
Component-based Software System Dependency Metrics

based on Component Information Flow Measurements
Majdi Abdellatief

ab
, Abu Bakar Md Sultan

a
, Abdul Azim Abd Ghani

a
, Marzanah A.Jabar

a

a
Department of Information System, Faculty of Computer Science & Information Technology,

 University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
b
Mehareeba Technical College, Technical Education Corporation, 2081 Khartoum, Sudan

Khwaja24@yahoo.com, {abakar, azim, marzanah}@fsktm.upm.edu.my

Abstract-The motivation of this paper is that the measurement

based on the flow of information connecting software

components can be used to evaluate component-based software

system dependency. The ability to measure system dependency

implies the capability to locate weakness in the system design

and to determine the level of software quality. In this paper,

dependency between components is considered as a major

factor affecting the structural design of Component-based

software System (CBSS). Two sets of metrics namely,

Component Information Flow Metrics and Component

Coupling Metrics are proposed based on the concept of

Component Information Flow from CBSS designer’s point of

view. We also discuss the motivation for and possible uses of

system level metrics and component level metrics. Initial

results from our on-going empirical evaluation indicate that

the proposed metrics are very intuitive.

 Keywords-Component-based software system; Software metric;

Dependency; Information flow.

I. INTRODUCTION
In Component-based development (CBD) paradigm,

Component-based software system (CBSS) are developed
using a set of independent components which work together.
Some of these components may be developed in-house,
while others may be third-party components, without source
code [1]. Nowadays, this development methodology has
become one of the predominant software engineering
solutions for the design of a large and a complex system [2].

Analysis of CBSS dependencies is an important part of
software research for understandability [3], testability [4],
maintainability [5] and reusability [6][7] of a component-
based system. Thus, dependency metrics could have a real
impact on the quality of the system delivered to the user. If
valid dependency metrics could be identified, they could
provide the information required by developers, testers and
maintainers to understand the system, identify the critical
components, evaluate the impact of change in one
component on the other components and even to support the
future evolution of the CBSS when adding, removing and
modifying some components. It is difficult to perform such
tasks without understanding potential component
dependencies [8]. In addition, a large and complex CBSS
should be evaluated early at the specification phase, to avoid
faults, poor interaction among components and failure of one
component which could lead to a total system failure [9][10].

Previous research conducted in CBSS metrics
concentrated on one of two major areas. Many research
papers [11][12][13], focused on measuring the reusability of
software components, while others [2][10][14][15][16],

focus on measuring the interaction complexity of integrated
components. In the past, only a few papers based on graph
theory addressed the evaluation of CBSS dependency
[8][10][17][18][19]. However, there has been no theoretical
or empirical validation conducted for the proposed metrics.
In this paper, interface dependency is considered to be the
main dependency affecting CBSSs. Interface dependency
exists as relationships among different functionalities and
parameters of software components. For example, when one
interface relies on other to obtains functionalities necessary
for its own tasks. However, if the components produced by
component providers only include specifications of the
interfaces [19][20], the interface specification does not
supply adequate information for analysis of integrated CBSS
dependency. Thus, in CBSSs, due to the black box nature
and the separation of interface specification from its
implementation, the analysis of information flows will be
quite difficult using the traditional information flow
techniques. Therefore, we first proposed a new method
named Component Information Flow (CIF) to analyze the
information flows into a component, out of a component and
between components. We believe that the CIF is a more
suitable and practical basis for characterizing and evaluating
CBSS for several reasons. First, often the component’s
internal structure is not available. Second, the elements of
CIF could be directly determined at design phase. Third, the
availability of metric values early in the design phase allows
the CBSS structure to be corrected with the least cost.
Fourth, as seen in the subsections of this paper, it’s based on
standard Information flow [21], which is considered more
sensitive than other measurements.

Based on the concept of CIF, we also propose two sets of
metrics, namely, Component Information Flow Metrics and
Component Coupling Metrics that represent the CBSS
designer’s point of view (they are also relevant to testers and
maintainers). The proposed metrics depict details about the
quality of a structure design at three levels, entire CBSS
level, component level and interface level. For each level
they concern with the way in which components or interfaces
connect.
 This paper is organized as follows: Section II describes
research methodology. Section III illustrates component-
based information flow definitions and concepts. Section IV
provides the definition of the metrics and their description.
Section V applies our proposed metrics in a small scale
example and discusses the results. The conclusion and
direction for future work are in Section VI.

76

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

mailto:Khwaja24@yahoo.com
mailto:abakar,%20azim,%20marzanah%7D@fsktm.upm.edu.my

II. RESEARCH METHODOLOGY
 The metrics are derived in the following steps:

1. Conducting systematic mapping study on existing
CBSS metrics and metrics validation techniques.

2. Defining information flow for CBSS.
3. Defining a new dependency metrics for CBSS

specification.
4. Application of the proposed metrics in a small

scale example.
 In step 1, a systematic mapping study of the values for
various metrics was carried out by the authors of this paper
and the limitations of the current research were drawn from
them in “unpublished” [22]. The third author suggested step
2. The planning, data collection and reporting of steps 2 and
3 were performed by the first author with respect to the
context defined in Section III. Each step and its content was
checked and reviewed by the rest of authors independently
and carefully. In case there is ambiguity point, a negotiation
took place. Particularly, step 2 was investigated many times
since it is considered as the core of this study. Step 4 was
conducted by all of the authors as stated in Section V.

III. COMPONENT INFORMATION FLOW CONCEPTS AND

CONTEXT
To provide a context for this Section and the next Section,
we need a background of software component and CBSS
specification method. Components definition adopted in this
study clearly fall under Szyperski’s definition [1]. The CBSS
structural specification method used is that of Cheesman and
Daniels [23]. Our measurement approach assumes that the
proposed approach is generally applicable to developments
using any of the technology standards such as Sun’s EJB,
Microsoft’s COM+ and CORBA Models.

A. Software Component Concept
 We visualize software component concepts from the
perspective of component developers and CBSS designers.
Figure 1 provides a simplified model of a component such
that a specification defines the functionality and behaviour of
a component which is composed of an interface part and a
body part. The specification and interface are visible to
CBSS designers, whereas the specification, interface and
body are visible to component developers.

The interface definition includes a collection of one or more

operations to specify the functionality and behaviour

identified in the specification. The body of the system

implements the external methods and any other internal

methods that are required to provide the functionality and

behaviour identified in the specification. Metrics may be

derived from the specification, interface or body but only

metrics derived from the interface and specification can be

used by CBSS designers.

B. Definition of Component Information Flow
This subsection describes the mechanisms for deriving

the various types of component information flow based on
the above assumptions.

The separation of interface from implementation is a core
principle of component based development. That is, the
functionality specified in the interface could be implemented
in different applications by different programming
languages. Therefore, it is important to view interfaces and
their specifications separately from any specific component
that may implement or use such interfaces. To explain this
view, it suffices to consider the interface of a component to
define the component’s access point [24]. These access
points allow clients of a component, usually components
themselves, to access the functions provided by the
component. Normally, a component could have multiple
access points corresponding to different functions provided
in the interface [1].

In Figure 2, we depict this view from an interface
perspective. This model focuses on what the interface must
do to fulfill the client’s information required without
considering how this will be accomplished. With respect to
the proposed model in Fig 3, for any component in CBSSs,
two boundaries are considered: (1) Interface boundary which
separates the provider interface from a client interface. The
client might be a user, a required interface or an engineering
device. (2) The body boundary which separates the provider
interface from its implementation.

Component Information Flow (CIF) is characterized by
two types of flows, Inter-component flow and Intra-
component flow. In the Inter-component flow, the provider
interface communicates with client to exchange information
by In-flows and Out flows. Thus, the information flows
across the interface boundary. The In-flow carries
information from a client to a provider interface through the

A user

A required

interface

Clients

Provider interface

specification
Component Body

Implementations

In-Flow

Out Flow

Software Component

Body boundaryInterface boundary

Engineering

device

Write Flow

Read Flow

Inter-component flow Intra-component flow

Figure 2. Generic model of component information flow

Figure 1. Simplified component model

Body
Component

Specification

Interface

CBS Designers

visible_to
visible_to

Defines
Implements

Visible to
visible_to

visible_to

 Component

Component Developers

77

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

list of in-parameters. The Out flow carries information from
a provider interface to a client through the list of out-
parameters. In the Intra-component flow, it is assumed that
the data structure is used (i.e., a component body) to store
and retrieve the information needed by the provider
interface, represented by Read flow and Write flow. Thus,
the information flows across the body boundary. In other
words, an intra-component flow takes place when an
interface retrieves data from or updates a data structure.

An important characteristic of the CIF described above is
that the knowledge essential to build the complete flow
structure can be established from a simple analysis of a UML
requirements specification. The UML modeling technique
describes the component specification, the component
interaction diagram and the interface specification to design
the intended CBSS. Component specifications name the
interfaces that a component adhering to the specification
must implement. An interface specification consists of a set
of operation specifications. An interface specification has to
specify how the inputs, outputs, and component object state
are related, and what the effect of calling the operation has
on that relationship [23]. An operation specifies an
individual action that an interface will perform for the client.
Each action shows one or more types of information flow
(i.e., In-flow, Out flow, Read flow or Write flow), where
each type of information flow shows one possible execution
flow. Thus, for each interface we can identify all potential
flows from the interface specification. To facilitate the
mapping of CIF to a complete flows structure, we describe a
template for CIF analysis and data collection as shown in
Table 1.

To understand the relationship between components and
make the concept of CIF clear, consider an example
presented in Figure 3, which shows three components, A, B,
C and their relationship to each other. This example is purely
from the specification perspective. It is assumed that some
functionality required by component “A” is implemented by
“B” and “C. We depict the information flow among
components as a result of methods calling and events firing
as Inter-component flow, and the information flow inside the
components to update or retrieve from component store as
Intra-component flow. The information flow from
component “A” to “B” or “A” to “C” can be represented by a
set of direct inter-flows plus a set of intra-flows, whereas the
information flow from “B” to “C” can be represented by a
set of indirect inter-flows plus a set of intra-flows.

A

B

C

Direct Inter-flow

Indirect Inter-flow

Intra-flwo

Figure 3. An example of component information flow

The following definitions describe precisely the terms

and the four types of information flow presented informally
above. These four types of flow identify the logical flow of
information between components. The reader should refer to
Figure 3 to understand definitions 1, 2 and 4, and Figure 3 to
understand definition 4, 5, 6 and 7.

Definition 1: Information flow is the set of messages

streaming across the boundaries which define a particular
communication between two components based on the
logical representation of the interface specification.

Definition 2: There is an Intra-component flow of

information from component “B” to component “A” if a
component “B” implements some functionality of
component “A”.

Definition 3: There is an Inter-component flow of

information from component “A” to component “B” if one
or more of the following conditions hold:

1) If a component “A” invokes a component “B” and
passes information to it; or component “B” returns a result to
a component “A” (termed direct inter-component flow).

2) If a component “A” invokes both a component “B”
and a component “C” passing output values from “B” to “C”
(termed indirect inter-component flow).

Definition 4: In-flow is an inter-component flow type and

carries information provided or passed from a client entity to
a provider interface.

Definition 5: Out flow is an inter-component flow type

and carries information returned from a provider interface to
a client entity.

TABLE 1. TEMPLATE FOR COMPONENT INFORMATION FLOW ANALYSIS AND DATA COLLECTION

Interfaces operations Operation Description
Information

Flow Types

Source of

Information Flow

Destination of

Information Flow

Each

component can

consists of one

or more

interfaces

Each interface

can consists

of one or

more

operations

Each operation could be

described as a set of messages

with respect to the definitions

information flow (i, e.,

definitions 1, 4, 5, 6, and 7)

In-flow Client interface Provider Interface

Out flow Provider interfaces Client interface

Read flow Provider Interface Component store

Write Flow Provider interface Component store

78

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Definition 6: Read flow is an intra-component flow type

and carries information retrieved from a component store to
a provider interface.

Definition 7: Write flow is an intra-component flow type

and carries information from a provider interface to update
component store.

C. CIF supports:

 a variety of software architectures from simple stand-alone
application to large distributed software based on OSI 7
layers or J2EE n-tiers. Therefore, almost any kind of
CBSS structure can be analyzed and evaluated.

 all stages of the software life cycle. Analysis can be
carried out as early in the requirement specifications or as
late in the life cycle as necessary.

 a defined measurement unit. An elementary unit of CIF
defined by us is a base flow type (i.e., in-flow, out flow,
read flow and write flow)

IV. DEFINITION OF DEPENDENCY METRICS

We use measurement based on the flow of information to

evaluate and mange dependencies between components in

the CBSS. Particularly, we use the following metrics to

characterize the effect of dependency on the structure design

of CBSS.

A. Component Coupling Metrics

In our literature survey, we found inconsistencies in the
definition of coupling in the literature [6][7][25][26][27][28].
There were several different definitions of coupling,
depending on the measurement goal and entity being
measured (i.e., inheritance coupling, messages passing
coupling or data abstraction coupling) [29]. Thus, the
coupling attribute has been defined, measured and
interpreted in various ways. Xia [27] studied this ambiguity
of coupling concept and redefined it based on its essence.
We adopted his definition here. “Component coupling of m is
the impact-dependence of components to m”. The impact-
dependence of X2 to X1 means that when X1 is modified,
there will be an impact on X2. For example, when changing
component X1 in Figure 4, we only need to consider how
component X2 will be affected. Component X2 returns F1
and F2 to component X1. F1 and F2 are out-flows of
component X2 and in-flows of component X1 which will
influence component X1 when component X2 is changed.
But when X1 is modified, F1 and F2 have no impact on X2.
Therefore, the right definition should consider only the out
flow of X1 for its coupling. Another important source which
could influence the change in X1 is the number of distinct
components receiving the out flows [30]. For example, an
impact on a component that depends on one component is
not the equivalent to a component that depends on three
components, even if both components receive the same
number of out flows.

XI

X2

F1
F2 F3

F4
Figure 4. The impact of component modification

Assumption 1: The more the spread of inter-flow from a

component, the larger the context of its interface operations
and the more the external information required to test and
maintain the components.

Accordingly, we defined coupling metrics as

Interface Coupling (IC) = n × 


p

1i
iOF

where
p = number of operations in an interface

OFi = number of out flows in each operation (i)
n = the number of other component to which an interface

is coupled

Component Coupling (CC) = 


p

i 1 i
IC

where
ICi = interface coupling
p = the number of interfaces in a component.

CBSS coupling = 


n

i 1 i
CC

where
CCi = component coupling
n = the number of components in the system.

This definition consistent with the study by Kitchenham

and Likman [31], which indicated that all the information
flow metrics studied, except for informational fan-in, appear
to act as indicators of future problems.

B. Component Information Flow Metrics

We adopted the definition of information flow proposed
by Ince and Shepperd [32] which is considered to be a more
sophisticated metric than the original information flow
proposed by Henry and Kafura [21]. The aim of this metric
is to predict a critical components. A critical component is
one that is more likely to contain errors during testing, faults
during operation and is more likely to be costly after faults
are found [33]. If a critical component is identified early,
then a CBSS designer can take appropriate action to reduce
the potential problem, such as redesigning critical
components or allocating additional test resources.

Fan-in and fan-out are defined with respect to individual
interface as follows:

Definition 8: Fan-in of an interface “I” is the sum of
inter-flows into an interface “I” plus the number of intra-
flows which an interface “I” retrieves.

79

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Definition 9: Fan-out of an interface “I” is the sum of
inter-flows from an interface “I” plus the number of intra-
flows which an interface “I” updates.

Interface Information Flow (IIF) = (Fan-in *Fan-out)
2

The following is a step by step guide to derive the
information flow metrics values for a CBSS:

1. For each interface in a component, calculate the
Interface Information Flow (IIF) value of that interface
using the formula below:

Interface Information Flow (IIF) = (Fan-in *Fan-out)
2

2. For each component in a CBSS, sum the Interface

Information Flow (IIF) values for all interfaces in that
component. We will term this the Component
Information Flow (CIF).

Component Information Flow (CIF) =




p

i 1
)

i
(IIF

 where
p = the number of interfaces in a component

3. Sum the Component Information flow (CIF) values for
all components in a CBSS. We will term this the
(CBSIF).

CBSS Information Flow (CBSIF) = 


n

i 1
)

i
(CIF

 where
 n = the number of components in a CBSS

Kitchenham [31], Shepperd [34] and Lanza [35] have

shown that the multidimensional metrics are a more effective
approach in understanding, assessing and identifying
problem components than any method based on a single
metric. Therefore, we grouped the set of metrics to
characterize and evaluate different levels of design as
follows:

1. Dependency Structures of Interface (DSI)

To characterize and evaluate the dependency behavior of
the interfaces we can rank the interfaces according to the
Interface Coupling metrics (IC) and Interface Information
Flow metrics (IIF) in a scatter plot

2. Dependency Structures of Component (DSC)

To characterize and evaluate the dependency behavior of
the components we can rank components according to the
Component Coupling metric (CC) and the Component
Interface Information Flow metric (CIF) in a scatter plot.

3. Dependency Structures of CBSS (DS-CBSS)

To characterize and evaluate the dependency behavior of
the CBSSs we can rank the CBSSs according to the CBSIF
and CBSS coupling in a scatter plot.

DSI and DSC represent component level metrics while

DS-CBSS represents CBSS level metrics. For CBSS level
metrics, CBSS designers should compare different
compositions of the same system with respect to testing and

maintenance. For component level metrics, CBSS designers
should compare different component of the same system
with respect to reusability of component.

V. INCORPORATING THE METRICS INTO WEB-BASED

CBSS APPLICATION
To study the usefulness of our metrics, we applied them

to assess the structure design of Hotel Management System
(HMS) which is used in [23] as well as in [36]. Other
researchers such as Mahmood and Lai [14] use a similar
approach. The choice of HMS was even better since it
developed according to [23], which is a good example of
Szyperski’s CBSS specification methodology. Figure 5
shows HMS architecture used in the study. The HMS is a
web based application that allows a user to search, reserve a
hotel room and checks the availability of rooms and prices or
cancels his reservation at any time. (Full details of the
application can be found at [37]).
In the context of HMS the goals of the application were:

 To explain and demonstrate the capabilities of our
proposed metrics and to help software engineering
community gain a deep understanding of their
definition and application context.

 To investigate whether the metrics results yielded
intuitive information to characterize and evaluate the
CBSS dependency.

A. Data Collection
Data collection was done by manual inspection of the

HMS specification (i.e., components specification, interfaces
specification and interaction diagrams). The CIF analysis
was performed for each component in the HMS using
template defines in Table 1. The following quantitative data
was collected:

 The number of inter-component flows.

 The number of intra-component flows.

 The number of components.

 The number of interfaces in each component.

 The number of operations in each interface.
This information was tabulated and analyzed using Excel
program. We discarded billing component from the study
because we did not find enough information about it is
specification. The Data were primarily collected by the first
author and checked by the second and third authors
independently to help avoiding bias and error. In the event of
a disagreement, a negotiation took place. The results were
reviewed and discussed in a formal meeting by the authors of
this paper.

I Make

Reservation

I Take up

Reservation

 I Hotel Mgt

Reservation

System

Component

Customer

Management

Component

 I Customer Mgt

 I Billing System

Hotel

Management

Component

Billing System

Component

Figure 5. HMS architecture

80

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Data analysis
Given the goal of producing components which have a

better dependency and with respect to the concept of
coupling and information flow complexity, we should
interpret the coupling metric and the information flow metric
in isolation to verify their functionality, since they reflect the
behavior of components based on different concepts, goals
and definitions. This claim should, as we understand it, not
be interpreted outside the context of metrics hypothesis.
Obviously, the coupling metrics reflect the behavior of
components in terms of a one directional relationship (i.e.,
the number of inter-flows out of the component), which in
turn assesses the component’s impact on the overall system.
Whereas, the information flow complexity metrics reflects
the behavior of components in terms of bi-directional
relationship (i.e., fan-in and fan-out), which assesses the
amount of information flowing to and from other
components of the system.

The component dependency might be characterized as
better, if the component has relatively low values of both
coupling metric and information flow metric, which in turn
indicates lower CBSS maintenance time and cost.

C. Result and discussion
When changing the reservation system component, we

need to consider how both the hotel management component
and customer management component will be affected.
Whereas, when modifying either the hotel management
component or customer management component, we only
need to consider how the reservation system component will
be influenced. According to the component coupling metric
results shown in Figure 6, the coupling of reservation system
component is quite high compared with hotel management
and customer management components. This means that the
reservation system component depends strongly on the
customer management component and hotel management
components. Usually, high Coupling refers to a more elusive
problem [38][39]. Any changes made to a highly coupled
component would probably require changes to many other
components in the design. Consequently, in the future,
understandability, maintainability and reusability of the
reservation system component is likely to be quite difficult.
The customer management component has the lowest
coupling degree which means it’s the easiest to modify and
reuse.

3697, 39
Reservation Sys

2916, 10
Hotel Mgt

256, 2 Customer
Mgt

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000

CC

CIF

Figure 6. Dependency Structures of Components

In addition, it is interesting to note that the CIF metric
values are consistent with the component coupling metric
values. Empirical studies in the literature confirm that a high
value of information flow measure can reveal three potential
problem areas: component which possibly lack functionality,
component with stress point (which means a change to it
could affect other component in its environment) and/or an
inadequate refinement [21].

As shown in Figure 7, in the case of IC metric, the “I
make reservation” (IMR) and “I take reservation” (ITR)
interfaces indicate highly coupled interfaces. Therefore, it is
recommended to investigate IMR and ITR interfaces in
terms of the number of other component to which each
interface is coupled. The underlying theory of this metrics is
that an interface should have a low coupling with other
interfaces in a system. The high values of IC metric might
mean that the responsibilities of their operations are not
clearly defined, which in turn means that the
understandability and testability of those interfaces in
isolation is very hard, significantly lowering design quality.
In contrast, the “I Hotel” and “I Customer” interfaces show
lower coupling degree which means they can be easily tested
and maintained.

The IIF metric shows interesting results when looking at
the total level of information flow. The results show that “I
Hotel” interface and IMR interface have relatively high
values. The high value of “I Hotel” interface is due to large
number of operations exposed by the “I Hotel” interface.
This implies that the “I Hotel interface” and IMR interface
should be redesigned or investigated by an expert.

2401, 21
IMR

1296, 18
ITR

2916, 10
I Hotel

256, 2
I Customer

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500

IC

IIF

Figure 7. Dependency Structures of Interfaces

VI. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

In this paper, first, we proposed a method named CIF for
analyzing information flow in CBSSs. We believe that the
CIF is very useful, much easier to collect earlier in the
lifecycle, and is a practical basis for evaluating CBSS.

Second, we proposed two sets of metrics which
characterize and evaluates the dependency between
components, so that CBSS designers can identify critical
components in terms of error-proneness and evaluate the
impact of the change on the whole CBSS in terms of the
difficulty of making a corrective change, which in turn
allows designers to target components that need to be revised
to improve the quality of the design.

81

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Overall, we believe that our propose metrics can become a

very useful tool in help monitoring, managing and

controlling test cost estimation, quality estimation and

complexity analysis. The component level metrics can be

used to identify complex components and/or critical

components. Complex and/or critical components assembly

would potentially take longer time to develop and test than a

simple one. Therefore, developers, tester and maintainers

with better experience and more money should be used to

integrate and test critical components. For a software tester,

complex components require substantial testing effort [2].

The metrics could be used as the basis of a coverage measure

of testing for each component (i.e. testers should as a

minimum cover all input and output flows). There are also

coverage measures that can be based on combinatorial

testing of the inputs. Components produced by component

providers only include specifications of the interfaces. This

imposes difficulties on sufficient testing of an integrated

CBSS [40]. For testing such components, we need

techniques that do not require the source code and instead

relay mainly on the specification of system [20][41]. We

believe that the CIF analysis is very useful for this purpose.

 The system level metrics might be suitable for effort

estimation. In particular, the CBSS metrics should be related

to testing costs (since testing requires activating the

information flows to confirm the functional and non-function

requirements have been met). They might be used to

estimate minimal set of test cases that must be run when one

component is modified.
This paper represents only the beginning of the research

that should be undertaken to explore this approach. So we
invite researchers to comment on whether the new approach
we proposed captures the real essence of component
information flow or if there are areas that are left out.

ACKNOWLEDGMENT

We would like to thank Barbara Kitchenham for her ideas,
comments, suggestions and support as we prepare this paper.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object Oriented
Programming,Second Editioned, Addison Wesley, New York, 2002,

[2] L. Narasimhan and B. Hendradjaya, "Some theoretical considerations
for a suite of metrics for the integration of software components,"
Information Sciences, vol.177, 2007, pp. 844-64.

[3] A. De Lucia, A.R. Fasolino and M. Munro, "Understanding function
behaviors through program slicing," wpc, 1996, pp. 9.

[4] S. Bates and S. Horwitz, " Incremental program testing using program
dependence graphs," Proc. Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM,
1993, pp.384-396

[5] K.B. Gallagher and J.R. Lyle, "Using program slicing in software
maintenance," Software Engineering, IEEE Transactions on, vol.17, 1991,
pp. 751-61.

[6] G. Gui and P.D. Scott, "Measuring Software Component Reusability by
Coupling and Cohesion Metrics," Journal of Computers, vol.4, 2009, pp.
797-805.

[7] G. Gui and P. Scott, "Ranking reusability of software components using
coupling metrics," Journal of Systems and Softwar, Journal of Systems and
Software, vol.80, 2007, pp. 1450-9.

[8] B. Li, " Managing dependencies in component-based systems based on
matrix model," Proc. Proceedings Of Net. Object. Days, Citeseer, 2003,
pp.22-25

[9] J. Gorman, "OO Design Principles & Metrics," Online verfügbar unter
http://www.parlezuml.com/metrics/OO% 20Design% 20Principles%
20&% 20Metrics.pdf, zuletzt geprüft am, vol.15, 2006, pp. 2009.

[10] N.S. Gill and Balkishan, "Dependency and interaction oriented
complexity metrics of component-based systems," SIGSOFT Softw. Eng.
Notes, vol.33, 2008, pp. 1-5.,
http://doi.acm.org/10.1145/1350802.1350810.

[11] M.A.S. Boxall and S. Araban, " Interface Metrics for Reusability
Analysis of Components," Proc. Proceedings of the 2004 Australian
Software Engineering Conference, IEEE Computer Society, 2004, pp.40

[12] H. Washizaki, H. Yamamoto and Y. Fukazawa, " A Metrics Suite for
Measuring Reusability of Software Components," Proc. Proceedings of the
9th International Symposium on Software Metrics, IEEE Computer
Society, 2003, pp.211

[13] O.P. Rotaru and M. Dobre, " Reusability metrics for software
components," Proc. Proceedings of the ACS/IEEE 2005 International
Conference on Computer Systems and Applications, IEEE Computer
Society, 2005, pp.24-I

[14] S. Mahmood and R. Lai, "A complexity measure for UML
component-based system specification," Software: Practice and
Experience, vol.38, 2008, pp. 117-34.

[15] N. Salman, "Complexity Metrics AS Predictors of Maintainability and
Integrability of Software components," Journal of Arts and Sciences, 2006,

[16] L. Kharb and R. Singh, "Complexity metrics for component-oriented
software systems," SIGSOFT Softw. Eng. Notes, vol.33, 2008, pp. 1-3.,
http://doi.acm.org/10.1145/1350802.1350811.

[17] A. Sharma, P.S. Grover and R. Kumar, "Dependency analysis for
component-based software systems," SIGSOFT Softw. Eng. Notes, vol.34,
2009, pp. 1-6., http://doi.acm.org/10.1145/1543405.1543424.

[18] S.M. Alhazbi, " Measuring the complexity of component-based system
architecture," Proc. Information and Communication Technologies: From
Theory to Applications, 2004. Proceedings. 2004 International Conference
on, 2004, pp.593-594

[19] M.E.R.V.M.S. Dias and D.J. Richardson, " Describing Dependencies
in Component Access Points," Proc. Proceedings of the 4th Workshop on
Component Based Software Engineering, 23rd International Conference on
Software Engineering, 2001,

[20] S.D. Cesare, M. Lycett and R.D. Macredie, Development of
Component-based Information System, Prentice Hall of India, New Delhi,
2006,

[21] S. Henry and D. Kafura, "Software Structure Metrics Based on
Information Flow," IEEE Trans. Softw. Eng., vol.7, 1981, pp. 510-8.,
http://dx.doi.org/10.1109/TSE.1981.231113.

[22] M. Abdellatief, A.b.M. Sultan, A.A. Abdul Ghani and M. Jabar, "A
mapping Study to Investigate Component-based System Metrics,"

[23] J. Cheesman and J. Daniels, UML Components: A Simple process for
Specifying Compoent Based Software, Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2001,

[24] I. Crnkovic, B. Hnich, T. Jonsson and Z. Kiziltan, "Specification,
implementation, and deployment of components," Commun ACM, vol.45,
2002, pp. 35-40.

[25] M.M. Pickard and B.D. Carter, "A field study of the relationship of
information flow and maintainability of COBOL programs," Information
and Software Technology, vol.37, 1995, pp. 195-202.

[26] E.B. Allen, T.M. Khoshgoftaar and Y. Chen, " Measuring coupling
and cohesion of software modules: an information-theory approach," Proc.
metrics, Published by the IEEE Computer Society, 2001, pp.124

[27] F. Xia, "On the concept of coupling, its modeling and measurement,"
Journal of Systems and Software, vol. 50 pp. 75-84. 2000.

82

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.parlezuml.com/metrics/OO%25
http://doi.acm.org/10.1145/1350802.1350810
http://doi.acm.org/10.1145/1350802.1350811
http://doi.acm.org/10.1145/1543405.1543424
http://dx.doi.org/10.1109/TSE.1981.231113

[28] W. Khlif, N. Zaaboub and H. Ben-Abdallah, "Coupling metrics for
business process modeling," WSEAS Transactions on Computers, vol.9,
2010, pp. 31-41.

[29] L. Sallie, "Object-oriented metrics that predict maintainability,"
J.Syst.Software, vol.23, 1993, pp. 111-22.

[30] L.C. Briand, S. Morasca and V.R. Basili, " Measuring and assessing
maintainability at the end of high level design," Proc. Software
Maintenance, 1993. CSM-93, Proceedings., Conference on, IEEE, 1993,
pp.88-87

[31] B.A. Kitchenham and S.J. Linkman, "Design metrics in practice,"
Information and Software Technology, vol.32, 1990, pp. 304-10.

[32] D. Ince C. and M. Shepperd J., " An empirical and theoretical analysis
of infromation flow-based system design metrics," Proc. 2nd European
Software Engineering Conf, Springer Verlag, 1989,

[33] K. El-Emam, "A methodology for validating software product
metrics," 2010,

[34] M. Shepperd, "Measurement of structure and size of software
designs," Information and Software Technology, vol.34, 1992, pp. 756-62.

[35] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practics:
Using softqware Metrics to Characterize, Evaluate, and improve the Design
of Object-Oriented Systems, Springer, Berlin Heidelberg - Germany, 2006,

[36] M. Heisel and J. SouquiÃ¨res, "Adding Features to Component-Based
Systems," Objects, Agents, and Features, vol. 2975 pp. 25-36. 2004.

[37] "http:www.umlcomponents.com," August/8/ 2011.

[38] L. Briand, S. Morasca and V.R. Basili, "Defining and validating high-
level design metrics," pp. 31. 1994.

[39] S.R. Chidamber and C.F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Trans. Softw. Eng., vol.20, 1994, pp. 476-93.,
http://dx.doi.org/10.1109/32.295895.

[40] Y. Wu, M.H. Chen and J. Offutt, "UML-based integration testing for
component-based software," COTS-Based Software Systems, 2003, pp.
251-60.

[41] E.J. Weyuker, "Testing component-based software: A cautionary tale,"
Software, IEEE, vol.15, 1998, pp. 54-9.

83

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.umlcomponents.com/
http://dx.doi.org/10.1109/32.295895

