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IFSTTAR
25 allée des marronniers
78000 Versailles, France

Email: firstname.name@ifsttar.fr
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Abstract—This paper reports the architecture of a simu-
lator which is able to evaluate sensors, path planners and
controllers of the advanced driving-assistance systems (ADAS).
The outstanding feature of this simulator is that it is able to
evaluate algorithms by giving scores. The implementation of the
algorithms requires several tools such as Pro-SiVICTM. To have
a good evaluation of the developed algorithms, we give a list
in this paper of the requirements for an ADAS simulator. The
simulator architecture and the developed algorithms are tested
in several ADAS scenarios. Using Pro-SiVICTM as a simulator,
we are now able to evaluate different algorithms for ADAS.

Keywords-Simulation architecture; Pro-SiVICTM; Evaluation;
ADAS.

I. INTRODUCTION

Advanced driving-assistance systems (ADAS) received an
increasing attention from the car industry recently. To attract
industrial attention, pieces of hardwares and softwares are
developed. However, the software developments cannot work
from the first time and can make costly damage. This is
why, there is a strong need to ease the development and
the validation process of different parts of hardware and
software components. In this sense, using computational
simulation techniques can be a candidate solution to this
problem since it is cheaper in terms of time, money and
human resource needed. By generating different types of
vehicles, a simulator should be able to evaluate the vehicle’s
behavior. Up until now, several simulators are developed.
They can be logically divided into two main groups. The
first group focuses on simulating only one specific behavior,
such as the camera perception or the path planning [1].
The second group simulates all the system’s components
behaviour at the same time especially for ADAS [2], [3].
The proposed simulator in this paper belongs to the second
group, since the overall aim is to simulate and evaluate
different sensors, path planning and control algorithms for
ADAS. We use Pro-SiVICTM [4] and RTMaps [5]. The former
is able to generate the design (hardware) of different vehicles
(e.g., the wheel’s dimension, the environment, etc.) and
the latter is used to implement different perception, path
planning and control algorithms. In our case, we want to

Figure 1. The general architecture to simulate the perception, path planning
and control algorithms.

simulate and evaluate algorithms for ADAS. However, there
are two questions rising: “What do we need to simulate?”
and “How can we evaluate all the behaviors?” As a brief
answer to the first question is that we are trying to simulate
the perception, the path planning and the control part (see
Figure 1). For the second question, the evaluation tests need
to be realistic. We define realistic tests such as:

- Definition of different scenarios: the defined scenarios
should simulate different road traffic cases, several kinds of
road (e.g., motor-way), etc.

- Evaluation requirements: we need to define some criteria
to evaluate algorithms. For that we define eight simulator
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requirements for the ADAS (see Figure 2) and discuss them
in Section III.

The originality of this paper is that, while simulating, we
are able to evaluate algorithms. We applied our work to a
project called: ABV (Automatisation de la conduite à Basse
Vitesse sur des itinéraires sécurisés : low speed automation,
on a safe trip). This project aims to automatize the driving
in low speed (less than 50km/h). The system should be able
to advice or take decisions for the safety of the driver and
pedestrians/cars on the road. As safety is a main matter, we
must evaluate each function of the system, choosing the best
option available to realize them.

Our paper is organized as follow: first of all we explain the
background and discuss briefly the used tools mainly Pro-
SiVICTM. Section III describes our simulator requirements to
evaluate different algorithms. Section IV shows the deployed
architecture Ev-ADA and some experiments to show the
system versatility. We conclude the paper by a discussion
and future work.

II. BACKGROUND

Several simulators have already been developed [6] such
as MORSE [7], Player/Stage [8] and Gazebo [9]. In general,
these simulators are used to imitate the behavior of a
robotic system. However, these simulators do not evaluate
algorithms by giving scores. Our aim is first of all to
simulate the system and secondly to assess how the system
is running. We defined several criterion to assess the ADAS
system running. We used the simulator Pro-SiVICTM, that is a
platform for prototyping sensors. We used RTMaps to be able
to implement the loop of perception–path planning–control
by using different algorithms. The coupling between Pro-
SiVICTM and RTMaps brings to RTMaps the ability to observe
simulated data from Pro-SiVICTM. As follow we explain how
can Pro-SiVICTM and RTMaps works together.

A. Simulation using Pro-SiVICTM

Pro-SiVICTM is developed in order to be independent of
applications type. To be realistic, Pro-SiVICTM integrates all
functionalities allowing the most realistic possible graphical
in the environment. mg Engine is the graphical 3D engine
used. To reduce the computing board process, mg Engine
uses a tree of binary positioning (BSP) (for more details
ses [10]). To ensure its portability under numerous oper-
ating systems, this application is developed in C++ under
LGPL with OpenGL and SDL libraries. In general several
functionalities can be developed such as:

1. Simulated sensors: Several sensors can be simulated
such as camera, inertial platform, odometer, telemeter, etc.

Camera (module sivicCamera): It simulates different sets
of camera configured by using the Pro-SiVICTM parameters
or by using the parameters related to OpenGL.

Inertial Navigation System (module sivicInertial): this
module simulates the inertial sensor.

Collision detection 
Conformability speed 
Distance to other vehicles 
Respect car speed limitation 

Acceleration  

Car path 

Car path Car speed 

Lane detection 

Object position 

Real lane position 
Real object position 

Score 

RTMaps 

Figure 2. The general architecture to simulate the perception, path planning
and control algorithms with different simulator requirements.

Odometer (module sivicOdometer): It provides the dis-
tance covered by a vehicle.

Telemetric scanner (module sivicTelemeter): This module
simulates a laser scanner. Depending on the type of the
telemeter, several methods can be implemented such as ray
tracing or others.

2. Vehicle model: Three axes are defined : Roll, pitch
and head. A generic model is able to reproduce the move-
ment of the vehicle taking into account shock absorbers,
viscosity and tie adherence [10]. In Pro-SiVICTM other car
models can be implemented and used from external libraries.

3. Mode changes: Several control modes are possible.
The vehicle can be internally controlled by Pro-SiVICTM

features or externally controlled as in our case using RTMaps.

B. Simulation under RTMaps

We implemented sensors, path planner and lateral, longi-
tudinal controllers under RTMaps. [11]. The path planner re-
defines a path when the vehicle trajectory should be changed
for example in case of an obstacle in front of the vehicle.

III. SIMULATOR REQUIREMENTS FOR ADAS

ADAS are systems that assist the driver in his driving
process. The main objective of these systems is to increase
car safety and road safety. Such ADAS systems are adaptive
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cruise control (ACC), lane departure avoidance, lane keep-
ing, emergency braking, etc. Every system is specialized in
one topic (path, control, etc.). our work has been to define
and to group all the required criterion to assess the ADAS
simulated components. Eight requirements, explained below,
have been selected :

1) Lane detection error: During these last years, a lot
of algorithms were developed for road lane detection.
Different types of sensor are used, such as LIDAR,
RADAR, Camera [12], etc. Our simulator should be
able to compare the real position of the lane with the
perceived position lane. In the next subsection we
detail how the error is computed (δLane).

2) Pedestrian detection error: A lot of algorithms have
been designed to detect pedestrians on the road.
The objective of this detection process is to avoid
collisions with pedestrian. It is hard to sense, process
data and avoid the pedestrian when the car is at
high speed. Intensive work has been done on this
topic [13], however to ensure the correct pedestrian
detection implies that the vehicle speed is limited.
For assessing this process part, the error between
the simulated pedestrian position and the detected
pedestrian position has been computed (δPosi, where
i represent the pedestrian object).

3) Car position detection error: ADAS perception
systems should detect other vehicles or objects in
order to avoid collisions. Our assesment process
computes the error of the simulated position of the
car and the relative estimated position with other
vehicles or objects(δPosi, where i represent the car
object).

4) Car localization error: Some dedicated process
(odometer, GPS like etc.) is used to localize the
vehicle on the road. A localization error should be
computed to evaluate the localization correctness.

5) Path planning error: A huge number of algorithms
have been developed for path planning, originally
for robotics applications. These algorithms have as
main criterion to avoid collision with existent objects
and to reduce the computation time. Our objective is
to evaluate the capability of the algorithms to avoid
collisions with other objects, at any time (δCollision).

6) Control/command error: Algorithms of control allow
to control the path execution. In general the speed
and the direction of the vehicle are controlled (e.g.,
Longitudinal and lateral ref. to e-value project).
(δSpeed)

7) Driver safety estimation: It is the main requirement
that should be taken into account in all ADAS
systems. ADAS should warn the driver in case
of high risk or should take the control to prevent
accidents. For example, while driving too close to the
preceding car, a sound signal can be used to prevent
the driver or braking can be triggered(δDist secur ).

8) Driver comfort estimation: Even if the comfort cannot
be fully evaluated, some criterion should be respected,
related to speed changes for example. Next section
explains how each requirement is computed and let
the simulator evaluates the perception–path planning–
control/command loop regarding this comfort criteria
(Accelconfort).

All these requirements are used to evaluate any ADAS
system. In the next section, we explain how we can merge
these requirements to define a final score.

IV. A SIMULATION DRIVEN EVALUATION
ARCHITECTURE FOR ADAS

To satisfy the aforementioned requirements, developers
need a tool that support sensor, path planner and control
command specification and development. For this purpose,
we used Pro-SiVICTM with RTMaps that are fully able to
support the algorithm specification and development tasks.

Our simulator is composed by Pro-SiVICTM and RTMaps,
where we have added a component that assess algorithms
by giving scores. The detailed computed scoring process is
explained in the following subsections.

A. Pro-SiVICTM components and the link with RTMaps

Modeling cars, under Pro-SiVICTM needs several compo-
nents. Car description uses observers and sensors. Each car
is also described with parameters, the wheel’s dimension, the
weight, etc. that are estimated from real car measurements.
This ability to implement different vehicle shapes make our
simulator versatile. The road shape is generated by using
PathEdit. The latter is used to generate the vehicle path in
a specific road. According to the road description, PathEdit
generates a trajectory as a set of position coordinates and
speed set points on the road.

The implementation of the environment in Pro-SiVICTM

is easy, the vehicle path being as well easily loaded. The
dynamic model of a car is taken into account and can be
modified under Pro-SiVICTM. Observers have been imple-
mented to allow RTMaps to take the vehicle position in the
simulated time.

B. Scores

We developed a component called ABVsim under RTMaps
from observations (e.g., CarObserver). This component pro-
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Structure: Ego structure.
1: struct Ego {

int id; index lane;number ego;gear;
Vehicle Type type;
double position x;position y;heading xy;
position x standard deviation;
position y standard deviation;
heading xy standard deviation;
yaw rate;speed x;speed y;
acceleration x;acceleration y;
yaw rate standard deviation;
speed x standard deviation;
speed y standard deviation;
acceleration x standard deviation;
acceleration y standard deviation;
steering angle;timestamp;
Indicators: indicators;
float revolutions wheel rear right;revolutions wheel rear left;
revolutions wheel front right;revolutions wheel front left;
revolutions motor;weight empty;
position x rear;position x front;
position y right;position y left;
radius wheel rear;radius wheel front;
speed x minimum;speed x Max;
acceleration x minimum;acceleration x Max;
curvature Max; ratio steering wheel on front wheel;
Clutch clutch;
Charge charge;
Status status;
};

Figure 3. Illustration of different input and output in the ABVsim
componant.

vides a data structure such as required in the ABV project
(see Figure 3).

Fifteenth entries are developed described as follow:
• iObserverEgo is an entry that observes from Pro-

SiVICTM the position of the car.
• iObject1,.., iObject12 are entries to observe other ob-

ject’s position such as pedestrian or cars.
• iSpeedEgoMax is the maximal allowed speed of the

vehicle.
Three outputs are developed such as:
• oEgo is the output of the vehicle position, speed, etc.
• oLane is the output of the lane detection using the

appropriate sensor. This structure contains also the error
of the lane detection.

• oObject is related to the existing objects in the envi-
ronment such as pedestrian or cars.

Different scores are computed for each set of sensors, path
planning, control and safety/comfort algorithms as follow:

Scoresensor = δLane+ (δ

12∑
i=1

Posi) (1)

Scoreplanning = δCollision (2)

Scorecontrol = δSpeed+ δDirection (3)

Scorecomfort/security = Accelconfort

+ δDist secur (4)

The sensing score (Scoresensor) is associated to the
lane error detection (δLane) and the detection error of
other object positions (δ

∑12
i=1Posi). δLane is a normalized

distance between the real lane position and the estimated
lane position. The normalized value is between 0 and 1.

The path planning score is related to the collision cri-
terion. If, while running path planning algorithms, the car
collides with another object, the δCollision is equal to zero.

The controller score Scorecontrol represents the com-
pliance with the maximal speed and the direction to be
followed. When the vehicle exceed the maximal speed the
value δSpeed is equal to zero. When the car does not follow
the road, the δDirection value is equal to zero.

The Scorecomfort/security is the main objective of ADAS
systems. Accelconfort represents a score between the maxi-
mal acceleration allowed for a vehicle and the actual vehicle
acceleration. δDist secur is related to the distance between
the vehicle and other vehicles. In general, this distance
should corresponds to a car interval of 2 seconds.

All these scores are normalized between 0 and 1. The
higher the normalized score value, the better the score is. The
normalization procedure for each value is as follows. δLane
is normalized by dividing the result by the traffic lane width.
Posi is normalized by the car/pedestrian dimension. δSpeed
is normalized by the maximal allowed speed. Accelconfort is
normalized by the maximal acceleration that the vehicle can
drive. δdistsecur is normalized by the whole driven distance.

V. SIMULATION RESULTS

In our simulation, we are using Windows 7 Professional
under Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz, 64 bits.

In this scenario, we run two vehicles. One vehicle is a
Mini Cooper and the second vehicle is a Megan Renault.
All the algorithms are implemented in the Mini Cooper car
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Camera2 Camera1 

Figure 4. Illustration of different sensors in Ego car.

called Ego. This one follows the second car (Megan Renault)
called Car1.

Our path planning algorithm allows the vehicle to follow
another vehicle keeping a minimal safety distance with the
preceding vehicle (1) and respecting a maximal speed (2).

Ego structure is represented in Figure 4, where two
cameras are implemented in the upper front of Ego. A path-
planning algorithm is implemented based on Camera1. This
camera detects the road surface marking. Ego should follow
Car1 at any time and at the same time do not exceed the
maximal predefined speed. Several tests are implemented,
where we vary the maximal speed and safety distance
between Ego and Car1.

All the tests are evaluated in a horse-ring circuit repre-
sented in Figure 5.

Figure 5. Illustration of a horse-ring circuit for both Ego and Car1.

Different strategies can be used to compute a score. An
example of total score utilization is shown as follow:

Score =
1

γ + α+ β + Γ
∗ [γScoresensor

+ αScoreplanning

+ βScorecontrol

+ ΓScoreconfort/security] (5)

γ, α, β and Γ are coefficients. Depending on the coeffi-
cient values, some related parameters can be more important
than others.

In our case, the control and security/comfortability are the
main part that the system should respect, this is why :

β + Γ > α+ γ (6)

We use a weight of β=1, Γ= 2 and a weight of α=γ=1.

Case studies of our score
Speed Ego < Speed Car1 0s (0.89 + 0.0 + 0.7 + 0.5) /4 = 0.52

1s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77
2s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77
3s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77
4s (0.89 + 1.0 + 0.7 + 0.5) /4 = 0.77

Speed Ego > Speed Car1 0s (0.89 + 0.0 + 0.7 + 0.5) /4 = 0.52
1s (0.89 + 0.0 + 0.7+ 0.5) /4 = 0.52
2s (0.89 + 0.0 + 0.7+ 0.6) /4 = 0.54
3s (0.89 + 1.0 + 0.7+ 0.7) /4 = 0.82
4s (0.89 + 1.0 + 0.7+ 0.7) /4 = 0.82

Figure 6. Illustration of the obtained score using the equation 5

Figure 6 represents different case studies of our score.
When the maximal Ego speed is less than Car1 ones, the
higher score is 0.77. When the maximal Ego speed is greater
than Car1 ones, the higher score is 0.82. Due to the low Ego
speed, this one can not follow Car1. This difference of score
is only related to the speed divergence. This sceanrio shows
that our platform is able to evaluate different implemented
algorithms on a simulation mode.

VI. CONCLUSION AND FUTURE WORKS

Our contribution aims at defining an architecture and a
framework to evaluate various types of advanced driving-
assistance systems (ADAS). In our experiments, an ego car
is used to follow another car on a horse-ring road. Each
algorithm part (perception, path planning, task control) is
evaluated using different types of scores. To extend the Pro-
SiVIC architecture, an evaluator based on proposed criteria
has been implemented. These criteria are: (1) Lane detection
error, (2) Pedestrian detection error, (3) Car position detec-
tion error, (4) Car localization error, (5) Path planning error,
(6) Control/command error, (7) Driver safety estimation (8)
Driver comfort estimation.
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The evaluation of the tested algorithms related to lane de-
tection (based on camera), path planning, control command
and comfort/safety of the driver, gives a satisfied score. Our
Ev-ADA simulator is now able to evaluate different types of
algorithms working on different types of scenarios.

This work opens perspectives. As future works, we plan
to evaluate other algorithms in other case studies, varying
not just the speed, but also external parameters such as the
weather, the traffic, etc. As a matter of fact, the versatility
of Pro-SiVIC allows us to evaluate algorithms in various
conditions including raining, cloudy, dark weather associated
with different car traffic situations.

We will be also able to compare different algorithms
between them in the same reproduced conditions. This work
will contribute to obtain the best ADAS systems suitable
for drivers, safety criteria included. Nevertheless, even if,
working with simulation tools reduces works, time and
resources, we should recognize that real experimentations
will be necessary to take account driver perceptions.
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