
 Effective Task Allocation in Distributed Environments: A Traceability Perspective

Salma Imtiaz, Naveed Ikram
Department of Software Engineering
International Islamic University

Islamabad, Pakistan
salma.imtiaz@iiu.edu.pk, naveed.ikram@bcs.org

Abstract— Task allocation or work assignment in Distributed
Environments is a challenging task due to intricate
dependencies between distributed sites and fundamental
requirement of multifarious information. Conway’s law relates
product architecture to communication and coordination needs
of the people, whereas Parnas argues that communication and
coordination needs give rise to technical dependencies. Product
structure is depicted in its architecture, which in turn, consists
of multiple views based on different perspectives. These views
which are used to model different concerns of various
stakeholders are inter-related. Task allocation depends on
information about different architectural views and their
interrelationship. Traceability links between various views can
be used to model this interrelationship. There is a need to
identify the traceability support between different
architectural views to determine the extent of linkage between
them. Task allocation is also dependent on factors not depicted
in product architecture such as temporal and cultural
dependencies between distributed sites. These dependencies
highlight the need of an effective and sound task allocation
strategy for distributed environment. A well conceived task
allocation strategy will reduce various dependencies between
sites resulting in effective task allocation and smooth
distributed development. This paper analyses the
dependencies/factors that should be considered for task
allocation, the current task allocation strategies and their
limitations and the traceability support between various views
to identify gaps required to be filled.

Keywords-Task Allocation; Architectural View; Distributed
Development.

I. INTRODUCTION

Allocation of task to distributed teams is a complicated
and difficult affair as it involves enlarged time and space
dimensions while adequate information of distributed sites
is lacking [1][2][3]. Current literature adequately identifies
the temporal, cultural, knowledge base, communication,
coordination and other dependencies, which combined with
various other factors, make the task allocation problematic
[4]. Currently, task allocation is mostly done with focus on
module or component dependencies overlooking most of the
above mentioned important factors. This results in
inadequate task allocation.

While considering a mechanism to bridge the gap
caused by geographic and cultural barriers in
distributed development, we find that architecture plays
an important role in this regard. It acts as a central
knowledge and coordination mechanism [3][5].
However, the architecture of a system facilitates
identification of some but not all the dependencies. For
example, temporal, cultural and knowledge
dependencies, which are also critical for an effective
task allocation strategy, are not visible in architecture.
Task allocation is also important for co-located

development, but it acquires a critical value in a
distributed setting. Distributed teams need to
intercommunicate and coordinate their activities to
understand each other’s culture, norms, organizational
structures and business process etc., while co-located
teams share common social and cultural norms and
have almost the same knowledge level. [6]. Lack of
inter-team information, problem of mapping the system
architecture to organizational structure, and time
pressure are some of the important factors aggravating
the complexities of a distributed environment [3][7].

The architecture view type literature highlight

allocation view type as necessary to model ‘allocated
to’ relationships [17]. This view type is necessary for
task allocation as it presents the allocated to
relationship between software elements and
environmental elements [17]. The environmental
elements in case of work assignment style are
individuals, teams, and organizational units, etc. Thus it
focuses on task allocation to teams. The software
elements in work assignment view type are elements
from the module and the component and connector
view type, thus implicitly creating a linkage between
various views. Because of this conceptual linkage, we
can establish traceability relationships between views
for supporting alignment between them. The
architectural models surveyed and presented in Section
II-A do not explicitly model this view resulting in lack
of foundational information for task allocation.

563

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

II. MOTIVATION

According to Conway’s law [8], the design of a system

reflects the communication and coordination needs of the
people. As opposed to this law, Parnas [9] argues that
technical dependencies between modules give birth to
communication and coordination needs. Both these
statements have been validated through empirical evidence
and this inter-relationship highlights the need for a clear,
effective and sound strategy for task allocation in distributed
environment. Considering that both these laws are true can
we identify this information as early as required for
effective task allocation?. Current literature points to a
glaring misalignment between communication/coordination
dependencies and technical dependencies; particularly, in
distributed environment [10][11]. The current task
allocation literature also does not encompass all the factors
necessary for effective work assignment in a distributed
setting.

An architecture is divided into multiple views for

separating stakeholders’ concerns. Modeling each concern
in a separate view increases its comprehensibility, reuse and
evolution [12]. Where these views are separated for
understanding, proper linkage between them is also required
for task allocation, evolution and view synchronization [13].
This is where traceability information comes in. This
information is used to link the work assignment view with
implementation view and execution view etc. to understand
the effect of component and runtime dependencies on work
assignment [6]. The traceability information between
architectural views needs to be correct and current at all
times to ensure architecture’s inter-view alignment. We
need traceability information within different views to
ensure their synchronization in a manner that modification
in one view automatically modifies similar information in
other views as well. This synchronization is particularly
important for re-allocation of work.

 Different architectural views have been proposed by
researchers and institutes for effective modeling of software
architecture. Due to the unique nature of software, the scope
of this work only includes architectural models specific to
software systems. We have excluded architectural models
such as Telemanagement Forum Views whose focus is
telecommunication systems [34], Open Group Architecture
Framework whose focus is enterprise architecture [35] and
Zachmann’s Framework, which again focuses on enterprise
architecture [36]. Out of all the architectural models only
five identify the need for separation of stakeholders
concerns which is necessary for increased understanding,
reuse and evolution of architecture. These are: SEI View
Model [12], Siemens 4 View Model [12][14][15], 4+1 View
Model [12][15][18], Rational ADS View Model [12] and
RM-ODP [12] [14][15]. We are interested in architectural

viewpoint models which reflect different concerns
separately, provide a linkage mechanism between them and
focus on design of the system. SEI View Model and ISO-
RM do not meet our requirement because of their
independent views. Besides the focus of ISO-RM is
‘development across variant domains’. The focus of
Rational ADS View Model is ‘requirement evolution’,
which is not relevant to task allocation. The only two
viewpoint models which focus on architectural design are
Siemens 4 View Model and Kruchten’s 4+1 View Model.
We have selected Kruchten’s 4+1 View Model because it
comprehensively describes the architecture of a system [12].
Different views of this model are designed using UML
(Unified Modeling Language) which is an industry standard
and a standard way to represent product architecture. It
facilitates easy comprehension of different views [16].
Traceability support between these architectural views can
be identified by studying the traceability support between
UML models present in each view.

Current literature on architecture highlights the need for

different views [18]. 4+1 Architectural View Model
proposed by Philippe Kruchten is one such model which
reflects concerns in different views [18]. It organizes the
architecture using five concurrent views namely: logical
view, process view, development view, use case view and
physical view. All the surveyed architectural view models
including 4+1 View Model lack work assignment view
which is necessary for task allocation in distributed
environment. The full support for this view needs to be
incorporated for resolving task allocation problem in
distributed development. Both, 4+1 View Model and
Rational ADS View Model (extension of 4+1) consist of the
deployment view which falls in the category of allocation
view type. This view type is restricted to deployment on
physical nodes only where deployment of work to different
organizational units, teams or individuals is not modeled.
Depicting work assignment view via module view is also
considered a viable approach but it is also fraught with
problems [19].

Task allocation is dependent upon communication and

coordination needs of an organization (Conway’s law) and
various other factors discussed in literature survey. We
present a resumé of the current literature in the following
paragraphs. We have divided Section III (Literature Survey)
into three subsections. Section A identifies different types of
important dependencies existing between various distributed
sites and their importance as related to task allocation.
Subsection B highlights the current task allocation strategies
used in distributed environment and their limitations.
Subsection C identifies the traceability support present
between architectural views of 4+1 Architectural View
Model. Discussion is presented in Section IV whereas
conclusion and future work are presented in Section V.

564

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

III. LITERATURE SURVEY

A. Dependencies between distributed sites

Important dependencies/factors for task allocation are:

Knowledge base, Technical resources and Communication
and Coordination [5][17]. The research work [1] also
identifies other dependencies such as scheduling strategy,
state synchronization and synchronizing release schedule
which effect the task allocation in varying degrees. Most of
the dependencies except cultural and temporal also affect
task allocation in a co-located environment, but their impact
is more pronounced in distributed development. Distributed
teams are not only separated by geographic distances but
they also differ in knowledge base, technological expertise,
organizational structures, temporal, communication and
coordination aspects, socio-cultural norms and business
processes [4][22]. All these dependencies/factors exercise
considerable influence on the task allocation and their
deliberation is essential.

B. Current task allocation strategies

Currently _ different task allocation strategies are being

used in distributed environment. These are Modular
Structures (Functionality based and Product based), Phase
based structures (Process based), Functional Expertise based
Structures, Customization based Structures and Follow the
Sun Configuration (Overnight gain effect) [20][22][23][24].
It is evident that these strategies focus on only one criterion
and ignore other important factors while assigning tasks to
remote teams. Even if these strategies are used in
conjunction with each other, some important factors like
communication/coordination and cultural dependencies get
ignored. Some surveys [20] also recommend that culture,
product architecture, willingness to work and mutual trust
must be included in our deliberations for task allocation. It is,
therefore, important that a comprehensive strategy be
worked out by including all relevant factors.

C. Current traceability support between views

 Architecture is affected by communication and
coordination needs of the organization. If tasks are allocated
according to Conway’s law then the development view will
change with change in communication and coordination
needs. This change will also trigger change in other views
such as deployment view, execution view and vice versa.
There is a need to update linked views to incorporate the
change effectively. This support can be given with help of
traceability information. Availability of traceability links
between various views will ensure the architecture’s inter-
view alignment.

Work in the field of traceability between architectural

views is carried out for different purposes such as concern
evolution, requirement evolution and impact analysis etc.
Traceability information between architectural views
ensures consistency [16][25][26][27]. This linkage
information can be used for task allocation/re-allocation in
distributed teams [6] in a manner that it supports timely
communication and coordination where necessary.

 We have divided the literature survey on the basis of its

focus of traceability support between UML diagrams and
architectural views.

The focus of research [28][29] is requirement

traceability. Research work [28] proposes an approach to
provide traceability between requirements and UML
diagrams using the Z Notation and XML. The UML
diagrams included are use cases, class and sequence
diagram. Traceability rules are defined to specify the above
mentioned diagrams in Z language. The formal specification
of the diagrams is then converted to XML schemas and
traceability information is generated along with
identification of missing requirements, inconsistent
implementation and incomplete coverage. Traceability
between use case, sequence and class diagram is also
supported [29][30] via explicit saving of traceability links
and via guided software production process respectively. A
framework for the purpose of requirement tracing is
presented [29]. The explicit link saving is performed via
stereotypes and can help in change tracking as well as
influence analysis. A supporting tool “Tracer” for
implementing the framework is also presented. The guided
production process moves from a requirement model (made
using TRADE) to a conceptual model (made using Object
Oriented method). The three views of the Object Oriented
method include object model, dynamic model and
functional model. These views include class diagram, state
diagram, collaboration diagram and sequence diagram. We
identify the responsibility in each use case as client (which
invokes the responsibility) and implement the responsibility
as server (which carries out responsibility). Responsibility is
given via sequence diagram as it shows the participating
classes in realizing the corresponding use case through
interaction. The work of Lee et al. [31] provides traceability
between sequence diagram, class diagram activity and
collaboration diagram. The traceability support for activity
diagram was not present in any of the previously mentioned
work. The focus of the research is to evaluate the
architecture for logical, behavior and performance issues.
The approach works by converting UML artifacts to colored
petri nets. More detailed traceability links are provided
between use case model (activity and use case diagram) and
object model (class and sequence diagram) with help of
explicit link saving [32].

565

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Traceability is provided for evolution of lower level
models (sequence and class diagram) with respect to
changes in higher level models (use case and activity
models). Later evolution is supported by transversal of these
links.
Traceability between use case and sequence diagram is

also supported [33] via trace model and process description.
The model also supports traceability with state diagram for
the purpose of impact analysis of functional system
requirements for embedded systems. It provides semi
automatic traceability with help of prototype tool.

Traceability between class, component and deployment

diagram is only performed by Bedir et al. [26]. The purpose
of the work is to support concern traceability. A Concern
Traceability Meta Model (CTM) is proposed which is used
to model concerns, architectural elements (entity or
relationship), and trace links between architectural views.
The work is validated via case study of climate control
system with the help of different change scenarios. The
CTM is implemented using XML document type definitions
(DTD). The instantiation are provided to support traces
using XQuery. The traces are automatically identified using
generic and specific queries written in XQuery and the
results are shown in XML.

 Our literature survey has revealed that there is very little
traceability support between views with respect to the levels
of traceability highlighted in [16]. The traceability links
which are maintained or are implicitly present are between
use case, class and sequence diagrams which are part of

logical, process and use case view. Although the traceability
support between above mentioned diagrams is present but
the focus of research work is very narrow. Table 1 presents
the results of the literature survey focusing on general and
implementation information of each traceability
technique/method.

IV. DISCUSSION

A survey of the current literature reveals that there is a

linkage gap between different architectural views. Most of
the work has been performed between use case, logical and
process view. The work of Bedir et al. [26] whose focus is
logical, implementation and physical view provides concern
evolution but whether it is extendable to support full
traceability across all views, for the purpose of our research
is still to be seen. The physical view presented [26]
concentrates on allocation of software units to hardware
nodes disregarding work assignment style.

The literature survey also highlights the need for

validation of traceability work to identify its usefulness for
task allocation in distributed environment. Even if the
traceability links within these views are identified it is not
possible to relate them to work assignment view as this view
is not designed in any of the viewpoint models. Moreover,
the focus of research work surveyed ranges from concern
evolution to impact analysis and architectural evaluation etc.
thus providing traceability support only to solve the specific
issues.

566

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

General Information
Implementation Details

Focus of Paper
Paper

ID
Author(s) Year

Architectural

View

UML Models

Covered

Implemented

via
validation

Tool

Support

Requirement

Traceability

[28]
S. Sengupta et

al.
2008

use case ,

process and

logical view

Use case,

Sequence and

Class diagram

(Framework)

XML, Z notation,

Limited

Case Study

Apache

Xerces

DOM

Parser

[29]
T. Tsumaki, Y.

Morisawa
2000

use case,

process and

logical view

Use case,

Sequence and

Class diagram

(Framework)

Business Object

Modeling and

Design

Methodology

Case Study

Proposed

Tool

(Tracer)

Concern Traceability [26]

B.

Tekinerdoga

n et al.

2007

logical view,

implementatio

n and physical

view

Class,

Component and

Deployment

diagram

(Meta Model)

X-Query
Case Study

Research

Tool

M-Trace

Other
Evaluating

Architecture
[31]

L. W.

Wangenhals

et al.

2002
Logical view,

process view

Collaboration,

Sequence,

Activity and

Class diagram

(A Process)

Colored Petri

Nets, Algorithm

for Conversion to

Executable

Models

Example No

Supporting

Evolution in

OO

development

[32]
H. Omote et

al.
2004

Use case,

logical and

process view.

Use case,

Activity, Class

and Sequence

diagram.

Via Stereotypes

of UML
Example No

Impact

analysis
[33] A. Von 2002

Use case,

logical and

process view.

Use case, Class,

Sequence and

State diagram

(Trace Change

Approach, Trace

Model)

Experiment

Case Tool,

St P/UML

and

Prototype

Tool

Moving from

Requirements

to a conceptual

schema in a

traceable way

[30]
E. Insfran et

al.
2002

Use case,

logical and

process view.

Use case, Class

and State

diagram

(Conceptual

Modeling

Approach)

TRADE and OO

Method

Used in two

Medium

Sized

Projects

Case tool

TABLE 1: EVALUATION OF LITERATURE ON GENERAL AND IMPLEMENTATION DETAILS

567

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V. CONCLUSION AND FUTURE WORK

Our literature survey reveals different task allocation
strategies being used for assigning work to distributed sites.
It also highlights various dependencies between distributed
sites and traceability support between different views of
viewpoint models. We find that distributed sites depend on
each other for various things such as knowledge, process,

module etc. but the current task allocation strategies do not
take into account all these factors. Task allocation also
depends on the communication and coordination needs of
the teams which is depicted in architecture of the product.
Synchronizing different architectural views will result in
informed and effective task allocation in a distributed
environment. This synchronization is proposed by studying
traceability linkage between view. The initial survey
highlights inadequacy of linkage between architectural
views. There is a need to identify/model the traceability
links which would be specifically required for task
allocation. We also need to model the work assignment
view along with other views and provide synchronization
between all of them. How this can be accomplished for an
effective task allocation strategy will be seen in future.

REFERENCES

[1] M. Bass, V. Mikulovic, L. Bass, J. Herbsleb, and C. Marcelo,
“Architectural misalignment: An experience report,” Proceedings
of Working IEEE/IFIP Conference on Software Architecture, pp.
17-17, 2007
[2] P. J. Componation and J. Byrd, “Utilizing cluster analysis to
structure concurrent engineering teams,” IEEE Transactions on
Engineering Management, vol. 47, no. 12, pp. 269-280, 2000.
[3] F. Salger, “Software Architecture Evaluation in Global
Software Development Projects”, OTM Workshops, LNCS 5872,
pp. 391-400, 2009
[4] J. Ralyte, X. Lamielle, N. A. Bloch, and M. Leonard, “A
framework for supporting management in distributed information
system development,” Proceedings of the IEEE Conference on
Research Challenges in Information Science, pp. 381-392,
Marakech, 2008
[5] J. Herbsleb, “ Global software engineering: Future of
socio technical coordination,” Proceedings of International
Conference on Software Engineering, pp. 188-198, 2007.
[6] R. Sagwan, M. Bass, N. Mullick, and D. J. Paulish, “Gobal
software development handbook,” Chapter 5, Auerbach
Publications, Taylor and Francis Group, pp. 37-65, 2007.
[7] M. T. Lane and P.J. Agerfalk, “On the suitability of particular
software development roles to global software development,”
IEEE International Conference on Global Software Engineering,
pp. 3-12, 2008.
[8] M.Conway, “How do committees invent?,” Thompson
Publications, Reprinted by permission of Datamation Magazine,
1968.
[9] J. Herbsleb and R. Grinter, “Architectures, coordination and
distance: Conway’s law and beyond,” IEEE Software, vol. 16, no.
5, pp. 63-70, Sep./Oct 1999.

[10] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, “The
misalignment of product architecture and organizational structure
in complex product development,” Journal of Management
Sciences, vol. 50, no. 12, pp. 1674-1689, 2004.
[11] C. Amrit and J. V. Hillegersberg, “Mapping social network to
software architecture to detect structure clashes in agile software
development,” Proceedings of 15th European conference on
information technology, Switzerland, 2007.
[12] N. May, “A survey of software architecture,” In Proceedings
of the Sixth Australasian Workshop on Software and System
Architectures, pp. 13-24. Melbourne, Australia, 2005
[13] N. Medvidovic and D. S. Rosenblum, “Domains of concern in
software architectures,” Published in the Proceedings of the
Confernece on Domain Specific Languages,Santa Barbara, pp.
119-218, October1997.
[14] D. Soni, R. L. Nord, and C. Hofmeister, “Software
architecture in industrial applications,” Proceedings of
International Conference on Software Engineering, pp. 196–207,
1995.
[15] P. Clements et al., “A practical method for documenting
software architectures,” Retrieved from“http://www-
2.cs.cmu.edu/afs/cs/project/able/ftp/icse03-dsa/submitted.pd%f”
Accessed on 20th September, 2004, Sept. 2002 Draft.
[16] R. Hilliard, “Using the UML for architectural description,”
Proceedings of <<UML>>,Lecture notes in Computer Science,
Springerlink, vol. 1723, pp. 32-48, 1999.
[17] V. Clerc, P. Lago, and H. V. Vliet, “Global software
development: Are architectural rules the answer?,” International
Conference on Global Software Engineering, pp. 225-234, 2007.
[18] P. kruchten, “The 4+1 view model of architecture,” IEEE
Software, vol. 12, no. 6, pp. 42-50, Nov.1995.
[19] P. Clements et al., “Documenting software architectures,”
Published by Addison Wesley, Second Review Edition, 2002.
[20] A. Lamersdorf, “A survey on the state of the practice in
distributed software development: criteria for task allocation,”
Fourth IEEE International Conference on Global Software
Engineering, pp. 41-50, 2009
[21] H. Sertit and R. F. Pogaj, “Efficient software development
organization based on unified process,” Electronics in Marine 46th
International Symposium, pp.390-395, 2004.
[22] B. Lings, B. Lundell, P. J. Agerfalk, and B. Fitzgerald, “A
reference model for successful distributed development of software
systems,” Proceedings of the International Conference on Global
Software Engineering, pp. 130-139, 2007.
[23] I. Gortona and S. Motwanib, “Issues in co-operative software
engineering using globally distributed teams,” Journal of
Information and Software Technology, vol. 38, issue 10, pp. 647-
655, 1996.
[24] R. E. Grinter, J. D. Herbsleb, and D. E. Perry, “The geography
of coordination: Dealing with distance in R & D work,”
Proceedings of the International ACM SIGGROUP Conference on
Supporting group Work, pp. 306-315, 1999.
[25] E. V. Hippel, “Task Partitioning: An innovation process
variable,” Journal of Research Policy, vol. 19, issue 5,pp. 407-418.
[26] B. Tekinerdogan, C. Hofmann, and M. Aksit, “Modeling
traceability of concerns for synchronizing architectural views,”
Journal of object technology, vol.6 no.7, pp. 7-25, August 2007.
[27] N. Boucke, D. Weyns, R. Hilliard, T. Holvoet, and A.
Helleboogh, “Categorizing relations between architectural views,”
Springer-Verlag, pp. 66-81, 2008.
[28] S. Sengupta, A. kanjilala, and S. Bhattacharya, “Requirement
traceability in software development process,: An empirical

568

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

approach,” The 19th IEEE/IFIP International Symposium on Rapid
System Prototyping, pp. 105-111, 2008
[29] T. Tsumaki and Y. Morisawa, “A framework of requirement
tracing using UML,” Proceedings of APSEC, pp. 206-213, 2000.
[30] E. Insfran, O. Pastor, and R. Wieringa, “Requirement
engineering- based conceptual modeling,” Requirement
Engineering, Springerlink Verlog, pp. 61-72, 2002.
[31] L. W. Wagenhal, S. Haider, and A. H. Levis, “Synthesizing
executable models of object oriented architecture,” Workshop on
Formal Methods, Applied to Defense Systems, Australia, vol. 12,
pp. 266-300, June 2002.
[32] H. Omote, K.Sasaki, H. Kaiya, and K. Kaijiri, “Software
evolution support using traceability link between UML diagrams,”
Proceedings of the 6th JCKBSE, pp. 15-23, 2004.
[33] A. Von, “Change-oriented requirements traceability support
for evolution of embedded systems,” Proceedings of the
International Conference on Software Maintenance, pp. 482-585,
2002.
[34] “New generation operational support system,” Architecture
Overview, Telemanagement Forum, GB920, Public Version 1.5,
November 2000.
[35] “Open group architecture framework,” Retrieved from
“http://pubs.opengroup.org/architecture/togaf8-doc/arch/”,
Accessed on 28th August 2011.
[36] “Zachman framework,” Wikipedia, Retrieved from
“http://en.wikipedia.org/wiki/Zachman_Framework”, Accessed on
28th August 2011.

569

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

	I. Introduction
	III. Literature Survey
	A. Dependencies between distributed sites
	C. Current traceability support between views
	Our literature survey has revealed that there is very little traceability support between views with respect to the levels of
	IV. DISCUSSION
	Our literature survey reveals different task allocation strategies being used for assigning work to distributed sites. It als
	module etc. but the current task allocation strategies do not take into account all these factors. Task allocation also depend
	References

