ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Module Interactions for Model-Driven Engineering
of Complex Behaviour of Autonomous Robots

Vladimir Estivill-Castro
School of ICT / IIIS
Griffith University, Nathan Campus
Brisbane, Australia
Email: v.estivill-castro@griffith.edu.au

Abstract—In this paper, we describe a model-driven engineer-
ing approach that enables the complete description, validation,
verification and deployment of behaviour to autonomous robots,
directly, and automatically from the models. This realises the
promises and benefits of model-driven engineering, such as
platform-independent development and behaviour traceability.
However, such a top-down approach of modelling by finite-state
machines and sub-machines creates a conceptual challenge to the
behaviour designer due to the complex interaction of independent
modules. Simply finding which modules are necessary for other
modules can be a challenge. We also describe here our solution to
this. Interestingly, our approach goes in the opposite direction of
Object Oriented Software Engineering as currently represented
by the Unified Modeling Language and corresponding software
processes. That is, typically, the static models are derived first
(and in particular class diagrams), while dynamic modelling
follows later with behaviour diagrams and interactions diagrams.
We actually start with the description of behaviour in finite state
machines and we complement this by static information pro-
vided by logics that describe concepts and by our dependencies
diagrams that show static dependencies between modules.

Index Terms—Automation of Software Design and Implemen-
tation. Software Modeling. Model-Driven Engineering. Visual
Modeling.

I. INTRODUCTION

Model-driven engineering raises the level of abstraction in
software engineering so that engineers no longer have to be
concerned with programming language details or the specifics
of execution platforms. We show here an approach where ex-
ecutable software is generated automatically from models. We
show that we can easily adapt to new platforms and behaviour
requirements and illustrate this with the development of the
complex software that constitutes the RoboCup challenge. The
Mi-Pal team, qualified for RoboCup-2011, uses this approach
to compose the programs that constitute the behaviour and
execute on the humanoid autonomous robot platform.

We aim at systems at higher levels of abstraction. Our first
toolset for a higher level of abstraction are logics, and in
particular logics that emulate common reasoning. We argue
for logics that describe a context by iterative refinement and
are natural and analogous to how humans describe a context,
starting from the most general case, then proving extensions or
refinements. Similarly, our second tool is behaviour captured
by a hierarchy of finite state machines (FSMs). This enables

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

René Hexel
School of ICT / IIIS
Griffith University, Nathan Campus
Brisbane, Australia
Email: r.hexel @griffith.edu.au

iterative refinement, describing the most general behaviour,
which is then refined by a finite state sub-machine (sub-FSM).

For this reason, we use models at different levels of ab-
straction. From a high-level, platform independent model, it is
possible to generate a working program without manual inter-
vention. We describe this approach but we focus here on the
technologies and infrastructure to facilitate design, verification
and validation of inter-module communication. Other research
publications expand on the details and technologies that have
enabled this approach. In particular, we have discussed [1][2]
the advantages of using non-monotonic reasoning to express
in logic what otherwise becomes laborious and error-prone
in an imperative programming language. For example, sanity
checks on the landmarks reported by a vision system signif-
icantly benefit from their abstraction into logic rules. In fact,
logic and iterative refinement are common in expressing and
describing a concept. The off-side rule in soccer is an example
that starts with “Usually a player is not off-side” (a default
situation); then progressively some exceptions are presented.
For example, “Unless two opponent players are between [a
player] and the opponents’ goal line”, but then exceptions of
the exception continue, forming the definition [3].

Modelling by FSMs, where the labels for transitions can
be statements in a logic that demand proof, has been con-
trasted with plain FSMs, Petri nets, and Behavior trees (rel-
evant behaviour modelling techniques in software engineer-
ing) using the very prominent example of modelling the
behaviour of a microwave oven [4]. Our approach produces
smaller models, clarifies requirements and we can generate
implementations for diverse platforms and programming lan-
guages, e.g., the same models can generate code in Java
for a Lego Mindstorm (www.youtube.com/watch?v=
1iEkKCHgSfMco) as well as C++ for a Nao (www . youtube.
com/watch?v=Dm3SP3q9_VE). The modelling of a mi-
crowave is a classical example in the literature of software
engineering [5][4] as well as model-checking [6, Page 39]
as the safety feature of disabling radiation when the door is
open is an analogous requirement to the famous case of faulty
software on the Therac-25 radiation machine that caused harm
to patients [7, Page 2].

We have illustrated [8] the power of non-monotonic logic
to describe and complement the descriptions of Behavior

84



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

i
oegwoi4dnien Q3HSINI3
¥oegUa|[E410q0) paneoaypaysiuly

3ndL D8SS81-UOINAISBUNLIOUS
passalduonNgIsayoLoys
@3ZM¥N3d
ONIAVId panisosybuiked ﬂ
anyL o lad
pJemIoZus|[e410001
[eODINOAPESY
|RODINOAPESY
3ndL

[eonJiey 1 Apesy

/ [y m—

il
uoiqwoigdnien
pansosybuikeld Panizoakfpeas Panizoayfpeas pessalduonngisayouoys
A
oeguwol4dnien
*oeguaIE0go!
andL 138 pensostApes:
- soegUalIE410q0!
3ndL
uoneing 3
PIBMIO4US|[B410GOI oeguwoidnien
HoYoPaYsAesdan
3NdL 3nygL
pIBMIO4US][BHOGO HoYovfenigshesdan

ECT

1
uoijuoldnien 3ndL

HOXO
1MPOHOLPEoIO

HOXHO
15en|go1peoiod

1
3NyL uol4woiqdnien

3NdL

panoay el

passalddwnglooiubu

3ndL

passeiddungiooye|

uTis)

3ndL

The module guGameController. fsm that is interpreted on board the Nao’s for participation in the SPL for RoboCup2011.

Fig. 1.

85

978-1-61208-165-6

ISBN

Copyright (c) IARIA, 2011.



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

trees and of fine state machines for requirements engineering.
Further illustrations [9] show the benefits of this idea in the
context of embedded systems and robots. The software engi-
neering architecture and the software design patterns that sup-
port our model-driven engineering are based on a whiteboard
architecture [10][11]. This offers a cognitive architecture [12]
or a working memory as well as a publisher-subscriber pat-
tern for module communication, analogous to what others
have called a repository architecture [5], or Data-Distribution
Service [13]. Our whiteboard architecture is complementary
to Aldebaran’s inter-module communication and messaging
architecture in the Red-Documentation.

Our interest for high-level modelling is that RoboCup, and
in particular the Standard Platform League is an important
benchmark for the deployment of legged robots in human en-
vironments (with RoboCup@Home also promoting this in the
home or office). Therefore, there is a clear overlap with con-
cerns in the field of software engineering, such as reliability,
safety, human-computer interaction, requirements engineering,
platform independence, composability, distribution, simplicity,
and most importantly, model-driven engineering.

However, a challenging aspect of our approach is to model
the interactions between modules, and to have a tool that
enables the display of modules dependencies as behaviour
designers integrate the behaviours of a complex system.
Because we had shown an equivalence between FSMs and
Behavior trees [8], we could translate our models to tools like
BECCIE [14] that capture some of the module interactions,
and this was sufficient for the already mentioned example of
the micro-wave oven [9]. However, BECCIE’s limitations do
not enable this to scale further. Here we illustrate the new
tools we have developed to achieve this.

The rest of this paper is structured as follows: Section II
exemplifies the approach used. Section III shows how module
interactions are modelled and what the consequences are for
complex behaviour and iterative refinement. The paper is
concluded with a discussion in Section V.

II. MODEL-DRIVEN ENGINEERING

We present a case study in the context of the SPL for
RoboCup-2011 to illustrate our model-driven engineering ap-
proach, considering the FSM that playing robots are supposed
to conform to. The model for this appears on page 7 of the
SPL rules, and essentially indicates that the league’s game
controller would emit UDP packets (or a manual push of
the chest button) for the playing robots to update their state.
As in any requirements engineering scenario, the rules are
under-specified and ambiguous — more seriously the actual
SPL game controller (server) does not follow nor enforce the
specified transitions. For example, Figure 2a and Figure 2b
show the current activities for the state INITIAL and for the
state READY (both corresponding to a state of the behaviour
required by the competition). An OnEntry activity is to post
(to the whiteboard) the message type NaoMotionPlayer
(whose listener is gunaomotion with the message content
play get_up_anywhere, which is a pre-loaded motion

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

that stands up the Nao). Also in this state and also OnEntry,
we post message type LEDS whose listener is gunaoleds
to turn the ChestBoard off.

However, we do model our guGameController FSM
for the behaviour executed by our robots for participation in
RoboCup 2011. Figure 1 is produced with Qfsm (gqfsm.sf.
net), a graphical tool for designing FSMs. This produces
XML files that our own tool, gf sm2gu, translates into to
ASCII files. These files contain the transition table of the FSM
and activities for each state of the automaton. Our FSMs are
interpreted by our gubehaviourinterpreter module
that, e.g., for guGameController. fsmreads the transition
table from the file TguGameController.txt (transition
files always start with the letter T), and the activities from
AguGameController.txt (activity files start with R).

A. The semantics of our finite state machines

There are some important aspects of the interpreter of FSMs
that represent behaviour. First, the transitions out of a state are
not evaluated simultaneously, but they are evaluated in reverse
order of their appearance in the transition file. Importantly, this
liberates the behaviour designer of the concern of ensuring that
only one transition can fire at any one time. In a sense, this
provides a priority relation between the transitions and can be
specified explicitly with Qfsm in the output field of a transition.

Second, the label of a transition is a query to an ex-
pert to make a proclamation about the truth value of that
label. The interpreter will halt, waiting for a response on
the whiteboard for this particular message type that indi-
cates this proposition requires proof, typically by a logic
inference engine — gucdlmodule that implements Propo-
sitional Clausal Defeasible Logic [15] (but, we have an im-
plementation for standard prolog as well using gnuprolog).
However, many times, the question is directly related to a
sensor. That is, the best expert to ascertain the truth value
of the transition label is a wrapper for a sensor (providing
information about anything external to the system). For ex-
ample, in the guGameController. fsm of Figure 1, a
label UDPSaysRedKickOff is a query, but is answered by
guUDPreceiver, which is the actual module connecting to
the league’s UDP server that can assert if the league’s game
controller is now broadcasting that the red team is to kick-off.
There is a special label TRUE that always fires and causes a
state transition.

It is important to highlight that the behaviour interpreter, the
logic engine, and many of our modules are developed to con-
form to the POSIX standard (and therefore not only execute
on the Nao but also, e.g., Linux, and MacOS). This enables
module simulation, developing and testing independently of
the platform. In particular, one can impersonate an expert by
using our testcdl module and a FSM is oblivious to this.

We can use the example of guGameController. fsm
to stress which of our modules provide the interface be-
tween the whiteboard and the Nao platform. In addi-
tion to guUDPreceiver, the following modules must
run: gunaobuttonsensor for button-press events and

86



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

%= State Properties

Name: INITIAL
Code: 7
Moore Outputs:

Radius: 40
Line width: 1

£ -~ 1. 3
| Colour )

Description:

OnEntry NaoMotionPlayer:play
get_up_anywhere; LEDS: ChestBoard Off;
ChestSensor On; Bumpers: On; C4++:
sayTeam|_AmPlayingAndShallWeKickOff; /

~

OK ) ( Cancel

(a) The activities of INITIAL.

Fig. 2. Display of activities in two states

gupositionsensor to detect if (and which way) the robot
has fallen.

Other modules are actuators that send a message or produce
and effect on the environment external to the system. Actuators
are typically subscribers through the whiteboard to postings by
FSMs. It is important to understand that a state has essentially
two types of activities, postings to the whiteboard or execution
of some C++ code. The possibility to integrate C++ code
means that any behaviour that we do not represent as FSMs
can also be integrated into our modelling. The activities in
our state machines are classified into three different execution
steps (following very much the conventions of state machines
for modelling Object Oriented Systems in OMT [16], UML,
and may other standards for state machines).

e On Entry: These activities are executed at least once,
and always just once and before any other activity upon
arriving at the state.

¢ On Exit: These activities are executed at least once, and
always just once and after any other activity upon leaving
the state.

« Internal activities: These activities may not be executed
at all. They are executed once, every time the entire
set of leaving transitions has been tested (against the
corresponding expert) and determined no transition fires.

Evaluation of leaving transitions and execution of internal
activities is repeated until a transition fires that moves the
machine to a new state.

Actuators that listen to messages posted by the
guGameController state machine include the following.

e gunaoleds: The interface to illuminate Nao’s ears,
face, feet and the chest button.

e gunaospeechmodule: The robot speaks to identify
itself.

e gunaomotion: The interface to actions like to get up
if the robot is lying down.

In the C++ code, there is a method

sayTeamI_AmPlayingAndShallWeKickOff.

named
This

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

Y%= State Properties

Name: READY
Code: 5
Moore Outputs:

Radius: 40
Line width: 1

£ =~ 1 )
( Colour )

Description:

OnEntry guvision_runVisionPipeline: start;
Speech:ready; LEDS: ChestBoard Blue;
Bumpers: Off; ChestSensor: Off; C++:
postTeam|_AmPlayingAndShallWeKickOff; /
OnExit Placer: Off; NaoWalk: walk 0 0 0; /
Placer: On;

OK ) Cancel

(b) The activities of READY.

of guGameController. fsm using gfsm.

routine uses C++ variables that record the integer number
(player number) and the team as red or blue. This could also
be modelled by states, but the state machine would basically
be a clone of itself for playing red and for playing blue.
Thus, this illustrates that sometimes clarity (and generality)
is achieved with some algorithmic C++ code (rather than
duplicating all the states). The values of the borrowed code
are initially supplied on the command line but are updated by
the guGameController state machine as the event from
the league game controller demands via UDP.

B. The abstraction power of sub-machines

While everything that is required for the SPL in the
INITIAL state is defined in the corresponding state of the
guGameController. fsm, this is not the case for the
READY state. There are many things that are done directly here
in the OnEntry section, such as starting the vision pipeline
in the module gunaovision. Also the ChestBoard LED is
set to blue, and the sensitivity of the buttons is turned off
(otherwise, the feet bumpers sense events just by walking).

So, how to achieve the behaviour that in state READY the
robot is to find its correct position within the field before
the state SET? The posting of the message with a type
corresponding to the name of a sub-FSM starts a previously
dormant automaton. In this case Placer: On (the message
content is On). The OnEx it activity is a posting of Placer:
Of f that makes this sub-machine dormant.

Sub-machines are a sub-class (in the C++ and object-
oriented sense) of FSMs with the additional feature that
they can be suspended or resumed. The Placer. fsm sub-
machine (Fig. 3a) uses an implementation of a Kalman filer for
localisation inside our module gulocalizationfilter.
It uses walks from gunaomotion to walk until it is 150 cm
from its own goal. The localisation module listens to he
whiteboard for postings by gunaovision of landmark sight-
ings (for its internal sensor model) and also to the walk
commands for its internal motion model. Placer. fsm uses

87



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

TRUE

TRUE
headlsLeft
TRUE
headlsRight StepRight
TRUE

headl:
eadlsCentered MinelsFurtherCLX StepForward

TRUE
Centered
MinelsCloserXXXX

StepBack

rst_n

MinelsVisible

MinelsAboutCL ~MinelsVisible

headlsTooFarRigh

headlsTooFarlLeft

TRUE

MinelsVisible

Placed

SleepNStop

TRUE

(a) The Placer. fsm sub-machine.

MinelsVisible

MinelsVisible

MinelsVisible

MinelsVisible

MinelsVisible

MinelsVisible ~MinelsVisible

TRUE
MinelsLeft
MinelsRight
~MinelsVisible
~MinelsVisible
TRUE
MinelsVisible

Nol.andmark

Fig. 3.  Ofsm model of two READY-state sub-FSMs of guGameController. fsm.

CorrectRight

~MinelsVisible ~MinelsVisible

Duration

~MinelsVisible

MinelsCenter

~MinelsVisible

Centered

(b) The GoalTracker. fsm sub-machine.

gunaosensor (and Naophysical) to know if the head in the direction of a landmark may be to walk forward or
angle relative to the body is pointing straight or sideways (in to walk to the side or even to spin). The GoalTracker
order to post suitable commands to mot ion; the step to move uses only the gulocalizationfilter filtering to post

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6 88



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

commands to gunaomotion to turn the head in order to
keep the target landmark in the centre of the vision frame.

III. MODELLING MODULE INTERACTIONS

If the reader was able to remember what modules are
required and which ones communicate with each other, even
at this very top level of the behaviour of the robot, we would
be surprised. Clearly, the description in the previous section
needs some way to document, present, visualise, verify and
validate the inter-module dependencies and the corresponding
message passing and communication.

More importantly, SPL autonomous robots follow a design
pattern that repeats what we have seen in the last forty years of
desktop computer development. The hardware of the system
and its Operating System becomes a commodity while the
software on the system determines its ultimate behaviour.
Here, we have a large number of sensors and actuators that
can be utilised to navigate the robot’s environment and to
exhibit effective or intelligent behaviour. Sensor fusion needs
to be performed to integrate (uncertain) input from numerous
different input devices (such as buttons, cameras, etc.).

Therefore, while it can be argued that the static model
of the robot remains the same throughout (and therefore
conforms to traditional software engineering design processes
as, for example, standardised in UML), this static structure
is only marginally descriptive of the actual behaviour the
robot is required to exhibit. In fact, a quite marginal change
to behaviour can trigger a vastly different interaction pattern
between modules or subsystems. For instance, switching from
ultrasonic distance sensors to vision to detect nearby obstacles
only requires a minute change to the corresponding behaviour
state machine.

However, immediately, module dependencies and, conse-
quently, the design of the overall static system structure
changes. In a traditional approach, this would require a full
redesign of the system and its composition.

To address this problem, we have created a tool that inspects
a dictionary of strings that describes what messages a module
is a listener for and what messages are posted. In reality,
there are two types of paradigms for listeners. They may
subscribe and wait for a message, and thus, as processes, such
listeners are paused and then re-started by the whiteboard.
The second module just queries the whiteboard if such a
message of interest is present on the whiteboard and thus is
non-blocking. Therefore, we also need to indicate the type
of message, whether it is provided or required by that module
(akin to inputs and outputs in UML composite structures [17]).

Moreover, many modules are platform independent and
some modules may have alternatives. This is easily represented
by specifying the same provisions and requirements. An
example of an alternative module is a guspeechmodule.
Such a module exists in two version, a MacOS version that
generates speech from text on a laptop, and a Nao version
that carries the same functionality but on a Nao robot. Even
though these module need different compilers and run under
different operating systems, from the perspective of supplier

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

N

unaoposiionsensor

0]
I
N

kRobotFallenBack kRobotFallenForward

J

kNaoMotionPlayer kNaoWalk

gunaomotion

gunaobuttonsensor - — — - _

KLEDS

KLeftFootBumpPressed kRightFootBumpPressed

gunaoleds

guvision,_stop VisionPipeline
unknown

kShortChestButtonPressed

0

gunaospeechmodule

kRunVisionPipeline “\kSpeechWBMsg

gunaovision

auSeeker

GameController

guGameController

T

1

1
ubehaviourinterpreter

0

kNaoWalk /"kUpdateProof / kUpdateProof \Placer
auedl

gulocalizationfilt
T
| !
1 1
| ‘
| @
1
1
\
1
\ 1
\ 1
" |
@ /

quUDPreceiver

gumacvision

7

kSpeechWBMsg / KRunVisionPipeline (KLEDS

qumacspecchmodule
T
\
\‘/

kPenaltyReceived \KPlayingReceived \kReadyOurGoal \ kReadyReceived \ kReadyTheirGoal \ kSetReceived kUDPsaysBlueKickOff kUDPsaysRedKickOff

P

+/(FinishedReceived  (kInialReceived

Fig. 4. The diagram that illustrates the module dependencies related to the
module guGameController.fsm whose behaviour appears in Figure 1.

89



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

(provider) and consumer (listener) message types, the modules
are completely analogous.

Our models can now be generated completely automatically
from the dictionary of messages, which in turn is gener-
ated directly from the code (in fact it is part of the code).
The result is a series of diagrams that show dependencies
for each module as well as overall module dependencies.
For example, Figure 4 shows the module concerned at the
centre of the diagram. Those modules that are suppliers to
guGameController.fsm are show in the upper row of
modules, and the green arrows show that these are experts,
queried in labels of the FSM, about the change of state. In this
case, guGameController.fsm will be making blocking
calls to these modules requesting they make a proclamation on
a particular proposition (evaluating to true or false) that
labels the transition. The bottom row of modules are those
to whom the module guGameController.fsm will be
posting a message. The black arrows indicate also this is a non-
blocking interaction while the direction of the arrow indicates
who is the provider of a message and who is the listener. In
this illustration we have chosen a faulty version of a FSM
that posts a message not recognised in the dictionary, i.e., no
listening module has been found. Therefore, we see the word
“unknown” in red as a destination of a message. This warns
the behaviour designer that there is a fault in the current design
of interactions of the software, at least with the respect of the
behaviour specified by this FSM.

Discussion

What additional advantages besides the correctness of mod-
ule interactions does this provide? The behaviour designer
can now configure particular testing, verification and vali-
dation plans, and the corresponding script can be generated
automatically. For example, by looking at the corresponding
diagram for a module, and indicating associated modules,
a particular script can be rapidly configured for testing the
chosen module on a particular platform. The script will only
start those modules necessary for interaction and support of
the module under scrutiny, and therefore significant resources
of compilation, porting to the platform, and test configuration
are saved. Lets recall the importance of testing [5, Chapter 7]
and in particular testing automation and early validation; the
sooner we verify a change and test that we have not introduced
a fault or broken the current functionality the better. This leads
to more traceability, to more reliability and to more robustness
in the software process and the product itself.

Why not use UML’s collaboration diagrams or UML’s
sequence diagrams (or some other sort of UML interaction
diagram)? Simply because such UML diagrams are used to
model the dynamic behaviour of the system. They represent a
particular trace of execution. The order and time of message
passing is the principal aspect. Our FSMs are already the
dynamic model. In fact, our proposed diagrams here represent
static information; they are a static model of the software on-
board of the robot. This is precisely why they are so useful in
configuring versions and identifying the modules that together

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

integrate a module. Thus, the diagrams here are in fact more
analogous to UML composite structures [17]. In fact, it is
trivial to convert the dependency information on whiteboard
message suppliers and listeners to corresponding ports therein.
However, this would not capture the fact that the responsibility
for such compositions are factored out from the individual
modules (as we already mentioned, our software architecture
is actually a repository architecture in the terminology of Som-
merville [5, Chapter 6] or whiteboard architecture [10][11]).

IV. OTHER ASPECTS

Some features in our approach that enable further powerful,
high-level control on the behaviours for the robots are

1) to dynamically load a behaviour (a FSM) at any time
and not only at start-up, and

2) to dynamically modify vision pipelines, so the camera
feed (upper or lower camera) is adjusted, based on FSM
context.

We mentioned that the FSMs (or sub-machines) that model our
behaviour are in fact encoded as two tables: the transitions
table and the actions table. The capability to read, parse
and have an internal representation of the FSM is not only
used at start-up time, but can be used on demand. In the
example discussed earlier regarding the model of the Game
Controller, the robot can, during execution, re-load the tran-
sition table from the file TguGameController.txt and
the activities from AguGameController.txt. Once the
corresponding parsing and internal representation are ready
for the interpreter, this refreshed behaviour can take over.
This parsing and re-building of the internal representation is
not a CPU-intensive operation. The grammar of the transition
table and the activities table is very straightforward and the
internal representation is not particularly different from a graph
representation of the FSM as the diagrams we have been
displaying. Namely, our class fsmMachine that represents
a behaviour model is a vector of fsmStates. An object
of the class fsmState has a stateID, stateName, a
vector of fsmTransitions and an £smActivity object.
An fsmActivity object has postings and/or callbacks for
each of three possibilities: OnEntry, OnExit and Internal. An
object of the class fsmTransition can hold an expression
to evaluate.

Granted, this parsing must be combined with the facilities
that enable sub-machines. That is, sub-machines can be paused
(and therefore become dormant), and later be resumed from
their initial state. Therefore, a dormant sub-machine can be re-
loaded without the need to halt the whole robot. Moreover, re-
loading a sub-machine can be part of a behaviour. Therefore,
this opens the door to the possibility of the robot learning or
adapting its behaviour while operating, by simply modifying
the behaviour model during execution (however, such a learn-
ing behaviour is not implemented yet).

Once the concept of a model being able to be loaded during
runtime and not only during start-up is available it is not
difficult to see that a linear software architecture, such as
a pipeline (also known as a pipe and filter architecture [5,

90



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Section 6.3.4]), can easily be modified and adapted with
specific commands during runtime. This is what enables the
second aspect mentioned above.

The advantages provided by these facilities are many. For
example, they can be used as a powerful mechanism for a
faster and more reliable software development cycle for the
the robot (and, in general, for embedded systems). To illustrate
this, it is enough to consider what the testing of a behaviour
demands if the robot needs to be shut down every time a
new behaviour is loaded. Typically, re-booting a robot such
as the Nao is quite time consuming, and requires placing
the robot in a safe position, e.g., to physically prevent the
robot from falling. The boot process is slow, because it is
not only the operating system that needs to be loaded, but
also all the middleware that enables the hardware subsystems,
and any other modules that the behaviour uses and that are
part of the system as a whole. As we alluded earlier, in the
case of playing robotic soccer, these include many modules
for motion, vision, sonar, actuators, etc. In general, which
modules are required for a behaviour is determined by our
new diagrams illustrating module dependencies. Dynamically
loading a behaviour (or a sub-behaviour as a sub-machine)
enables iterative refinement and testing of new behaviour,
without the lengthy delay of re-booting the robot for every
single modification of the behaviour model. This facilities and
speeds up the testing of every behaviour. The more a behaviour
is tested, the more reliable it becomes.

V. CONCLUSION

We have described our model-driven engineering approach
to software development. We can completely develop the
behaviour of autonomous humanoids robots through models
that consist of

1) models for logics that describe the domain knowledge

and the declarative part of the system,

2) models for the action part of the system, that are

visualised by finite state machines, or state diagrams.
However, understanding the interactions, the service available,
and the request that will be made to service providers needs
validation and visualisation. We have described the mecha-
nisms to obtain such diagrams and the benefits they provide
to software development.

Nevertheless, there are also some aspects of our infrastruc-
ture that constitute immediate targets for further work;

o to expand even further the vocabulary of messages the
behaviour interpreter can use when requesting a proof so
we can use other inference engines,

o to add priorities to the messages on the whiteboard, so
we can have a subsumption architecture, and

« to add a planning module (so we can apply the infrastruc-
ture to other environments besides soccer, that demand
more planning and are less reactive).

ACKNOWLEDGEMENTS

The authors would like to thank Andrew Rock and David
Billington for fruitful discussions and collaboration in the

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

conceptual idea of model-driven engineering of behaviour of
autonomous robots.

The authors also thank Carl Lusty, Steven Kuok, and Vitor
Bottazzi who helped significantly in the programming of many
of the modules and tools used in the practical illustration of
this approach, which is the large software environment and
system that is the code for the RoboCup Standard Platform
League.

REFERENCES

[1] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, ‘“Non-
monotonic reasoning for localisation in robocup,” in Australasian Con-
ference on Robotics and Automation, C. Sammut, Ed. Sydney:
Australian Robotics and Automation Association, December 5-6 2005.

, “Using temporal consistency to improve robot localisation,” in

RoboCup 2006: Robot Soccer World Cup X, ser. Lecture Notes in Com-

puter Science, G. Lakemeyer, E. Sklar, D. G. Sorrenti, and T. Takahashi,

Eds., vol. 4434. Springer, 2006, pp. 232-244.

, “Chapter 3: Non-monotonic reasoning on board a sony AIBO,”

in Robotic Soccer, P. Lima, Ed. Vienna, Austria: I-Tech Education and

Publishing, 2007, pp. 45-70.

, “Non-monotonic reasoning for requirements engineering,” in
Proceedings of the 5th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE). Athens, Greece:
SciTePress (Portugal), 22-24 July 2010, pp. 68-77.

[5] I. Sommerville, Software engineering (9th ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2010.

[6] E.M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
2001.

[7]1 C. Baier and J.-P. Katoen, Principles of model checking.
2008.

[8] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Plausible
logic facilitates engineering the behavior of autonomous robots,” in
IASTED Conference on Software Engineering (SE 2010), R. Fox and
W. Golubski, Eds.  Anaheim, USA: ACTA Press, February 16 - 18
2010, pp. 41-48, location: Innsbruck, Austria.

, “Modelling behaviour requirements for automatic interpretation,
simulation and deployment,” in SIMPAR 2010 Second International
Conference on Simulation, Modeling and Programming for Autonomous
Robots, ser. Lecture Notes in Computer Science, N. Ando, S. Balakirsky,
T. Hemker, M. Reggiani, and O. von Stryk, Eds., vol. 6472. Darmstadt,
Germany: Springer, November 15th-18th 2010, pp. 204-216.

[10] B. Hayes-Roth, “A blackboard architecture for control,” in Distributed
Artificial Intelligence, A. H. Bond and L. Gasser, Eds. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1988, pp. 505-540.

[11] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Architecture
for hybrid robotic behavior,” in Hybrid Artificial Intelligence Systems,
4th International Conference, HAIS 2009, Salamanca, Spain, June
10-12, 2009. Proceedings, ser. Lecture Notes in Computer Science,
E. Corchado, X. Wu, E. Oja, A. Herrero, and B. Baruque, Eds., vol.
5572.  Springer, 2009, pp. 145-156.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, Inc., 2002.

[13] C. H. Wu, W. H. Ip, and C. Y. Chan, “Real-time distributed
vision-based network system for logistics applications,” Int. J. Intell.
Syst. Technol. Appl., vol. 6, pp. 309-322, March 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1521389.1521397

[14] L. Wen and R. G. Dromey, “From requirements change to design
change: A formal path,” in 2nd International Conference on Software
Engineering and Formal Methods (SEFM 2004). Beijing, China: IEEE
Computer Society, 28-30 September 2004, pp. 104-113.

[15] D. Billington, “Propositional clausal defeasible logic,” in Proceedings
of the 11th European conference on Logics in Artificial Intelligence,
ser. JELIA *08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 34-47.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-87803-2_5

[16] J. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premer-
lani, Object-Oriented Modelling and Design. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1991.

[17] OMG Unified Modeling Language (OMG UML), Superstructure, V2.3.
Object Management Group, May 2010, ch. 9, Composite Structures, pp.
167-198.

[2]

[3]

[4]

MIT Press,

[9]

91



