
A Service Component Framework for Multi-User
Scenario Management in Ubiquitous Environments

Matthieu Faure∗,†, Luc Fabresse†, Marianne Huchard‡, Christelle Urtado∗, and Sylvain Vauttier∗

∗LGI2P / Ecole des Mines d’Alès, Nı̂mes, France
{Matthieu.Faure, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

†Ecole des Mines de Douai, Douai, France
Luc.Fabresse@mines-douai.fr

‡LIRMM - UMR 5506, CNRS and Univ. Montpellier 2, Montpellier, France
huchard@lirmm.fr

Abstract—Software dedicated to ubiquitous environments
has to deal with the multiplicity of devices and users. It also
has to adapt to frequent changes in its environment. Users can
easily access and trigger services provided by different devices
but also need to implement complex scenarios, i.e., structured
compositions of multiple service. State-of-the-art frameworks
do not fully meet the expectation we identified. This is why, we
designed the SaS (Scenarios As Services) ubiquitous software: a
platform for ubiquitous systems that provides a SDL (Scenario
Description Language) to support the creation of tailored user-
centric scenarios. Our previous work on the subject did not
tackle all distribution and concurrency concerns. In this paper,
we present SaS’s new features. Using the improved SDL, a user
can now describe scenarios that combine services even if all
of them are not currently available and will never be at the
same time. Moreover, different scenario sharing mechanisms
coupled with an access right policy are now included in SaS.
SaS is currently implemented in a prototype on top of OSGi.

Keywords-Ubiquitous environment; service-oriented com-
puting; user-centric; service composition; scenario creation.

I. INTRODUCTION

More and more electronic devices (such as smartphones,
tablet PCs, etc.) assist us in our daily life. They can interact
with their environment and propose various functionalities to
users. This is the rise of ubiquitous computing [1][2]. These
functionalities can be handled as services, and thus, Service-
Oriented Computing (SOC) [3] is a suitable paradigm to
design software for ubiquitous environments. Service access
and system adaptability to environmental changes are al-
ready well handled by execution frameworks. However, to
our knowledge, these systems fail to meet user expectations
to express their needs as complex scenarios involving mul-
tiple services. Based on this observation, we designed the
SaS (Scenarios as Services) ubiquitous software [4]. SaS
features a service component framework that enables end-
users to easily define, control and share scenarios. SaS also
proposes an SDL to create scenarios as service compositions.

Besides, ubiquitous environments involve multiple users
and devices. Consequently, handling previously unknown

device types, sharing information among users and handling
control device mobility are challenging issues. First, device
types must not be hardwired in the system. It has to be pos-
sible to create scenarios with services from specific devices
but also from any device of a given type. This capability
makes the system more flexible to device change. Second,
an access right policy and a process dedicated to sharing
scenarios must be specified. Thirdly, handling control device
mobility can be seen both as a constraint on the system (that
must dynamically adapt to its changing environment) but
also as a chance (as the system can benefit from mobility,
while executing scenarios that involve services that never
coexist in a same environment).

The SaS system is twofold. It divides into a scenario
description language called SaS-SDL that provides simple
means to describe services, scenarios, environments and an
execution framework called SaS platform that provides the
processes to support the behavior of the ubiquitous software.
In this paper, we focus on SaS’s new features. The improved
SaS-SDL now manages the environment. In addition, SaS
handles scenario sharing among selected users, service mem-
orization for future scenario creation and scenario mobility
(execution distributed in multiple places and times).

This paper is further organized as follows. Section II
introduces service and scenario declaration in SaS-SDL.
Section III presents the new feature of SaS-SDL: context
management. Then, Section IV describes how the SaS sys-
tem executes distributed scenarios. Section V is dedicated to
the design of our prototype implementation. Related works
are discussed in Section VI. Finally, Section VII concludes
this paper and draws perspectives.

II. SERVICE AND SCENARIO DECLARATION WITH
SAS-SDL

In this section, we give an overview of service and
scenario declaration (a previous version was presented
in [4]) using SaS-SDL, the proposed scenario description
language. SaS-SDL enables end-users to create scenarios

155

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

that correspond to their needs. Improvements are specifi-
cally introduced here, such as: multiple operation selection
schemes (from a specific device/service or not), the ability to
define and set scenario parameters, the ability to specify the
execution type (either in sequence or in parallel) of an action
list. Compared to other programming languages for service
composition (like BPEL [5]), which are imperative and
designed for executable processes, our SDL is a high level
language, which is declarative and dedicated to end-users.
With this SDL, SaS automatically declares services after
they are discovered and then, users can declare scenarios.

A. Service declaration

To be interoperable, SaS does not restrict to a protocol
but uses a generic pivot mode to declare services. SaS
can be specialized by adding bridges to different protocols
(as Frascati [6] and EnTiMid [7] already does). SaS-SDL
defines a service by a device (its provider), a name and an
operation list. Operations have a return type and can have
typed parameters. Users can choose if a service operation
to compose comes from a specific device and a particular
service or not. To do so, the new version of SaS-SDL features
the special word any, which enables to elude the provider
device or the service name. Only the main elements of the
grammar are presented in Listing 1.

<service> ::= service <device> <service_name> <op_list>
<op_list> ::= (<operation> ;)+
<operation> ::= operation <operation_name>([<param_list>])

: <return_type>
<param_list> ::= <parameter_type> (,<parameter_type>)*

<return_type>::= <type>
<parameter_type> ::= <type>
<device> ::= identifier | any
<service_name> ::= identifier | any

Listing 1. Service declaration with the Backus–Naur Form (BNF)

Listing 2 is a Clock service declaration example.

service clock_Bedroom Clock
operation getTime() : Time;
operation setTime(Time) : void;

Listing 2. Service declaration example

B. Scenario declaration

A scenario has a name, some actions and properties. An
action can be: (i) an operation invocation, (ii) an alternative
(if - else), or (iii) a repetition loop.

Listing 3 describes the main elements of a scenario decla-
ration using the BNF notation. With this improved version of
SaS-SDL, scenarios have properties, which enable to specify
if the scenario is exportable, editable, etc. Moreover, action
lists are now executed in sequence by default, however, SaS-
SDL enables users to specify some actions to execute in
parallel. In addition, users can now leave some parameter
values blank at scenario creation. This is represented by
the ? value in SaS-SDL. Such eluded parameters become

scenario parameters and must be valued by users every time
the scenario is invoked.

<scenario> ::= scenario <scenario_name> <action_block>
[<scenario_properties>]

<action_block> ::= { (<action>)+ } |
{ ([[<parallel_exec>] <action_list> <action_list>]) }
<action_list>::= (<action> | <action_block>)+

<action> ::= <op_invocation> ; | <alternative> | <repeat>

<op_invocation> ::= (<device>) <service_name>.
<operation_name>([<parameter_list>])

<parameter_list> ::= (<op_invocation> | <parameter_value>)
(, (<op_invocation>|<parameter_value>))*

<alternative> ::= if <cplx_condition> <action_block>
[<else_clause>]

<else_clause> ::= else <action_block>
<cplx_condition> ::= (<condition>

(<log_operator> <condition>)*)
<condition> ::= <op_invocation> <comp_operator>

(<op_invocation> | <value>)
<repeat> ::= (while<cplx_condition> | <repeat_value> times)

<action_block>

<parameter_value> ::= <value> | ?
<parallel_exec> ::= parallel:
<log_operator> ::= and|or|not
<comp_operator> ::= < | <= | > | >= | ==

Listing 3. Grammar of the scenario declaration using the BNF notation

Listing 4 illustrates SaS-SDL with a scenario example.

scenario night
if ((any) Clock.getTime() == 6pm and
(BedroomThermomether) Thermometer.getTemperature() <= 17)
{
(BedroomRadiator) Heater.setValue(7);
}

Listing 4. Scenario declaration example

C. Users point of view
SaS integrates a GUI based on our SaS-SDL to facilitate

scenario creation for end-users.
1) Service selection: Our GUI presents ordered services

in three columns: by device, service and operation. To avoid
duplicates, SaS groups services and operations with same
name. When users select a device (resp. a service), services
(resp. operations) attached are filtered. It enables users to
select a service (resp. operation) from a specific device (resp.
service). In addition, SaS indicates if a service is a scenario.

For users to create conditions on service availability and
define alternatives, SaS adds the operation isPresent to
each service.

2) Scenario creation: When users select a service oper-
ation to compose, SaS displays corresponding informations
(provider device, service name, operation name and result
type) and enables users to enter operation parameters. Users
can either provide a fixed value or select another operation
result (on which they can apply a basic operation such as
+, -, *, /). In case the parameter type is complex, SaS only
allows users to select an operation result. Figure 1 represents
the GUI sendMail service operation, with two parameters
(second one is complex).

156

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 1. GUI: service operation

SaS provides users with several templates (i.e.alternative,
while, repeat, etc.) to create scenarios. Users can combine
templates to create the scenario skeleton. Then, users just
need to put service operations inside the templates and
complete with basic instructions (and, or, not, <,
>, ≤, ≥, ==). Figure 2 illustrates a scenario template
and Figure 3 shows an example of scenario creation (sce-
nario operations are represented by pictograms to simplify
but they actually are similar to those in Figure 1).

Figure 2. GUI: scenario tem-
plates Figure 3. GUI: example of scenario creation

III. CONTEXT MANAGEMENT IN SAS

As seen, our previous version of SaS enables users to
create scenarios. To do so, they dispose of SaS-SDL and its
graphical representation. We presented in Section II some
improvements for service and scenario declaration. Never-
theless, ubiquitous computing implies users mobility and
multiplicity. As defined in [8], two characteristics of ubiq-
uitous system are the social environment and the evolving
environment. A ubiquitous system should therefore provide
an access right policy and advanced sharing mechanisms.
Moreover, this system has to be adaptive but could also
benefit from this changing environment.

A. SaS in ubiquitous environment

Ubiquitous environments involve electronic devices. We
define two types of devices: simple devices (such as radiator,
light) and control devices (such as laptop, pda) which have
an advanced user interface (i.e., touch screen), and can be
considered as personal and mobile. A SaS container (which
contains all SaS mechanisms handled by SaS ubiquitous
software) can therefore only be deployed on a control device
to constitute a SaS system.

B. Service and System Directories

Every SaS system has a unique identifier. As a SaS
system is associated to a unique user, sharing scenarios
with select SaS systems is equivalent to define access rights.
SaS systems (which might not be always available locally)
are permanently indexed into a system directory. It makes
possible to share scenarios with a system even if it is
temporary unavailable (failure, mobility). Such a permanent
index is also provided for services by the service directory.
Users can registers services that they discovered or obtain
service declarations from a scenario created by someone
else. By this means, scenarios can be defined that include
temporarily missing services.

To ease directory browsing, services and systems can be
grouped into named categories. These categories are like
keywords as a service (resp. a system) can be included into
several distinct categories. Browsing by categories dimin-
ishes the amount of information to be presented to users.
They can also by used to collectively export services (which
can be equivalent to providing grouped access rights), see
Section IV-B1 for details. Examples of categories might
be locations (all services available at home) or users (all
systems owneb by kids).

Listing 5 represents the main elements of the grammar for
context management and Listing 6 illustrates how this part
of SaS-SDL can be used. Scenarios in the service directory
are highlighted to be differentiate from basic services.

<sas_system> ::= system<system_id><system_dir><service_dir>

<system_dir> ::= system_directory { (<system_cat>)* }
<system_cat> ::= category <cat_name> [<system_list>]
<system_list> ::= (system <system_id>)*

<service_dir> ::= service_directory { (<service_cat>)* }
<service_cat> ::= category <cat_name> [<service_list>]

<service_list> ::= [services <service_name>
(, <service_name>)*]

Listing 5. Context Management with SaS-SDL

system pda12
system_directory {

category mySystems
platform Nokia3310
platform Acer TimelineX

category family
platform macintosh

}

service_directory {
category home

[services TV, wakeUp]
category office

[services fax, print]
}

Listing 6. Service and system directories

The class diagram of Figure 4 provides an alternative
compact view of SaS-SDL.

157

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 4. SaS-SDL class diagram

IV. EXECUTION OF DISTRIBUTED SCENARIOS IN SAS

This section presents how the SaS platform supports the
execution of distributed scenarios.

A. Scenario execution control

To control scenario execution, SaS handles the scenarios’
life-cycle. The objective here is threefold:
• provide basic start, pause, abort and resume operations

for the user to manually control scenario execution,
• provide mechanisms on top of the middleware’s detec-

tion capability to dynamically react to detected changes
in the environment (e.g., unpredictable service unavail-
ability consequent to its failure or mobility),

• provide mechanisms that take advantage of service
and scenario mobility to enrich scenario functionalities
(e.g., enabling to combine in a same scenario services
that will never coexist on a single SaS platform).

Scenario life-cycle. Scenario execution is externally con-
trolled: users can interfere during execution and changes
in the environment can trigger compulsory reactions from
the platform (e.g., it is impossible to ignore that a service
disappeared while being executed). Therefore, scenario life-
cycle needs to be rich enough to encompass specific behavior
to dynamically react to many different situations. Scenario
life-cycle management is enforced by SaS platform. The
state diagram of Figure 5 illustrates the proposed life-cycle.
Here, most transitions are initiated by users (except when
finished, which is automatic) which use the basic start,
pause, resume and abort service operations for the scenario.

Figure 5. Scenario life-cycle in SaS

Fine, step by step, scenario running. Scenario execu-
tions cannot be considered atomic as they involve multiple
and distributed service invocations. Moreover, scenario exe-
cution can be paused at any time by users or be interrupted
at any unpredictable step in case a service disappears.

The Running state itself decomposes into a more precise
state machine (see Figure 6). SaS considers scenario exe-
cution as a succession of steps, and define pre-conditions
and post-conditions for each. For example, a pre-condition
can be the presence of appropriate services or the exe-
cution of a previous step. Post-conditions are threefold:
(1) successful execution of the step, (2) a problem occurs
(service disappearance or timeout), or (3) interruption by
the user. Such capabilities are completed with a logging
system that reports scenario step by step execution status.
Users can therefore check scenario advancement through the
getScenarioState operation. Moreover, this enables
SaS to retrieve scenario status after an interruption. Tran-
sitions are all handled by SaS container.

Figure 6. Internal running state diagram

Scenario delayed execution. The step by step running
of scenarios has a positive counterpart when considering
service mobility. If the user wishes to do so (this option
is set at scenario creation), a scenario can be created that
comprises operations that are never encountered in a same
place at a same time. The user can choose from simultaneous
(all services must simultaneously be present) or not. In the
latter case, the user has to set a scenario maximum waiting
period such as an hour or a day, that limits the duration the
scenario might spend waiting for some services to appear.

When the scenario is to be executed, the steps that can
be are and the system pauses the scenario until the next
step is doable. The satisfaction of the next step precondition
will automatically be detected and cause the execution to be
resumed. If the device on which the scenario executes has
not changed place, this step by step execution might have
executed services that are supposed to be present at the same
place but not at the same time (e.g., a service offered by a
device that moves with its user such as a mobile phone). If
the device on which the scenario executes has changed place
(e.g., the scenario is executed on a device that moves with
the user), this step by step execution might have executed
services that are supposed to be present at two distinct places
(e.g., a service offered by a device at home and a service
offered by another device in a hotel room).

158

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Scenario distribution

Registering SaS systems enables users to select who to
share scenarios with. Having multiple users generates the
need for a scenario access policy. In addition, as devices
might fail and scenarios not be shared elsewhere, main-
taining scenario availability also lies on SaS’s scenario
redeployment capability.

1) Scenario access right policies: By exporting their
scenarios as services, users can share them. However, users
might not want everyone to have the same access to created
scenarios. SaS provides two modes for sharing scenarios:
individual, the scenario is shared with a specific system
(which provides access to the system’s owner) or grouped,
the scenario is shared with a whole category of systems
(which provides access to the set of these systems’ owners).
Grouped access mode can be used to designate all systems
a given user has access to (e.g., dad’s) or all systems
that pertain to another category (e.g., local network). Three
access levels are possible: private, the scenario is not shared,
delegated, the scenario is known and remotely accessible to
the systems it is shared with but the owner system possesses
the only copy and still executes the scenario, and copied, the
scenario is copied locally into the system it is shared with
and can be executed on the new system autonomously.

2) Scenario redeployment: When a user shuts down
his / her platform, the solution to maintaining scenario avail-
ability is redeployment. Before doing so, SaS first warns the
user if a scenario provided by this platform still is running.
User can wait for the end of scenario execution. Otherwise,
SaS tries to redeploy the scenario on another platform and
transfer its current status and execution advancement. The
destination platform is chosen from other available SaS
systems registered in the system directory. If none of these
systems accept, SaS asks other SaS systems present in the
environment. If the scenario has not been redeployed on
platform restart, SaS asks the user if scenario execution
should be resumed.

V. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
the SaS prototype. It is an ongoing work implemented in
Java over OSGi [9][10] with iPOJO [11]. OSGi is a popular
framework that enables to dynamically manage softwares
as sets of decoupled modules called bundles. iPOJO is a
full fledge Service-Oriented Component Model [12] based
on OSGi. The main idea is that a component should only
contain business logic as in EJB 3.0 [13] (EJB entities); SOC
mechanisms should seamlessly be handled by the component
container as container-managed cross-cutting services. The
already implemented parts of SaS are presented in the
previous paper [4].

Scenario delayed execution. Depending on execution
rules (parallel or sequence), SaS invokes services present as

defined in IV-A and register the result necessary for some
services (as operation parameter).

As defined in [4], SaS translates a scenario in a succession
of Java instructions thanks to Javassist [14]. Instead of
implementing the whole scenario as the start operation, this
version of SaS implements each action block of the sce-
nario in different methods to enable a stepped and delayed
execution. A scenario can now be launched even if all
services are not present, and it keeps running until it ends,
it is stopped, period of validity finishes or, the platform
is closed. Leveraging iPOJO the presence of each service
independently. So, when all the services involved in an
action block become available, the appropriate method is
automatically called.

Sharing scenarios. When users share a scenario with
all the available platforms, SaS exports the corresponding
service as a remote service.. This way, discovery and distri-
bution can be handled automatically by the last version of
OSGi. Instead, if users select some other systems to share a
scenario with, SaS uses the UpdateServiceDirectory service
exported by each SaS platform. It enables to send events
(service appearance or disappearance) to selected systems.

VI. STATE OF THE ART

This section analyses a representative set of systems that
provide a solution for ubiquitous environments and enable
scenario creation.

SLCA [15] provides developers with means to compose
web services. A composite service contains proxy compo-
nents bound to involved web services. With SODAPOP
[16], users specify a goal that the system tries to reach
with the available services. The main hypothesis is that each
service contains informations about its initial conditions and
its effects. MASML [17] is a multi-agent system for home
automation. Scenarios are defined with an XML syntax
and consist of sequences of service operation invocations.
Mobile agents are in charge of scenario execution. SASHAA
[18] is one of our previous work, focused on ubiquitous
systems for home automation. It enables end-users to create
scenarios with Event - Conditions - Action rules through an
appropriate GUI.

The SaS ubiquitous software manages scenario life cycle
and provide users with basic start, pause, resume and abort
operations to fully control scenarios, whereas MASML and
SASHAA only enables to start and stop scenarios. The SaS
system is the only one to to share scenarios with other
users. SASHAA, SLCA and MASML handle adaptation
to environmental changes, however, scenarios cannot be
executed in different times on multiple places. SODAPOP
manages the environment by automatically classifying new
services according to pieces of information. However, users
have no control on this organization. Moreover, SASHAA
enables to specify locations for systems but not register
services. Table VI summarizes this study. Symbol Xmeans

159

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

that the requirements is fulfilled, - signifies that it is partially
accomplished and × represents an absence of solution.

TABLE VI - SYSTEMS COMPARISON

Systems Scenario
Execution
Control

Multi
User

Adaptability Context
Management

SLCA × × - ×
MASML - × - ×

SODAPOP × × × -
SASHAA - × - -

SaS X X X X

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the new mechanisms of our
SaS system to manage ubiquitous environments. In addition
to enable scenario creation by service composition, the SaS-
SDL provides means to organize users’ contexts. Users can
register services for a future use. SaS can execute scenarios
step by step, at different times, on different platforms.
Users can also classify surrounding SaS systems and share
scenarios according to different access rights. A graphical
representation of SaS-SDL enables end-users to benefit from
SaS mechanisms.

For future work we want to add semi-automatic service
composition to SaS. Learning from existing scenarios, SaS
will propose some possible service compositions to the
user. SaS will analyze which scenarios are created and
used by users and will extract the more frequent services
compositions.

ACKNOWLEDGEMENTS

This work is partially supported by the CARNOT
M.I.N.E.S Institute (http://www.carnot-mines.eu/).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific
American, pp. 78–89, 1995.

[2] H. Schulzrinne, X. Wu, S. Sidiroglou, and S. Berger, “Ubiq-
uitous computing in home networks,” IEEE Communications,
pp. 128–135, Nov 2003.

[3] M. P. Papazoglou, “Service-Oriented Computing : Concepts,
Characteristics and Directions,” in Proc. of the 4th Int. Conf.
on Web Information Systems Engineering. IEEE, Dec 2003,
pp. 3–12.

[4] M. Faure, L. Fabresse, M. Huchard, C. Urtado, and S. Vaut-
tier, “The SaS Platform for Ubiquitous Environments,” in
Proc. of the 23rd Int. Conf. on Software Engineering and
Knowledge Engineering, July 2011, pp. 302 – 307.

[5] OASIS, “Web services business process execution language
version 2.0,” april 2007, [Last consulting: July 2011].
[Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf

[6] D. Romero, R. Rouvoy, L. Seinturier, and P. Carton, “Service
Discovery in Ubiquitous Feedback Control Loops,” in Proc
of the 10th IFIP Int. Conf. on Distributed Applications and
Interoperable Systems, ser. LNCS, F. Eliassen and R. Kapitza,
Eds., vol. 6115. Springer, Jun 2010, pp. 113–126.

[7] G. Nain, E. Daubert, O. Barais, and J.-M. Jézéquel, “Using
mde to build a schizofrenic middleware for home/building au-
tomation,” in ServiceWave’08: Networked European Software
& Services Initiative (NESSI), Madrid, dec 2008, p. 49–61.

[8] G. Banavar and A. Bernstein, “Software infrastructure and
design challenges for ubiquitous computing applications,”
Communi. of the ACM, vol. 45, no. 12, pp. 92–96, 2002.

[9] OSGi Alliance, “OSGi Service Platform Core Specification
Release 4,” 2005, [Last access: July 2011]. [Online].
Available: http://www.osgi.org/download/r4v40/r4.core.pdf

[10] ——, “OSGi Service Platform Enterprise Specification,” pp.
15–27, 2010, [Last access: July 2011]. [Online]. Available:
http://www.osgi.org/download/r4v42/r4.enterprise.pdf

[11] C. Escoffier and R. Hall, “Dynamically adaptable applications
with iPOJO service components,” in Proc. of the 6th int. Conf.
on Software composition, ser. LNCS, vol. 4829. Springer,
Mar 2007, pp. 113–128.

[12] H. Cervantes and R. Hall, “Autonomous adaptation to
dynamic availability using a service-oriented component
model,” in International Conference on Software Engineering
(ICSE). IEEE, May 2004, pp. 614–623.

[13] Sun Microsystems, “Enterprise javabeans specifications,”
may 2006, [Last consulting: July 2011]. [Online]. Available:
http://java.sun.com/products/ejb/docs.html

[14] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Ef-
ficient Java Bytecode Translators,” Proc. of the 2nd int. conf.
on Generative programming and component engineering, pp.
364–376, Sept 2003.

[15] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill,
“SLCA, composite services for ubiquitous computing,” in
Proc. of the Int. Conf. on Mobile Technology, Applications,
and Systems. New York, USA: ACM Press, 2008, pp. 1–8.

[16] J. Encarnaçao and T. Kirste, “Ambient intelligence: Towards
smart appliance ensembles,” in From Integrated Publication
and Information Systems to Information and Knowledge En-
vironments. Springer, Dec 2005, pp. 261–270.

[17] C.-L. Wu, C.-F. Liao, and L.-C. Fu, “Service-Oriented Smart-
Home Architecture Based on OSGi and Mobile-Agent Tech-
nology,” IEEE Trans. on SMC, Part C, vol. 37, no. 2, pp.
193–205, Mars 2007.

[18] F. Hamoui, M. Huchard, C. Urtado, and S. Vauttier, “Specifi-
cation of a component-based domotic system to support user-
defined scenarios,” in Proc. of 21st Int. Conf. on Software
Engineering and Knowledge Engineering, July 2009, pp.
597–602.

160

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.osgi.org/download/r4v40/r4.core.pdf
http://www.osgi.org/download/r4v42/r4.enterprise.pdf
http://java.sun.com/products/ejb/docs.html

	Introduction
	Service and Scenario Declaration with SaS-Sdl
	Service declaration
	Scenario declaration
	Users point of view
	Service selection
	Scenario creation

	Context Management in SaS
	SaS in ubiquitous environment
	Service and System Directories

	Execution of Distributed scenarios in SaS
	Scenario execution control
	Scenario distribution
	Scenario access right policies
	Scenario redeployment

	System Design and Implementation
	State of the Art
	Conclusion and Future Work
	References

