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Abstract—This paper introduces an adaptation framework
for service-oriented applications based on trade-offs between
functional and extra-functional (e.g., availability, performance,
and adaptation cost) requirements. The framework relies on
an optimization method for adaptation space exploration based
on the combined use of meta-heuristic search techniques and
of functional and extra-functional patterns (e.g., architectural
design patterns and tactics). A formal service-oriented compo-
nent model, called SCA-ASM, is also adopted for the specifi-
cation and functional analysis of service-oriented applications.
Through a sample application, we exemplify the methodology
with emphasis on the use of extra-functional patterns.

Keywords-Service-oriented applications; software adaptation
and evolution; extra-functional adaptation patterns.

I. I NTRODUCTION

Service-oriented applications are playing an important
role in several application domains (e.g., health care, defense
and aerospace) since they offer advanced and flexible func-
tionalities in widely distributed environments by composing,
possibly on demand, different types of services. These ap-
plications may require dynamic adaptation to changing user
needs, system intrusions or faults, changing operational envi-
ronment and resources. Foundational theories and notations
are required to support the engineering of such applications.
Also required are techniques for monitoring and evaluating
the behavior and performance of these applications, fully
integrated in a software engineering process that reflects the
closed-loop paradigm(e.g., the MAPE-K loop in the context
of autonomic computing) [1] are required.

Extra-functional properties of services are often specified
as quality of service (QoS) constraints and their values
are dynamic [2]. For example, the system response time
depends on environmental factors among which input data,
server load, and network latency. The adaptation decisions
for implementing the single changes should be triggered
whenever unsatisfactory behaviors and values are reported
by monitoring modules or required by the user (or “system
designer” or “system maintainer”), and the right trade off
among the functional requirements, software qualities and
the adaptation cost should be considered. A decision, for
example, taken for modifying the dynamic of a service may

be good for the satisfaction of the system reliability, but
at the same time it may require a high adaptation cost for
adapting the interfaces of services [3].

This paper presents an adaptation framework based on
functional and extra-functional requirements trade offs.It is
based on a formalservice-oriented component model, named
SCA-ASM [4], for the specification and analysis of service-
oriented applications, and on a runtimeoptimization method
for adaptation exploration that uses a mixed approach of
metaheuristic search techniques [5], of functional and extra-
functional adaptation patterns, such as architectural design
patterns and tactics, or also software actions defined by
the maintainer based on his/her experience. The adopted
optimization approach enhances the one defined in [3] by
taking into account also functional issues that allow, among
other things, to relax the independence assumption between
adaptation actions for different adaptation requirements.

According to thedesign for adaptabilityvision in [6], our
framework supports both evolution (at re-design time) and
self-adaptation (at run time). The second form of adaptation
regards temporary modification (such as the re-execution
of an unavailable service or a substitution of an unsuitable
service) permitting to respond to changes in the requirements
and/or in the application context. However, when changes
regard critical aspects and should be applied permanently
to the system, they should be considered as evolution steps,
and therefore fast answers are not essential since adaptation
strategies are evaluated and carried out at (re-)design time.

This paper is organized as follows. Section II reports
related works. Section III provides background on SCA-
ASM. Section IV describes our adaptation methodology.
Section V presents the overall architecture of our framework.
Section VI exemplifies our methodology through a sample
application. Finally, Section VII sketches some future work.

II. RELATED WORK

A survey on adaptation approaches and frameworks can
be found in [1]. Most of them typically adapt a system by
adopting different service selection policies, varying system
parametrization or exploiting the inherent redundancy of the
Service-Oriented Architecture (SOA) environment.
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Some frameworks exist for the dynamic generation of a
service composition, but usually they adapt a system only
in a reactive way, after the adaptation request triggered by
a user. They support the service selection with respect to a
service composition defined by the user (e.g., the VRESCo
runtime environment [7]) or choose the service composition,
which they have generated together with a finite set of other
candidates, that better fulfill the required quality (e.g.,[8]).

With respect to the state-of-art, our work is the first
framework (to the best of our knowledge) that supports the
adaptation of service-oriented applications (including both
static and dynamic aspects) at runtime and at re-design time.
It uses a mixed approach of metaheuristic search techniques,
whose effectiveness and efficiency has been already demon-
strated for supporting the service selection activity at run-
time [2], and of functional and extra-functional adaptation
patterns [9]. Existing approaches typically do not take into
account functional aspects and assume that a component
is functional equivalent to its alternatives [10]. Concerning
design solutions, existing approaches (e.g., [9] and [11])do
not quantify or predict the impact of the adoption of one or
more solutions on the system quality and functionality. As
opposite, we address such a problem.

III. B ACKGROUND ON SCA-ASM

SCA-ASM [4] [12] is a formal and executable modeling
language based on: (i) the open standardService Component
Architecture(SCA) [13] for heterogeneous service assembly,
and (ii) theAbstract State Machines(ASM) formal method
[14], which is an extension of FSMs wherestates are
arbitrary complex data (multi-sorted first-order structures)
and thetransition relation is specified byrules describing
how functions change from one state to the next. The
SCA-ASM formalism is able to model service interactions,
orchestration, compensations, and services internal behavior.

An SCA assembly (or composition) of service-oriented
components can be graphically produced using the Eclipse-
based SCA Composite Designer (an inner module of the
SCA tools), and also stored or exchanged in terms of an
XML-based file that is then used by the SCA runtime to
instantiate and execute the system. The ASM formalism
complements the structural description of the SCA assembly
with a formal and executable behavioral description of the
assembled components. Figure 1 shows an example of an
SCA assembly of a stock trading application (better de-
scribed in Sect. VI), while Figure 2 shows an ASM fragment
of theOrderDeliveryComponent component behavior.

IV. T HE ADAPTATION METHODOLOGY

An SCA assembly can be adapted through the following
actions: adding/removing components, component services,
references, properties, reference-service wires and promo-
tion wires (component interactions); changing a component
implementation (but keeping its shape); changing component

Figure 1. Stock Trading System

module OrderDeliveryComponent
//@Provided service interface
import OrderDeliveryService
//@Required service interface
import StockExchangeService
...//Other module imports
signature: //ASM function declarations
//@Reference to the external stock exchange system
shared stockExchange:Agent−>StockExchange
//@Backref back reference to the requester
shared client: Agent−> Agent
//Other function declarations for internal computation
controlled order: Agent−> Order
definitions:
//ASM rules for the provided service operations
@Service
rule r place($clientin Agent,$oin Order)= ...//to place buy or sell orders
...
//ASM rule for the component’s agent behavior
rule r OrderDeliveryComponent=
seq
r wreceive(client(self),”place”,order(self))
//direct service invocation
r place(client(self),order(self))
r wreplay(client(self),”place”,order(self))

endseq
//constructor rule
rule r init($agentin OrderDelivery)=$ ...//do initialization (if any)

Figure 2. ASM module of theOrderDeliveryComponent

properties values; changing SCA domains (components re-
deployment). It is also possible to change the component
interaction style in synchronous/asynchronous, statefulor
not, unidirectional or bidirectional. See [13] for details.

Actions can be combined into anadaptation plan, which
is a set of actions modifying the static and dynamic parts
of a system architecture to address a certain requirement.
Adaptation plans may differ for adaptation cost and/or for
the system quality achieved after their application.

The proposedadaptation processstarts from a set of
initial SCA-ASM assemblies (initialcandidatesor popula-
tion) fulfilling the existing/new functional requirements. It
proceeds iteratively till stop criteria are satisfied. Currently,
we use a predefined number of iterations to determine the
end of the search. More sophisticated stop criteria could use
convergence detection and stop when the global optimum is
probably reached. At each iteration step, new candidates are
generated from the initial population (whose size depends on
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the specific search technique) by two subprocesses executed
in parallel: (i) metaheuristic searchby applying user adap-
tation plans, service selection and service re-deployment;
(ii) functional/extra-functional patterns applicationby ex-
ploiting architectural design patterns and tactics. Then the
functional and quality analyses of the resulting candidates
are performed together with an assessment of the adaptation
costs. In case of self-adaptation, SCA-ASM assemblies are
automatically selected as solutions according to predefined
selection criteria (e.g., cost minimization). In case of evo-
lution, the solution can be more accurately selected also
considering a possible feed-back from the user [6].

Metaheuristic search techniques.Several metaheuristics
[5] with different characteristics could be adopted depend-
ing on the problem: for example, considering the system
reliability, a possible heuristic is to regard as increasing
the whole reliability of the system when the reliability
of the most used components increases. As remarked in
[10], there exist design options for which we have no prior
knowledge on how they affect the extra-functional property
of a particular system. To this extent, undirected operations
could be performed (e.g., random choices or exhaustive
evaluation of all neighboring candidates).

Architectural design patterns and tactics.Architectural
patterns are templates for concrete software architectures.
They are adopted to embody functional requirements and,
in particular, to enable self-adaptability by introducingsen-
sors/effectors components (e.g., Microkernel pattern, Re-
flection pattern, Interception pattern) [1]. To build new
design solutions embodying extra-functional requirements,
we adopt architectural tactics [9], which are reusable archi-
tectural building blocks that provide a generic solution to
issues pertaining to quality attributes.

V. THE ADAPTATION FRAMEWORK

Figure 3 shows the main modules of the framework.
The core of the framework is an optimization approach
(implemented by theReasonermodule) that adapts (through
theExecutormodule) an SCA-ASM assembly (developed by
theSystem Model Creator) of a service-oriented application
with respect to the functional requirements, system qualities,
and adaptation costs. Adaptation actions can be triggered
automatically (after receiving alerts from theMonitor mod-
ule) and/or by the user (through theUser Requests Manager
module that also interacts with theMonitor module to figure
out internal or context changes). AnAnalyzerassists during
the adaptation process for functional and quality analysis
purposes. A description of each module follows.

System Model Creator and Executor. This module con-
sists of two sub-modules (thecreator and theexecutor) and
relies on the integration of the SCA tools and runtime plat-
forms (like Tuscany, FraSCAti, etc.) with the ASM toolset
ASMETA [15], to graphically model, compose, analyze,
deploy, execute, and introspect service-oriented applications.

Figure 3. The Adaptation Framework

An SCA-ASM model (or assembly) of an application
can be produced from scratch, or generated from an ex-
isting system implementation. Analysis techniques can be
employed to assure consistency between the architecture
and the implementation. Another feature of theSystem
Model Creator is allowing, by exploiting the SCA Policy
Framework [13], the designer to specify for components
necessary metadata annotations. These are useful for provid-
ing metrics that can be extracted from the model for non-
functional analysis purposes, and for representing policies
that can be guarantee by the runtime platform. It also allows
the application of design patterns and tactics to an SCA-
ASM assembly, leading to a chain of adaptation actions.
To guarantee the functional correctness of the resulting
assembly and that changes claimed by the adaptation actions
do not compromise the satisfaction of existing functional
requirements, an interaction with theFunctional and Quality
Analyzeris required. Different adaptation actions of the SCA
assembly may be enacted manually (as suggested by the
User Request Manager) or automatically (by theReasoner).

The System Model Executorimplements the adaptation
actions suggested by theReasoner. Through the use of
effectors, changes applied at model level must be related
to the underlying mechanisms and runtime infrastructure.
To this extent, guidelines of existing approaches supporting
dynamic service invocation and of the ones for dynamically
adapting the system behavior could be exploited. In the case
of SCA, mechanisms like introspection and reconfiguration,
for managing and enacting self-adaptation [16] are applied.

User Requests Manager. It allows users to make adap-
tation requests by providing appropriate adaptation plans. It
assures that plans of different adaptation requirements are
independent between each other, i.e., changes claimed by a
plan do not compromise the application of other plans.
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Reasoner. It is activated after receiving either adaptation
requests from the user or alerts from theMonitor. By using
an optimization approach, it produces a set of software
adaptation actions. Through the help of theSystem Model
Creator, it generates the new system architecture model,
i.e., the new SCA-ASM assembly model including both
structural and behavioral aspects. The adaptation space ex-
ploration process implemented by the reasoner is iterative
and is based on the combined use of meta-heuristic search
techniques and of functional and extra-functional adaptation
patterns (i.e. architectural design patterns and tactics). A
detailed description of the optimization method and related
techniques are out of the scope of this paper.

Monitor. It controls the system at runtime through the use
of probes (sensors). It may trigger self-adaptation when de-
tecting relevant context and internal changes or an evolution
cycle of the system for introducing important and perma-
nent changes [6]. For implementing such a module, several
monitoring approaches exist in the literature (see, e.g., [1]).
The monitor can also continually measure the services’ QoS
attributes. The providers can improve the estimate of the
services’ non-functional properties by monitoring them.

Functional and Quality Analyzer. It consists into a set
of external tools that can be invoked for different analysis
purposes. Essentially two sub-modules can be identified:
one for thefunctional, the other one for thenon-functional
analysis. The functional analyzeris linked with ASMETA
[15], a set of tool for the ASMs. It is invoked when a pre-
liminary analyses of the functional requirements satisfiability
of the SCA-ASM assembly would be performed by easier
techniques as simulation or scenario-based validation. Later,
heavier formal verification techniques (as model checking)
can be exploited when more complex functional proper-
ties [17] must be proved to guarantee behavioral system
correctness. The functional analyzer is also invoked when
correctness must be proved upon a refinement step of the
SCA-ASM assembly due to adaptation actions. Techniques
for checking correctness of model refinement as supported
by the ASMETA tool-set. Thenon-functional analyzerex-
ploits external tools for performance and reliability analysis
like qnetworks [18] andLQNsolver [19]. The system
qualities (e.g., performance and reliability) and the adap-
tation costs are predicted exploiting the SCA-ASM model
of the system. Examples of adaptation costs can be found
in [3]. Considering quality analysis, different approaches/s-
trategies can be used depending on several factors due
mainly to the use of our framework for evolution (at re-
design time) or self-adaptation (at run time). If permanent
changes, for example, are requested or a safe-critical service
has to be adapted, precise (often expensive) analysis must
be performed (e.g., see [20] for performance analysis). As
opposite, if runtime changes are claimed and these require,
for example, only the adaptation of parameters without
using more sophisticated analysis, faster approaches must

be adopted allowing a prompt run-time adaptation (see, e.g.,
techniques for estimation of quality at runtime, such as [21]).

VI. T HE STSCASE STUDY

We describes the adaptation methodology by a sample
application from the Stock Trading System (STS) in [9].
Figure 1 shows the SCA assembly of the STS. Briefly, an
STS user, through theOrderWebComponent interacting
with theOrderDeliveryComponent, can check the cur-
rent price of stocks, placing buy or sell orders and reviewing
traded stock volume. Moreover, he/she can know stock quote
information through theStockQuoteComponent. STS
interacts also with the external Stock Exchange system,
which we do not model.

Figure 2 shows a fragment of the ASM (abstract)
model for the OrderDeliveryComponent behavior.
The main service of this component (the ruler_place
annotated with@service) is to place buy or sell or-
ders when requested (see the blocking receive action
and the replay action preceding and following, respec-
tively, the service invocation within the component’s main
rule r_OrderDeliveryComponent). The ASM def-
inition for the provided and required interfaces of the
OrderDeliveryComponent are reported in Figure 4.
They are ASM modules containing only declarations of
business agent types (the subdomainsOrderDelivery
and StockExchange of the predefined ASMAgent
domain) and of business functions (parameterized ASM
out functions) used as temporary locations to store service
computation results.

module OrderDeliveryService
import ... //Other module imports
signature:
// the domain defines the type of the provider component’s agent
domain OrderDeliverysubsetofAgent
// business function value
out place: Prod(Agent,Order)−> Order

//@Remotable
module StockExchangeService
import ... //Other module imports
signature:
domain StockExchangesubsetofAgent
out sendOrder: Prod(Agent,Order)−> Rule

Figure 4. ASM modules of theOrderDeliveryComponent interfaces

Below, we apply to the STS case study some adaptation
strategies adopted by our methodology. Specifically, first we
describe the application of a simple metaheuristic technique,
and then we show the use of some tactics as examples of
extra-functional adaptation patterns. Details on the experi-
mental data set used in this case study can be found in [23].
Metaheuristic search:Figure 5 shows an example of
instantiation of our optimization process by considering,
on the STS example, thesteepest-ascent hill-climbing
metaheuristic [5] that tries to adapt the system minimizing
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Figure 5. Example of steepest-ascent hill-climbing application

the adaptation costs and assuring a level of system
reliability greater than 0.98. The initial candidate is the
vector [C11, C21, C31] (see Figure 5), whereCij denotes
the jth instance available on the market for the component
Ci with C1 indicating the OrderWebComponent,
C2 the StockQuoteComponent and C3 the
OrderDeliveryComponent. Each vector comes
with two parameters: the resulting system reliability and
the cost of the solution (predicted using the reliability and
cost model used in [22] and reported in Table 1 in [23]).
At each iteration step, a set of new candidates is generated
by replacing, one at a time, an existing component with
one available on the market. The best candidate is then
selected as the one improving the system reliability and
minimizing the adaptation costs. It becomes the basis for
next candidates generation. The process terminates eitherif
no better candidates can be found or the reliability threshold
is reached. In our case, the optimization process returns the
solution [C12, C21, C33] with reliability equals to 0.990644
and cost equals to 14.5 KE.

Application of extra-functional adaptation patterns:We here
show how availability and performance tactics can be used to
embody extra-functional requirements of the STS example
into its architecture. Let us assume the following extra-
functional requirements (taken from [9]):
NFR1.The STS should be available during the trading time
(7:30 AM6:00 PM) from Monday through Friday. If there is
no response from the system for 30 s, the STS should notify
the administrator.
NFR2. The system should be able to process 300 transac-
tions per second, 400,000 transactions per day. A client may
place multiple orders of different kinds (e.g., stocks, options,
futures), and the orders should be sent to the system within
1 s in the order they were placed.

To address NFR1 theFault Detection Tacticfor the detec-
tion and notification of a fault to a monitoring component
or to the system administrator can be adopted. Such kind
of tactic can be refined into other ones (e.g.,Ping/Echo,

Heartbeatand Exceptiontactics [9]). As done in [9], we
support NFR1 combiningPing/EchoandHeartbeat.

As in [9], NFR2 is supported combining theFIFO (for
the Resource Arbitration) andIntroduce Concurrency(for
the Resource Management) tactics. TheFIFO tactic allows
clients to place each type of orders (e.g., stocks, options,
futures) to a dedicated queue for immediate processing. Fi-
nally, to handle considerable amount of transactions by their
kinds within a very short time, as suggested in [9], NFR2
can be also supported by reducing the blocking time of
transactions on I/O, which can be realized by the combined
use of theFIFO and Introduce Concurrencytactics (i.e., by
concurrent dispatching of the same kind of orders).

Figure 6 shows how it would change the SCA assem-
bly by composing these tactics: the assembly is extended
to add the newQueue component (for theFIFO tac-
tic) and theMonitor component (for theFault Detec-
tion Tactic). The OrderWebComponent is refined for
concurrently producing orders to place into theQueue.
Similarly, theOrderDeliveryComponent is refined for
adding the monitoring functionality and for the concurrent
consuming of different kinds of orders placed into the
Queue component. Of course, this implies a change of the
components shape (i.e. in the required/provided interfaces)
and of their behavior. The behavior, for example, of the
OrderDeliveryComponent is refined in ASM as shown
in the fragment reported in Figure 7: the consuming and
sending of different kind of orders (stock, option, or future)
are executed in parallel (i.e. concurrently) by thepar rule.

Figure 6. Adapting the STS by applying tactics for NFR1 and NFR2

It is possible to prove that the behavior of the
OrderDeliveryComponent in Figure 7 is a correct
refinement [14] of that in Figure 2, and, therefore, all
initial functional requirements are still guaranteed. More-
over, the impact of the adoption of the tactics should
be quantified with respect to the existing system quality.
For example, the introduction of new components could
decrease the maximum level of reliability. In the STS
example, after the embedding of new components into the
OrderDeliveryComponent for NFR1, if the probabil-
ity of failure of the instance available for this component
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module OrderDeliveryComponent
...
rule r OrderDeliveryComponent=
... seq

par //Queue consuming
r wsendreceive[client(self),”dispatch”,”Stock”,stockorder(self)]
r wsendreceive[client(self),”dispatch”,”Option”,optionorder(self)]
r wsendreceive[client(self),”dispatch”,”Future”,futureorder(self)]

endpar
par //Order sending to the Stock Exchange system
r wsend(stockExchange(self),”sendOrder”,(self,stockorder(self)))
r wsend(stockExchange(self),”sendOrder”,(self,optionorder(self)))
r wsend(stockExchange(self),”sendOrder”,(self,futureorder(self)))

endpar
endseq...

Figure 7. The refined behavior of theOrderDeliveryComponent

increases (for example, from 0.00006 to 0.0002 [23]), then
the reliability of the overall solution will decrease (from
0.990644 to 0.970639 [23]). Therefore, it could happen
that the reliability constraint is not satisfied any more (in
the example indeed, the system reliability is not greater
than 0.98). Note that, also the reliability of the newQueue
component may contribute to decrease the system reliability.

VII. C ONCLUSION AND FUTURE DIRECTIONS

This paper presented an adaptation framework for service-
oriented applications that relies on design-for-adaptability
principles while supports the closed-loop paradigm. With
such a kind of support, a system is able to monitor itself
and its context to detect significant changes, decide how to
react on the base of functional/non-functional trade offs,and
execute such decisions at runtime or at re-design time.

We intend to enhance our framework towards several
directions. Currently, we are implementing a prototype to
compare different implementations of our optimization pro-
cess (e.g., with heuristics depending on application domain
or quality attributes) on realistic examples. We intend to
support the right trade-off between the adaptation overhead
(due, e.g., to the frequent execution of the reasoning algo-
rithms) and the accrued benefits of changing the system.
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