAR <signal> : number ;

Variable of an
interval

for i in 0 1 2 3 4 VAR <signal> : 0..4 ;

Constant SIZE=32 #define SIZE 32
Initialisation signal = ready init(signal) := ready ;
Modification signal = busy next(signal) := busy ;

Table II shows the transformation in arrays cases.

TABLE II. ARRAYS CASES

Type LSc SMV

Array declare -a nametab <nametab> : array <x>..<y>
of <type> ;

Matrix char mat[2][2] mat : array 0..1 of array 2..0
of boolean ;

Table III shows the transformation in expressions cases.

TABLE III. EXPRESSIONS CASES

Type LSc SMV

Boolean operators -a (and) -o (or)
!(not)

(“and”,“or”,“not”)

Condition operators if-then-else
case switch

if-then-else
case switch

Arithmetical operators +, -,* , /, % +, -,* , /,mod
Comparison operators -eq , -ne, -lt, -gt,

-le, -ge
“=”,“<”, “>”, “>=”,
“<=”)

Table IV shows the transformation in the function case

form.

TABLE IV. FUNCTION CASE

Type LSc SMV

function function name()
{... } ;

MODULE name(input, output)
{... }

Table V shows the transformation in the condition and

loop cases form.

TABLE V. CONDITIONS AND LOOP CASES

Type LSc SMV

Condition if[<condition>] <stmt1> else
<stmt2> fi

if(<condition>) <stmt1>
else <stmt2>

Case case $variable in
val1) stmt1> ; ;
...... *) <stmtn> ; ; esac

case{<cond1> : <stmt1>
... <condn> : <stmtn>
[default : <dftlstmt>]}

Switch switch(<expr>)
<case1> : <stmt1> breaksw
<casen> : <stmtn> breaksw
default : <dftlstmt> breaksw

switch(<expr>){
<case1> : <stmt1> ...
<casen> : <stmtn>
[default : <dftlstmt>]}

186

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

endsw
for for var in $files ;

do
for(var = init ; cond ; var
= next)

<stmt>
while while condition ; do <stmt>

done

-

The indirect transformation is based on properties to

verify and in Linux script.
Some other conversion in the file name or in the folder

name can be made. This is because SMV cannot support
some character like . or / in the variable name. The Table VI
gives some conversion.

TABLE VI. NAME TRANSFORMATION

Type LSc SMV

File
name

/etc/passwd,/etc/inittab,
/etc/ld.so.conf,
etc/lilo.conf,etc/group

etcpasswd,etcinittab,
etcldsoconf,etcliloconf,
etcgroups

Folder
name

/var,/usr/bin,/dev,
/etc/security,
/var/spool,/etc,
/usr/etc,/usr,/usr/lib,/

var,usrbin,dev,etcsecurity,
varspool,etc,usretc,usr,
usrlib,slash

IV. TLID: TOOL FOR LINUX INTRUSION

DETECTION

There are two solutions to survey a user:
• The first solution consists in using the file

.bash_history. But this file cannot give a
strengthened and real-time history because when you
use other shell, like csh,, this method cannot save the
history. Either when you tape kill -9.

• The second solution is to develop a patch. It consists
to modify file system which are bashhist.c,
histexpand.c, histfile.c, history.h and history.c (to
obtain the patch e-mail : bentekaya.ines@voila.fr).
When a user writes anything in the console, it will be
saved in a file using his name. This patch can be
used in every system to survey a command user.

Figure 2 gives some functionality of TLID. You can
choose a user, a day and we obtain the behavior. It is
composed by time, PID and commands.

After that you can choose a property to verify. In this
example, we choose to verify the use of illegal parameters.
The button LSc2SMV became enabling. When we click
below, we obtain the SMV file. This file contains the
verification of action 1: cd /tmp and action 2: cp
/etc/ld.so.conf /tmp. It consists to verify the permission of
using folder /tmp and /etc/ld.so.conf file. This is given by
SMV file in Figure 4. The two properties we specified are
file confidentiality (conf) and folder confidentiality (confo).
We choose ``Prop|Verify all'' to verify if the properties we
specified in fact hold true or false for all time. The result is
given by Figure 5. The conf property should be false, and a
counterexample appears in the trace page. This because ines
user use a file that he don’t have a permission.

TLID can do a local analysis a global analysis between
users.

Intrusion scenario Sc between users can be defined as:
Sc = {A, V, S} with:
 A: an attacker
V: a victim
S = {s1, s2… sn}: a set of steps
Every step is a sequence of commands with their

parameters. The next paragraph shows an example of
scenario. It have been developed and tested in Linux Red
Hat Enterprise version 5 and we use TLID and SMV for
verification.

Figure 2. TLID

Figure 3. Observed ines behavior in May-10-2011

187

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 4. SMV file

Figure 5. Verification with SMV

We have two users. The victim is named ‘troismille’
(user-id: 3000) and the attacker is named ‘ines’ (user-id:
5502).

[root@localhost ~]# cat /etc/passwd
Result:ines:x:5502:5502::/home/ ines:/bin/bash
troismille:x: 3000: 3000::/home/ troismille:/bin/bash
This scenario consists of sending many mail from user

ines to user troismille to saturate his mail. In this case, the
user troismille cannot access to his e-mail. The scenario is
given by Figure 6.

Figure 6. An example of scenario

Using TLID, we choose to the anti property: Having
infinite loop. If we don’t know how a property to choose, we
can mark all checkbox. The result is given by Figure 7.

Figure 7. The result

V. CONCLUSION

In this paper, we are interested by attacks using Linux
commands. We have presented their topology. We have
shown that their impact can be inoffensive or can destroy
information system.

 We have proposed a method that exploits model
checking. This model use algorithms, executed by computer
tools, to verify the correctness of our system. It combines
security field with formal verification. The user inputs a
description of a model of the system (the possible behavior)
and a description of the requirements specification (the
desirable behavior) and leaves the verification up to the
machine. If an error is recognized the tool provides a
counter-example showing under which circumstances the
error can be generated. The counterexample consists of a
scenario in which the model behaves in an undesired way.

This method is applied to distinct normal user behavior
from intruders’ behavior. It has lead to the TLID tool
development. We give some experimental results to show
how the TLID works under some attacks.

There is another attacks group which can be named
unknown attacks. In this new group, attacks could cause the
intrusion detection systems crash and thus incomplete
testing. It becomes clear that present approaches to evaluate
intrusion detection system are limited to some known
attacks.

We divide our future work into two main parts: refine
and improve attacker competence and extend scenario to
include multi-attacks and equivalent attacks.

REFERENCES
[1] J. P. Anderson, “Computer Security Threat Monitoring and

Surveillance, ” Technical report, Washing, PA, James P.
Anderson Co., 1980.

[2] D. Powell and R. Stroud, “Conceptual Model and
Architecture of MAFTIA”, Eds., MAFTIA (Malicious and
Accidental Fault Tolerance for Internet Applications) project
deliverable D21, LAAS-CNRS Report 03011, 2003.

188

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[3] C. Matheï,. (2004) “Ouverture des réseaux IP d’entreprise :
risques ou opportunité ?” [Online]. Available:
http://www.awt.be/contenu/tel/res/IPforum23-04_Réseau
unifié et sécurisé.pdf.

[4] B. E. Cloete and L. M. Venter, “A comparison of Intrusion
Detection systems” Computers & Security, vol 20, Issue 8,
pp. 676-683, Dec. 2001.

[5] A. Patrizio. (2006) “Linux Malware On The Rise. ” [Online].
Available: http://www.internetnews.com/dev-
news/article.php/3601946.

[6] M. Santana, “Chapter 6 - Linux and Unix Security, Computer
and Information Security” Handbook 2009, pp. 79-92.

[7] M. E. S. Gadelrab, “Évaluation des Systèmes de Détection
d'Intrusion,” thèse, Université de Toulouse - Paul Sabatier,
France, Dec. 2008.

[8] M. F. Krafft (2007) “John the Ripper password cracker:”
[Online]. Available: http://www.openwall.com/john/.

[9] G. Hoglund, and J. Butler, “Rootkits: Subverting the
Windows” Kernel, Addison-Wesley Professional, 2005.

[10] Koral Ilgun , Richard A. Kemmerer , Phillip A. Porras.
“State Transition Analysis: A Rule-Based Intrusion Detection
Approach. ” Journal IEEE TRANSACTIONS on Software
Engineering, Vol. 21, No. 3, pp. 181-199, 1995.

[11] K. Ilgun. “USTAT - A Real-time Intrusion Detection System
for UNIX,” Master's Thesis, University of California at Santa
Barbara, Nov. 1992.

[12] M. Schonlau, W. DuMouchel, W. H. Ju, A. F. Karr, M. Theus
and Y. Vardi. “Computer Intrusion: DetectingMasquerades”
Statistical Science, Vol. 16, No. 1,pp 1–17, 2001.

[13] T. Lane and C E. Brodley. “Sequence matching and learning
in anomaly detection for computer security.” In AAAI
Workshop : AI Approaches to Fraud Detection and Risk
Management, pp. 43–49. AAAI Press (1997).

[14] M. Theus and M. Schonlau. “Intrusion detection based on
structural zeroes.” Statistical Computing and Graphics
Newsletter 9, pp. 12–17, 1998.

[15] M. Roy. “Masquerade detection using enriched command
lines.” In: Proceedings of international conference on
Dependable Systems and Networks (DSN-03), pp. 5-14, June
2003.

189

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

