ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Framework for Adapting Service-oriented Applications based on
Functional/Extra-functional Requirements Tradeoffs

Raffaela Mirandola Pasqualina Potena Elvinia Riccobene Patrizia Scandurra
Politecnico di Milano Univ. degli Studi di Bergamo Univ. degli Studi di Milano Univ. degli Studi di Bergamo
DEI, Milano, Italy DIIMM, Dalmine (BG), Italy DTI, Crema (CR), Italy DIIMM, Dalmine (BG), Italy
mirandola@elet.polimi.it pasqualina.potena@unibg.it elvinia.riccobene@unimi.it patrizia.scandurra@unibg.it

Abstract—This paper introduces an adaptation framework be good for the satisfaction of the system reliability, but
for service-oriented applications based on trade-offs beteen at the same time it may require a high adaptation cost for
functional and extra-functional (e.g., availability, performance, adapting the interfaces of services [3].

and adaptation cost) requirements. The framework relies on . h
an optimization method for adaptation space exploration baed Th!s paper presents an adaptatl_on framework ba_sed on
on the combined use of meta-heuristic search techniques and functional and extra-functional requirements trade dffss
of functional and extra-functional patterns (e.g., architectural based on a formalervice-oriented component modedmed
design patterns and tactics). A formal service-oriented ampo- SCA-ASM [4], for the specification and analysis of service-
nent model, called SCA-ASM, is also adopted for the specifi- 4 ianted applications, and on a runtimgtimization method
cation and functional ar!alyfsls of serwce-orllented appliations. f daptati loration that ixed h of
Through a sample application, we exemplify the methodology Oor acdaptation exploration that uses a mixed approach o
with emphasis on the use of extra-functional patterns. metaheuristic search techniques [5], of functional andaext
functional adaptation patterns, such as architecturagdes
patterns and tactics, or also software actions defined by
the maintainer based on his/her experience. The adopted
optimization approach enhances the one defined in [3] by
taking into account also functional issues that allow, aghon
Service-oriented applications are playing an importanother things, to relax the independence assumption between
role in several application domains (e.g., health caresrtedf adaptation actions for different adaptation requirements
and aerospace) since they offer advanced and flexible func- According to thedesign for adaptabilitwision in [6], our
tionalities in widely distributed environments by compagsi framework supports both evolution (at re-design time) and
possibly on demand, different types of services. These agself-adaptation (at run time). The second form of adaptatio
plications may require dynamic adaptation to changing useregards temporary modification (such as the re-execution
needs, system intrusions or faults, changing operationdél e of an unavailable service or a substitution of an unsuitable
ronment and resources. Foundational theories and nogatioservice) permitting to respond to changes in the requirésnen
are required to support the engineering of such application and/or in the application context. However, when changes
Also required are techniques for monitoring and evaluatingegard critical aspects and should be applied permanently
the behavior and performance of these applications, fullyto the system, they should be considered as evolution steps,
integrated in a software engineering process that refleets t and therefore fast answers are not essential since adaptati
closed-loop paradigrte.g., the MAPE-K loop in the context strategies are evaluated and carried out at (re-)design tim
of autonomic computing) [1] are required. This paper is organized as follows. Section Il reports
Extra-functional properties of services are often spetifie related works. Section Ill provides background on SCA-
as quality of service (QoS) constraints and their valuesASM. Section IV describes our adaptation methodology.
are dynamic [2]. For example, the system response tim&ection V presents the overall architecture of our framé&wor
depends on environmental factors among which input dateGection VI exemplifies our methodology through a sample
server load, and network latency. The adaptation decisionapplication. Finally, Section VIl sketches some future kvor
for implementing the single changes should be triggered
whenever unsatisfactory behaviors and values are reported
by monitoring modules or required by the user (or “system A survey on adaptation approaches and frameworks can
designer” or “system maintainer”), and the right trade offbe found in [1]. Most of them typically adapt a system by
among the functional requirements, software qualities anédopting different service selection policies, varyingteyn
the adaptation cost should be considered. A decision, foparametrization or exploiting the inherent redundancyhef t
example, taken for modifying the dynamic of a service mayService-Oriented Architecture (SOA) environment.

Keywords-Service-oriented applications, software adaptation
and evolution; extra-functional adaptation patterns.

I. INTRODUCTION

Il. RELATED WORK

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 118

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Some frameworks exist for the dynamic generation of
service composition, but usually they adapt a system on

in a reactive way, after the adaptation request triggered by -
a user. They support the service selection with respect to a ’
service composition defined by the user (e.g., the VRESCo

a .
OrderWebService StockTradingsystem

|y

OrderDeliveryService

Order b CRER
Delivery
Component

Order
Web
Component

Sto ckQuoi';eServ .c-r;"“m"
H orderDelivery

runtime environment [7]) or choose the service composition ,
which they have generated together with a finite set of other i

candidates, that better fulfill the required quality (e[8]).

With respect to the state-of-art, our work is the first

framework (to the best of our knowledge) that supports th
adaptation of service-oriented applications (includirgghb

static and dynamic aspects) at runtime and at re-design time

It uses a mixed approach of metaheuristic search techniqu
whose effectiveness and efficiency has been already dem
strated for supporting the service selection activity at-ru
time [2], and of functional and extra-functional adaptatio
patterns [9]. Existing approaches typically do not take int
account functional aspects and assume that a compon
is functional equivalent to its alternatives [10]. Condegn

design solutions, existing approaches (e.g., [9] and [d&])

not quantify or predict the impact of the adoption of one o

more solutions on the system quality and functionality. As

opposite, we address such a problem.

IIl. BACKGROUND ONSCA-ASM

SCA-ASM [4] [12] is a formal and executable modeling
language based on: (i) the open standdedvice Component
Architecture(SCA) [13] for heterogeneous service assembly
and (ii) theAbstract State Maching®ASM) formal method
[14], which is an extension of FSMs whersates are
arbitrary complex data (multi-sorted first-order strue)r

toeen Stock
Quote
Component

SCA symbols:

= » »
L Senvice Reference Wire

Stock Trading System

e

Figure 1.
g

stockExchange

) odule OrderDeliveryComponent

/@Provided service interface

import OrderDeliveryService

/l@Required service interface

import StockExchangeService

../[Other module imports

ignature: //ASM function declarations

Reference to the external stock exchange system

shared stockExchange:Agent>StockExchange
/l@Backref back reference to the requester

shared client: Agent—> Agent
I'//Other function declarations for internal computation
controlled order: Agent—> Order
definitions:
/IASM rules for the provided service operations
@Service
rule r_place($clientn Agent,$oin Order)= ...//to place buy or sell orders

/IASM rule for the component’s agent behavior
rule r_OrderDeliveryComponent=
seq

r_wreceive(client(self),”place”,order(self))

' Ildirect service invocation
r_place(client(self),order(self))
r_wreplay(client(self),"place”,order(self))

endseq

/lconstructor rule

and thetransition relationis specified byrules describing

rule r_init($agentin OrderDelivery)=$..//do initialization (if any)

how functions change from one state to the next. The
SCA-ASM formalism is able to model service interactions,
orchestration, compensations, and services internavibmha

An SCA assembly (or composition) of service-oriented
components can be graphically produced using the Eclipsdfoperties values; changing SCA domains (components re-
based SCA Composite Designer (an inner module of th&leployment). It is also possible to change the component
SCA tools), and also stored or exchanged in terms of amteraction style in synchronous/asynchronous, stateful
XML-based file that is then used by the SCA runtime tonot, unidirectional or bidirectional. See [13] for details
instantiate and execute the system. The ASM formalism Actions can be combined into @daptation planwhich
complements the structural description of the SCA assemblig a set of actions modifying the static and dynamic parts
with a formal and executable behavioral description of theof a system architecture to address a certain requirement.
assembled components. Figure 1 shows an example of @daptation plans may differ for adaptation cost and/or for
SCA assembly of a stock trading application (better dethe system quality achieved after their application.
scribed in Sect. VI), while Figure 2 shows an ASM fragment The proposedadaptation processstarts from a set of
of theOr der Del i ver yConmponent component behavior. initial SCA-ASM assemblies (initiatandidatesor popula-
tion) fulfilling the existing/new functional requirements. It
proceeds iteratively till stop criteria are satisfied. @uity,

An SCA assembly can be adapted through the followingve use a predefined number of iterations to determine the
actions adding/removing components, component servicesend of the search. More sophisticated stop criteria coudd us
references, properties, reference-service wires and gromconvergence detection and stop when the global optimum is
tion wires (component interactions); changing a componenprobably reached. At each iteration step, new candidates ar
implementation (but keeping its shape); changing compbnergenerated from the initial population (whose size depemnds o

Figure 2. ASM module of th&r der Del i ver yConponent

IV. THE ADAPTATION METHODOLOGY

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 119

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

the specific search technique) by two subprocesses execute /
in parallel: (i) metaheuristic searcby applying user adap-
tation plans, service selection and service re-deployment

.. . . i i System Model

(i) functional/extra-functional patterns applicatidoy ex- Creator and Recurring
iti i i i Executor Reasoner software design

ploiting architectural design patterns and tactics. Then t ‘ — e

are performed together with an assessment of the adaptatior
costs. In case of self-adaptation, SCA-ASM assemblies are \ Re‘;:rsts ‘\
automatically selected as solutions according to predgfine Manager &
. . . e . | Monitor services available

selection criteria (e.g., cost minimization). In case ob-ev i and Hardware
lution, the solution can be more accurately selected also Wmﬂmmewck ! e /
considering a possible feed-back from the user [6]. \ 3

Me_tahe_uristic search tec_hn_iquesSeveraI metaheuristics Service-Based Application [: _—]
[5] with different characteristics could be adopted depend | (scaapplication)
ing on the problem: for example, considering the system
reliab”ity, a pOSSible heuristic is to regard as incregSin Runtime Infrastracture and Middleware (SCA runtime platform)
the whole reliability of the system when the reliability
of the most used components increases. As remarked in
[10], there exist design options for which we have no prior
knowledge on how they affect the extra-functional property
of a particular system. To this extent, undirected openatio = An SCA-ASM model (or assembly) of an application
could be performed (e.g., random choices or exhaustivéan be produced from scratch, or generated from an ex-
evaluation of all neighboring candidates). isting system implementation. Analysis techniques can be

Architectural design patterns and tactics.Architectural ~ employed to assure consistency between the architecture
patterns are templates for concrete software architestureand the implementation. Another feature of tSgstem
They are adopted to embody functional requirements andylodel Creatoris allowing, by exploiting the SCA Policy
in particular, to enable self-adaptability by introducisgn- ~ Framework [13], the designer to specify for components
sors/effectors components (e.g., Microkernel pattern, Renecessary metadata annotations. These are useful fodprovi
flection pattern, Interception pattern) [1]. To build new ing metrics that can be extracted from the model for non-
design solutions embodying extra-functional requirement functional analysis purposes, and for representing [eslici
we adopt architectural tactics [9], which are reusableiarch that can be guarantee by the runtime platform. It also allows
tectural building blocks that provide a generic solution tothe application of design patterns and tactics to an SCA-

functional and quality analyses of the resulting candislate &

Provider Info

repositories of

| arch. tactics,
| design patterns)
" repository
—

] Probes (Sensors)]

Figure 3. The Adaptation Framework

issues pertaining to quality attributes. ASM assembly, leading to a chain of adaptation actions.
To guarantee the functional correctness of the resulting
V. THE ADAPTATION FRAMEWORK assembly and that changes claimed by the adaptation actions

Figure 3 shows the main modules of the framework.do not compromise the satisfaction of existing functional
The core of the framework is an optimization approachrequirements, an interaction with tkeinctional and Quality
(implemented by th&®easonemodule) that adapts (through Analyzeris required. Different adaptation actions of the SCA
the Executormodule) an SCA-ASM assembly (developed by assembly may be enacted manually (as suggested by the
the System Model Creatpof a service-oriented application User Request Manageor automatically (by th&keasoney.
with respect to the functional requirements, system gaalit The System Model Executamplements the adaptation
and adaptation costs. Adaptation actions can be triggeregctions suggested by thReasoner Through the use of
automatically (after receiving alerts from tivonitor mod- effectors, changes applied at model level must be related
ule) and/or by the user (through thiser Requests Manager to the underlying mechanisms and runtime infrastructure.
module that also interacts with tidonitor module to figure To this extent, guidelines of existing approaches suppgrti
out internal or context changes). Analyzerassists during dynamic service invocation and of the ones for dynamically
the adaptation process for functional and quality analysisidapting the system behavior could be exploited. In the case

purposes. A description of each module follows. of SCA, mechanisms like introspection and reconfiguration,
System Model Creator and Executor. This module con- for managing and enacting self-adaptation [16] are applied
sists of two sub-modules (thmreator and theexecutoy and User Requests Manager. It allows users to make adap-

relies on the integration of the SCA tools and runtime plat-tation requests by providing appropriate adaptation plins
forms (like Tuscany, FraSCAti, etc.) with the ASM toolset assures that plans of different adaptation requirememts ar
ASMETA [15], to graphically model, compose, analyze, independent between each other, i.e., changes claimed by a
deploy, execute, and introspect service-oriented agpite. ~ plan do not compromise the application of other plans.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 120

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Reasoner. It is activated after receiving either adaptation be adopted allowing a prompt run-time adaptation (see, e.g.
requests from the user or alerts from tenitor. By using techniques for estimation of quality at runtime, such a§)[21
an optimization approach, it produces a set of software
adaptation actions. Through the help of tBgstem Model VI. THE STSCASE STUDY

_Creator, it generates the new system arch_itecture model, \We describes the adaptation methodology by a sample
i.e., the new SCA-ASM assembly model including bothgppiication from the Stock Trading System (STS) in [9].
structural and behavioral aspects. The adaptation space exjgure 1 shows the SCA assembly of the STS. Briefly, an
ploration process implemented by the reasoner is iterativgTs user, through thér der WebConponent interacting
and is based on the combined use of meta-heuristic searg{ith theOr der Del i ver yConponent , can check the cur-
techniques and of functional and extra-functional ad&miat rent price of stocks, placing buy or sell orders and revigwin
patterns (i.e. architectural design patterns and tactis) traded stock volume. Moreover, he/she can know stock quote
detailed description of the optimization method and relate information through theSt ock Quot eConponent . STS
techniques are out of the scope of this paper. interacts also with the external Stock Exchange system,
Monitor. It controls the system at runtime through the usewhich we do not model.
of probes (sensors). It may trigger self-adaptation when de Figure 2 shows a fragment of the ASM (abstract)
tecting relevant context and internal changes or an ewsluti model for the Or der Del i ver yConponent behavior.
cycle of the system for introducing important and perma-The main service of this component (the rulepl ace
nent changes [6]. For implementing such a module, severglnnotated with@er vi ce) is to place buy or sell or-
monitoring approaches exist in the literature (see, €1§), [ders when requested (see the blocking receive action
Thg monitor can alsc_> contmuall_y measure the services’ Qo@nd the replay action preceding and following, respec-
attributes. The providers can improve the estimate of thejyely, the service invocation within the component’s main
services’ non-functional properties by monitoring them. yyle r _Or der Del i ver yConponent). The ASM def-
Functional and Quality Analyzer. It consists into & set njtion for the provided and required interfaces of the
of external tools that can be invoked for different analysisoy der Del i ver yConponent are reported in Figure 4.
purposes. Essentially two sub-modules can be identifiedfhey are ASM modules containing only declarations of
one for thefunctional the other one for th@on-functional pysiness agent types (the subdomairsier Del i very
analysis The functional analyzetis linked with ASMETA and St ockExchange of the predefined ASMAgent
[15], a set of tool for the ASMs. It is invoked when a pre- domain) and of business functions (parameterized ASM

liminary analyses of the functional requirements satigiftgkb oyt functions) used as temporary locations to store service
of the_ SCA-ASM assgmbly would _be perform(_ad b_y easielcomputation results.
techniques as simulation or scenario-based validatioter] a
heavier formal verification techniques (as model checking)- ; ;
. . ¥Mmodule OrderDeliveryService
can be exploited when more complex functional propef-mport ... //Other module imports
: ; ignature:
ties [17] must be pro‘{ed to guarantge behgworal syste the domain defines the type of the provider component'atage
correctness. The functional analyzer is also invoked whe@omain OrderDeliverysubsetofAgent
1 [pusiness function value
correctness must be proved upon a reflngment step _of ntj)eutt’ place. Prod(Agent Order} > Order
SCA-ASM assembly due to adaptation actions. Techniques
for checking correctness of model refinement as supportg@Remoable .
. module StockExchangeService
by the ASMETA tool-set. Thenon-functional analyzeex- | import ... //Other module imports
; iahili ; signature:
plons external tools for performance and reliability ayrss | % StockExchangsubsetofAgent
like gnet wor ks [18] and LQNsol ver [19]. The system | out sendOrder: Prod(Agent,Orded> Rule
qualities (e.g., performance and reliability) and the adap
tation costs are predicted exploiting the SCA-ASM modelFigure 4. ASM modules of thér der Del i ver yConponent interfaces
of the system. Examples of adaptation costs can be found
in [3]. Considering quality analysis, different approasise Below, we apply to the STS case study some adaptation
trategies can be used depending on several factors dwirategies adopted by our methodology. Specifically, fiest w
mainly to the use of our framework for evolution (at re- describe the application of a simple metaheuristic teaniq
design time) or self-adaptation (at run time). If permanentand then we show the use of some tactics as examples of
changes, for example, are requested or a safe-criticatserv extra-functional adaptation patterns. Details on the gxpe
has to be adapted, precise (often expensive) analysis mustental data set used in this case study can be found in [23].
be performed (e.g., see [20] for performance analysis). AMetaheuristic search:Figure 5 shows an example of
opposite, if runtime changes are claimed and these requir@stantiation of our optimization process by considering,
for example, only the adaptation of parameters withoutbn the STS example, theateepest-ascent hill-climbing

using more sophisticated analysis, faster approaches mustetaheuristic [5] that tries to adapt the system minimizing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 121

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Initial [Coo G Gl Diagram key Opemﬂ‘m;%gf“m Heartbeatand Exceptiontactics [9]). As done in [9], we
T . anew candidate . |
Candidate | Rel=0.943648 [candidate "™ support NFR1 combinin@ing/Echoand Heartbeat

Cost=13 KE As in [9], NFR2 is supported combining tH&lFO (for
the Resource Arbitration) anthtroduce Concurrencyfor
the Resource Management) tactics. FHEO tactic allows
[Chy, Gy G511 [Ciyy Cos, Gyl [Ch1, Gy, Cap] [Ciy, Gy, Gs] [Cr2 Gy, Gyt [Cia Copy Gy] Cllents to place eaCh type Of Orders (eg’ StOCkS’ Optlons’

Rel=0.946485 | | Rel=0.947242| Rel=0.921272 || Rel=0.957336 || Rel-0.976481|| Rel=0.910282 fUtureS) to a dedicatgd queue for immediate pr(_)cessi_ng. Fi-
Cost=14KE || Cost=17KE || Cost=17KE || Cost=13KE | Cost145KE|| Cost=14KE nally, to handle considerable amount of transactions by the

/ \ kinds within a very short time, as suggested in [9], NFR2
can be also supported by reducing the blocking time of

(Coo G o | [1€ G o1 | [(€22 Gy G (Ca Can Cod transactions on I/O, which can be realized by the combined
Rel-0.979414| | Rel-0.980198 | | Rel- 0.953324 Rel-0.990644 use of theFIFO andIntroduce Concurrencyactics (i.e., by
Cost=15.5KE | [Cost=18.5KE | | Cost-185KE Cost- 14 5KE concurrent dispatching of the same kind of orders).
Figure 6 shows how it would change the SCA assem-
Figure 5. Example of steepest-ascent hill-climbing afitn bly by composing these tactics: the assembly is extended

)) to add the newQueue component (for theFIFO tac-
the adaptation costs and assuring a level of systerﬂc) and the Moni t or component (for theFault Detec-

reliability greater than 0.98. The initial candidate is the, Tactig. The Or der WebConponent is refined for
vector [C11, Ca1, Cs] (see Figure 5), wher;; denotes ooneyrrently producing orders to place into tteeue.

the jth instance available on the market for the componengim”aﬂy theOr der Del i ver yConponent is refined for

¢; with €y indicating the OrderWebConponent, adding the monitoring functionality and for the concurrent
Cy the _St ockQuot eConponent and C3 the consuming of different kinds of orders placed into the
Of_ der Del i veryConponent . _Each vector_ comes Queue component. Of course, this implies a change of the
with two parameters: the resulting system reliability andcomponents shape (i.e. in the required/provided intesjace
the cost of the solution (predicted using the reliabilitydan 5.4 of their behavior. The behavior, for example, of the

cost mo<_jel u_sed in [22] and reported in.TabIell in [23]). oy der Del i ver yConponent is refined in ASM as shown
At each iteration step, a set of new candidates is generatef] 1o fragment reported in Figure 7: the consuming and

by replacing, one at a time, an existing component Withseging of different kind of orders (stock, option, or fuyr

one available on the market. The best candidate is theQ,q executed in parallel (i.e. concurrently) by ther rule.
selected as the one improving the system reliability and

minimizing the adaptation costs. It becomes the basis fo
next candidates generation. The process terminates éither
no better candidates can be found or the reliability thriesho | i
is reached. In our case, the optimization process retums tr i L . [= il e
solution [C12, Ca1, C33] with reliability equals to 0.990644 | = | Compenent
|
|
|
|

OrderWebservice ShoekTradingSystem refined stockExchange

_il_nTCk uoteService OrderDeliveryService’

queut

and cost equals to 14.5 KE. e
Application of extra-functional adaptation patternafe here

show how availability and performance tactics can be used t — Meniodagigmdeam
embody extra-functional requirements of the STS examplt rponen: T Eontened T crderbelivery

into its architecture. Let us assume the following extra-

functional requirements (taken from [9]):

NFR1.The STS should be available during the trading time £ e 6. Adapting the STS by applying tactics for NFRL ancRSIF

(7:30 AM6:00 PM) from Monday through Friday. If there is

no response from the system for 30 s, the STS should notify |t js possible to prove that the behavior of the

the administrator. Or der Del i ver yConponent in Figure 7 is a correct

NFR2. The system should be able to process 300 transagefinement [14] of that in Figure 2, and, therefore, all

tions per second, 400,000 transactions per day. A client majhitial functional requirements are still guaranteed. Klor

place multiple orders of different kinds (e.g., stocksj@m, over, the impact of the adoption of the tactics should

futures), and the orders should be sent to the system withige quantified with respect to the existing system quality.

1 s in the order they were placed. For example, the introduction of new components could
To address NFR1 thieault Detection Tactidor the detec- decrease the maximum level of reliability. In the STS

tion and notification of a fault to a monitoring component example, after the embedding of new components into the

or to the system administrator can be adopted. Such kin@r der Del i ver yConponent for NFR1, if the probabil-

of tactic can be refined into other ones (elging/Echg ity of failure of the instance available for this component

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 122

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

module OrderDeliveryComponent [6]
rule r_OrderDeliveryComponent=
... seq
par //Queue consuming
r_wsendreceive[client(self),”dispatch”,”Stock”,stocHer(self)]
r_wsendreceive[client(self),"dispatch”,”Option”,optiorder(self)]
r_wsendreceive[client(self),"dispatch”,”Future” fuaarder(self)]
endpar
par //Order sending to the Stock Exchange system
r_wsend(stockExchange(self),’sendOrder”, (self, stodkd(self)))
r_wsend(stockExchange(self),’sendOrder”, (self,optideo(self)))
r_wsend(stockExchange(self),’sendOrder”,(self futmieo(self)))
endpar
endseq...

[7]

(8]

Figure 7. The refined behavior of ti@& der Del i ver yConponent

increases (for example, from 0.00006 to 0.0002 [23]), then[10
the reliability of the overall solution will decrease (from
0.990644 to 0.970639 [23]). Therefore, it could happen[11]
that the reliability constraint is not satisfied any more (in
the example indeed, the system reliability is not greater
than 0.98). Note that, also the reliability of the n@ueue 1,
component may contribute to decrease the system reliabilit

VII. CONCLUSION AND FUTURE DIRECTIONS
[13]

This paper presented an adaptation framework for service-
oriented applications that relies on design-for-adafitgbi
principles while supports the closed-loop paradigm. With [14]
such a kind of support, a system is able to monitor itself
and its context to detect significant changes, decide how t{15]
react on the base of functional/non-functional trade @ffs]
execute such decisions at runtime or at re-design time.

We intend to enhance our framework towards several
directions. Currently, we are implementing a prototype to
compare different implementations of our optimization-pro
cess (e.g., with heuristics depending on application domai [17]
or quality attributes) on realistic examples. We intend to
support the right trade-off between the adaptation ovethea
(due, e.g., to the frequent execution of the reasoning algoH8]
rithms) and the accrued benefits of changing the system.

[16]

REFERENCES [19]
[1] M. Salehie and L. Tahvildari, “Self-adaptive softwarkandscape

and research challengesf®CM Transactions on Autonomous and

Adaptive Systemsol. 4, no. 14, pp. 14:1-14:42, 2009. [20]
[2] F. Rosenberg, M.B. Miiller, P. Leitner, A. Michimayr, Bouguettaya,
and S. Dustdar, “Metaheuristic optimization of large-sogbs-aware
service compositions,” ifProc. of the IEEE Int. Conf. on Services
Computing 2010, pp. 97-104.

(21]

[3] R. Mirandola and P. Potena, “Self-adaptation of sertiased systems
based on cost/quality attributes tradeoffs,” roc. of WoSS at

SYNACS 201Qop. 493-501.

(22]

[4] E. Riccobene, P. Scandurra, and F. Albani, “A modelingl @x-
ecutable language for designing and prototyping serviemted

applications,” to appear iRroc. of EUROMICRO SEAA 2011

(23]

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial timpization:
Overview and conceptual comparisoACM Comput. Suryvol. 35,

no. 3, pp. 268-308, 2003.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

A. Bucchiarone, C. Cappiello, E. Di Nitto, R. KazhamiakiV.
Mazza, and M. Pistore, “Design for adaptation of serviceeba
applications: Main issues and requirements,1@80OC/ServiceWave
2009 Workshopsser. LNCS, 2010, pp. 467-476.

F. Rosenberg, P. Celikovic, A. Michimayr, P. Leitnerda®. Dustdar,
“An End-to-End Approach for QoS-Aware Service Composition
EDOC, 2009, pp. 151-160.

D. Chiu, S. Deshpande, G. Agrawal, and R. Li, “A Dynamic-Ap
proach toward QoS-Aware Service Workflow Composition JGWS
2009, pp. 655-662.

S. Kim, D. Kim, L. Lu, and S. Park, “Quality-driven arckitture
development using architectural tacticslpurnal of Systems and
Software no. 8, pp. 1211-1231, 2009.

H. K. A. Martens, “Automatic, model-based software fpemance
improvement for component-based software designs,Piac. of
FESCA 2009vol. 253, no. 1, 2009, pp. 77 — 93.

K. Vallidevi and B. Chitra, “Effective self adaptatiooy integrating
adaptive framework with architectural patterns,”Rroc. of A2CWiC
201Q ACM, pp. 67:1-67:4.

] E. Riccobene and P. Scandurra, “Specifying formal etese behav-

ioral models for structural models of service-oriented poments,”
in Proc. ACT4SOC 201(p. 29-41.

“Service Component Architecture (SCAyww. osoa. or g, 2007.
[accessed: May 18, 2010]

E. Borger and R. Starldbstract State Machines: A Method for High-
Level System Design and Analys&pringer, 2003.

“The ASMETA tooset,"htt p://asmeta. sf. net/, 2006. [ac-
cessed: April 26, 2011]

L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schmi, and J.
Stefani, “Reconfigurable sca applications with the fragoiaitform,”
in Proc. of Int. Conf. on Services Computjn&EE, 2009, pp. 268—
275.

C. Attiogbé, P. André, and G. Ardourel, “Checking cooment
composability,” inSoftware Compositignser. LNCS, W. Loéwe and
M. Sudholt, Eds., 2006, pp. 18-33.

M. Marzolla, “The gnet wor ks toolbox: A software package for
gqueueing networks analysis,” in Proc. ASMTA 2010, Springer

G. Franks, P. Maly, M. Woodside, D.C. Petriu, and A. Halh
“Layered Queueing Network Solver and Simulator User Manual
LQN software documentation,” 2006.

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeonigbel-
based performance prediction in software development: esyi
IEEE Trans. Software Engno. 5, pp. 295-310, 2004.

I. Epifani, C. Ghezzi, R. Mirandola, and G. TamburrellModel
evolution by run-time parameter adaptation,” fmoc. of ICSE’09
pp. 111-121.

V. Cortellessa, F. Marinelli, and P. Potena, “An optzation frame-
work for “build-or-buy” decisions in software architectjr Comput-
ers & OR vol. 35, no. 10, pp. 3090-3106, 2008.

R. Mirandola, P. Potena, E. Riccobene, and P. Scandiika
framework for adapting service-oriented applications ebdason
functional/extra-functional requirements tradeoffs: e thStock
Trading System case study,” TR Univ. of Bergamo (ltaly),
http://cs.unibg.it/potena/AdaptationFramework/TRRrgults.pdf,
2011. [accessed: July 21, 2011]

123

