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Abstract—Many software as well digital hardware automatic
synthesis methods define the set of implementations meeting
the given system specifications with a boolean relationK. In
such a context a fundamental step in the software (hardware)
synthesis process is finding effective solutions to the functional
equation defined byK. This entails finding a (set of) boolean
function(s) F (typically represented using OBDDs, Ordered
Binary Decision Diagrams) such that: 1) for all x for which K
is satisfiable,K(x, F (x)) = 1 holds; 2) the implementation of
F is efficient with respect to given implementation parameters
such as code size or execution time. While this problem has
been widely studied in digital hardware synthesis, little has
been done in a software synthesis context. Unfortunately the
approaches developed for hardware synthesis cannot be directly
used in a software context. This motivates investigation of
effective methods to solve the above problem whenF has to
be implemented with software. In this paper, we present an
algorithm that, from an OBDD representation for K, generates
a C code implementation forF that has the same size as the
OBDD for F and a worst case execution time linear innr,
being n = |x| the number of input arguments for functions in
F and r the number of functions in F .

Keywords-Control Software Synthesis; Embedded Systems;
Model Checking

I. I NTRODUCTION

Many software as well digital hardware automatic synthe-
sis methods define the set of implementations meeting the
given system specifications with a boolean relationK. Such
relation typically takes as input (then-bits encoding of) a
statex of the system and (ther-bits encoding of) a proposed
action to be performedu, and returnstrue (i.e., 1) iff the
system specifications are met when performing actionu in
statex. In such a context a fundamental step in the software
(hardware) synthesis process is finding effective solutions to
the functional equation defined byK, i.e.,K(x, u) = 1. This
entails finding a tuple of boolean functionsF = 〈f1, . . . , fr〉
(typically represented using OBDDs,Ordered Binary Deci-
sion Diagrams[1]) s.t. 1) for allx for whichK is satisfiable
(i.e., it enables at least one action),K(x, F (x)) = 1 holds,
and 2) the implementation ofF is efficient with respect
to given implementation parameters such as code size or
execution time.

While this problem has been widely studied in digital
hardware synthesis [2][3], little has been done in a software
synthesis context. This is not surprising since software

synthesis from formal specifications is still in its infancy.
Unfortunately the approaches developed for hardware syn-
thesis cannot be directly used in a software context. In
fact, synthesis methods targeting a hardware implementation
typically aim at minimizing the number of digital gates and
of hierarchy levels. Since in the same hierarchy level gates
output computation isparallel, the hardware implementation
WCET (Worst Case Execution Time) is given by the number
of levels. On the other hand, a software implementation will
have tosequentiallycompute the gates outputs. This implies
that the software implementation WCET is the number of
gates used, while a synthesis method targeting a software
implementation may obtain a better WCET. This motivates
investigation of effective methods to solve the above problem
whenF has to be implemented with software.

In this paper we present an algorithm that, from an OBDD
representation forK, effectively generates a C code imple-
mentation forK that has the same size as the OBDD forF
and a WCET linear in linear innr, beingn = |x| the size
of states encoding andr = |u| the size of actions encoding.
This allows us to synthesize correct-by-constructioncontrol
software, provided thatK is provably correct w.r.t. initial
formal specifications. This is the case of [4], where an algo-
rithm to synthesizeK starting from the formal specification
of a Discrete-Time Linear Hybrid System (DTLHS in the
following) is presented. Thus this methodology allows a
correct-by-construction control software to be synthesized,
starting from formal specifications for DTLHSs.

Note that the problem of solving the functional equation
K(x, F (x)) = 1 w.r.t. F is trivially decidable, since there
are finitely manyF . However, trying to explicitly enumerate
all F requires timeΩ(2r2

n

) (being n the number of bits
encoding statex and r the number of bits encoding state
u). By using OBDD-based computations, our algorithm
complexity isO(r2n) in the worst case. However, in many
interesting cases OBDD sizes and computations are much
lower than the theoretical worst case (e.g., in Model Check-
ing applications, see [5]).

Furthermore, once the OBDD representation forF has
been computed, a trivial implementation ofF could use
a look-up table in RAM. While this solution would yield
a better WCET, it would imply aΩ(r2n) RAM usage.
Unfortunately, implementations forF in real-world cases are
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typically implemented on microcontrollers (this is the case,
e.g., forembedded systems). Since microcontrollers usually
have a small RAM, the look-up table based solution is not
feasible in many interesting cases. The approach we present
here will rely on OBDDs compression to overcome such
obstruction.

Moreover, F : B
n → B

r is composed byr boolean
functions, thus it is represented byr OBDDs. Such OBDDs
typically share nodes among them. If a trivial implementa-
tion of F in C code is used, i.e., each OBDD is translated as
a stand-alone C function, OBDDs nodes sharing will not be
exploited. In our approach, we also exploit nodes sharing,
thus the control software we generate fully takes advantage
of OBDDs compression.

Finally, we present experimental results showing effec-
tiveness of the proposed algorithm. As an example, in less
than 1 second and within 70 MB of RAM we are able
to synthesize the control software for a functionK of
24 boolean variables, divided inn = 20 state variables
and r = 4 action variables, represented by a OBDD with
about4 × 104 nodes. SuchK represents the set of correct
implementations for a real-world system, namely a multi-
input buck DC/DC converter [6], obtained as described
in [4]. The control software we synthesize in such a case
has about1.2×104 lines of code, whilest a control software
not taking into account OBDDs nodes sharing would have
had about1.5 × 104 lines of code. Thus, we obtain a24%
gain towards a trivial implementation.

This paper is organized as follows. In Section III we give
the basic notions to understand our approach. In Section IV
we formally define the problem we want to solve. In Sec-
tion V we give definition and main properties of COBDDs
(i.e., Complemented edges OBDDs), on which our approach
is based. Section VI describes the algorithms our approach
consists of. Finally, Section VII presents experimental results
showing effectiveness of the proposed approach.

II. RELATED WORK

Synthesis of boolean functionsF satisfying a given
boolean relationK in a way s.t.K(x, F (x)) = 1 is also
addressed in [2]. However, [2] targets a hardware setting,
whereas we are interested in a software implementation
for F . Due to structural differences between hardware and
software based implementations (see the discussion in Sec-
tion I), the method in [2] is not directly applicable here. An
OBDD-based method for synthesis of boolean (reversible)
functions is presented in [3] (see also citations thereof).
Again, the method in [3] targets a hardware implementation,
thus it is not applicable here.

In [4], an algorithm is presented which, starting from
formal specifications of a DTLHS, synthesizes a correct-
by-construction boolean relationK, and then a correct-by-
construction control software implementation forK. How-
ever, in [4] the implementation ofK is not described in

detail. Furthermore, the implementation synthesis described
in [4] has not the same size of the OBDD forF , i.e., it does
not exploit OBDD node sharing.

In [7], an algorithm is presented which computes boolean
functionsF satisfying a given boolean relationK in a way
s.t.K(x, F (x)) = 1. This approach is very similar to ours.
However [7] does not generate the C code control software
and it does not exploit OBDD node sharing.

Therefore, to the best of our knowledge this is the first
time that an algorithm synthesizing correct-by-construction
control software starting from a boolean relation (with the
characteristics given in Section I) is presented.

III. B ASIC DEFINITIONS

In the following, we denote withB = {0, 1} the boolean
domain, where0 stands forfalse and 1 for true. We will
denote boolean functionsf : B

n → B with boolean
expressions on boolean variables involving+ (logical OR),
· (logical AND, usually omitted thusxy = x · y), ¯ (log-
ical complementation) and⊕ (logical XOR). We will also
denote vectors of boolean variables in boldface, e.g.,x =
〈x1, . . . , xn〉. Moreover, we also denote withf |xi=g(x) the
boolean functionf(x1, . . . , xi−1, g(x), xi+1, . . . , xn) and
with ∃xi f(x) the boolean functionf |xi=0(x)+f |xi=1(x).

Finally, we denote with[n] the set{1, . . . , n}.
1) Most General Optimal Controllers:A Labeled Tran-

sition System(LTS) is a tupleS = (S,A, T ) whereS is
a finite set of states,A is a finite set ofactions, andT is
the (possibly non-deterministic)transition relationof S. A
controller for an LTS S is a functionK : S × A → B

enabling actions in a given state. We denote with Dom(K)
the set of states for which a control action is enabled. An
LTS control problemis a tripleP = (S, I, G), whereS
is an LTS andI,G ⊆ S. A controllerK for S is a strong
solution to P iff it drives eachinitial states ∈ I in a goal
statet ∈ G, notwithstanding nondeterminism ofS. A strong
solutionK∗ toP is optimal iff it minimizes path lengths. An
optimal strong solutionK∗ to P is themost general optimal
controller (we call such solution anmgo) iff in each state it
enables all actions enabled by other optimal controllers. For
more formal definitions of such concepts, see [8].

Efficient algorithms to compute mgos starting from suit-
able (nondeterministic) LTSs have been proposed in the
literature (e.g., see [9]). Once an mgoK has been com-
puted, solving and implementing the functional equation
K(x,u) = 1 allows a correct-by-construction control soft-
ware to be synthesized.

2) OBDD Representation for Boolean Functions:A Bi-
nary Decision Diagram(BDD) R is a rooted directed acyclic
graph (DAG) with the following properties. EachR node
v is labeled either with a boolean variablevar(v) (internal
node) or with a boolean constantval(v) ∈ B (terminal node).
EachR internal nodev has exactly two children, labeled
with high(v) and low(v). Let x1, . . . , xn be the boolean
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variables labelingR internal nodes. Each terminal nodev
representsfv(x) = val(v). Each internal nodev represents
fv(x) = xifhigh(v)(x) + x̄iflow(v)(x), beingxi = var(v).
An Ordered BDD(OBDD) is a BDD where, on each path
from the root to a terminal node, the variables labeling each
internal node must follow the same ordering.

IV. SOLVING A BOOLEAN FUNCTIONAL EQUATION

Let K(x1, . . . , xn, u1, . . . , ur) be the mgo for a given
control problemP = (S, I, G). We want to solve the
boolean functional equationK(x,u) = 1 w.r.t. variablesu,
that is we want to obtain boolean functionsf1, . . . , fr s.t.
K(x, f1(x), . . . , fr(x)) = K|u1=f1(x),...,ur=fr(x)(x,u) =
1. This problem may be solved in different ways, depending
on the target implementation(hardware or software) for
functionsfi. In both cases, it is crucial to be able to bound
the WCET (Worst Case Execution Time) of the obtained
controller. In fact, controllers must work in an endless closed
loop with the systemS (plant) they control. This implies
that, everyT seconds (sampling time), the controller has to
decide the actions to be sent toS. Thus, in order for the
entire system (plant + control software) to properly work,
the controller WCET upper bound must be at mostT .

In [2], f1, . . . , fr are generated in order to optimize
a hardware implementation. In this paper, we focus on
software implementations forfi (control software). As it
is discussed in Section I, simply translating an hardware
implementation into a software implementation would re-
sult in a too high WCET. Thus, a method directly tar-
geting software is needed. An easy solution would be
to set up, for a given statex, a SAT problem instance
C = CK1, . . . , CKt, c1, . . . , cn, where CK1 ∧ . . . ∧ CKt

is equisatisfiable toK and each clauseci is either xi (if
xi is 1) or x̄i (otherwise). ThenC may be solved using a
SAT solver, and the values assigned tou in the computed
satisfying assignment may be returned as the action to be
taken. However, it would be hard to estimate a WCET for
such an implementation. The method we propose in this
paper overcomes such obstructions by achieving a WCET
proportional torn.

V. OBDDS WITH COMPLEMENTED EDGES

In this section, we introduce OBDDs with complemented
edges (COBDDs, Definition 1), which were first presented
in [10][11]. Intuitively, they are OBDDs where else edges
(i.e., edges of type(v, low(v))) may be complemented. Then
edges (i.e., edges of type(v, high(v))) complementation
is not allowed to retain canonicity. Edge complementation
usually reduce resources usage, both in terms of CPU and
memory.

Definition 1. An OBDD with complemented edges(COBDD
in the following) is a tupleρ = (V, V , 1, var, low, high,
flip) with the following properties: i)V = {x1, . . . , xn}
is a finite set ofordered boolean variables; ii)V is a

finite set of nodes; iii) 1 ∈ V is the terminal node of
ρ, corresponding to the boolean constant1 (non-terminal
nodes are calledinternal); iv) for each internal nodev,
var(v) < var(high(v)) and var(v) < var(low(v)); v)
var, low, high, flip are functions defined on internal nodes,
namely:var : V \ {1} → V assigns to each internal node a
boolean variable inV, high[low] : V \ {1} → V assigns to
each internal nodev a high child [low child] (or true child
[else child]), representing the case in whichvar(v) = 1
[var(v) = 0], flip : V \ {1} → B assigns to each internal
nodev a boolean value; namely, ifflip(v) = 1 then the else
child has to be complemented, otherwise it is regular (i.e.,
non-complemented).

COBDDs associated multigraphs:We associate to a
COBDD ρ = (V, V , 1, var, low, high, flip) a labeled
directed multigraphG(ρ) = (V,E) s.t.V is the same set of
nodes ofρ and there is an edge(v, w) ∈ E iff w is a child of
v. Moreover, each edgee ∈ E has a typetype(e), indicating
if e is a then, a regular else, or a complemented else edge.
Figure 1 shows an example of a COBDD depicted via its
associated multigraph, where edges are directed downwards.
Moreover, in Figure 1 then edges are solid lines, regular
else edges are dashed lines and complemented else edges
are dotted lines.

The graph associated to a given COBDDρ = (V, V , 1,
var, low, high, flip) may be seen as a forest with multiple
rooted multigraphs. In order to select one root vertex and
thus one rooted multigraph, we define theCOBDD restricted
to v ∈ V as the COBDDρv = (V, Vv, 1, var, low, high,
flip) s.t. Vv = {w ∈ V | there exists a path fromv to w in
G(ρ)} (note thatv ∈ Vv).

Reduced COBDDs:Two COBDDs areisomorphiciff
there exists a mapping from nodes to nodes preserving at-
tributesvar, flip, high andlow. A COBDD is calledreduced
iff it contains no vertexv with low(v) = high(v)∧flip(v) =
0, nor does it contains distinct verticesv andv′ such thatρv
andρv′ are isomorphic. Note that, differently from OBDDs,
it is possible thathigh(v) = low(v) for some v ∈ V ,
provided thatflip(v) = 1 (e.g., see nodes0xf and 0xe in
Figure 1). In the following, we assume all our COBDDs to
be reduced.

COBDDs properties:For a given COBDDρ = (V, V ,
1, var, low, high, flip) the following properties follow from
definitions given above: i)G(ρ) is a rooted directed acyclic
(multi)graph (DAG); ii) each path inG(ρ) starting from an
internal node ends in1; iii) let v1, . . . , vk be a path inG(ρ),
thenvar(v1) < . . . < var(vk).

A. Semantics of a COBDD

In Definition 2, we define the semanticsJ·K of each node
v of a given COBDDρ as the boolean function represented
by v, given the parityb of complemented edges seen on the
path from a root tov.
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Definition 2. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD. Thesemantics of the terminal node1
w.r.t. a flipping bit b is a boolean function defined as
J1, bKρ := b̄. The semantics of an internal nodev ∈ V
w.r.t. a flipping bit b is a boolean function defined as
Jv, bKρ := xiJhigh(v), bKρ + x̄iJlow(v), b ⊕ flip(v)Kρ, being
xi = var(v). Whenρ is understood, we will writeJ·K instead
of J·Kρ.

Example 1. Letρ be the COBDD depicted in Figure 1. If we
pick node0xe we haveJ0xe, bK = x2J1, bK+ x̄2J1, b⊕ 1K =
x2b̄+ x̄2b = x2 ⊕ b.

Theor. 1 states that COBDDs are acanonicalrepresenta-
tion for boolean functions (see [10][11]).

Theorem 1. Let f : Bn → B be a boolean function. Then
there exist a COBDDρ = (V, V , 1, var, low, high, flip), a
node v ∈ V and a flipping bitb ∈ B s.t. Jv, bK = f(x).
Moreover, letρ = (V, V , 1, var, low, high, flip) be a
COBDD, letv1, v2 ∈ V be nodes andb1, b2 ∈ B be flipping
bits. ThenJv1, b1K = Jv2, b2K iff v1 = v2 ∧ b1 = b2.

VI. SYNTHESIS OFC CODE FROM A COBDD

Let K(x1, . . . , xn, u1, . . . , ur) be the mgo for a given
control problem. Letρ = (V, V , 1, var, low, high, flip)
be a COBDD s.t. there existv ∈ V , b ∈ B s.t. Jv, bK =
K(x1, . . . , xn, u1, . . . , ur). Thus,V = X ·∪ U = {x1, . . . ,
xn} ·∪{u1, . . . , ur} (we denote with ·∪ the disjoint union
operator, thusX ∩ U = ∅). We will call variablesxi ∈ X
asstate variablesand variablesuj ∈ U asaction variables.
More in-depth details may be found in [8].

A. Synthesis Algorithm: Overview

Our methodSynthesizetakes as inputρ, v and b s.t.
Jv, bK = K(x,u). Then, it returns as output a C function
void K(int *x, int *u) with the following prop-
erty: if, before a call toK, ∀i x[i − 1]= xi holds (array
indexes in C language begin from0) with x ∈ Dom(K), and
after the call toK, ∀i u[i−1]= ui holds, thenK(x,u) = 1.
Moreover, the WCET of functionK is O(nr).

Note that our methodSynthesizeprovides an effective
implementationof the mgoK, i.e., a C function which takes
as input the current state of the LTS and outputs the action
to be taken. Thus,K is indeed a control software.

Function Synthesizeis organized in two phases. First,
starting fromρ, v and b (thus fromK(x,u)), we generate
COBDD nodesv1, . . . , vr and flipping bitsb1, . . . , br for
boolean functionsf1, . . . , fr s.t. eachfi = Jvi, biK takes
as input the state bit vectorx and computes thei-th bit
ui of an output action bit vectoru, whereK(x,u) = 1,
provided thatx ∈ Dom(K). This computation is carried
out in functionSolveFunctionalEq. Second,f1, . . . , fr are
translated inside functionvoid K(int *x, int *u).
This step is performed by maintaining the structure of the
COBDD nodes representingf1, . . . , fr. This allows us to

exploit COBDD node sharing in the generated software. This
phase is performed by functionGenerateCCode.

Thus functionSynthesizeis organized as in Algorithm 1.
Correctness for functionSynthesizeis stated in Theor. 2.

Algorithm 1 Translating COBDDs to a C function
Require: COBDD ρ, nodev, booleanb
Ensure: Synthesize(ρ, v, b):

1: 〈v1, b1, . . . , vr, br〉 ← SolveFunctionalEq(ρ, v, b)
2: GenerateCCode(ρ, v1, b1, . . . , vr, br)

B. Synthesis Algorithm: Solving a Functional Equation

In this phase, starting fromρ, v andb (thus fromJv, bK =
K(x,u)), we compute functionsf1, . . . , fr s.t. for all x ∈
Dom(K), K(x, f1(x), . . . , fr(x)) = 1.

To this aim, we follow an approach similar to
the one presented in [7]. Namely, we computefi
using f1, . . . , fi−1, in the following way: fi(x) =
∃ui+1, . . . , un K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , un).
Thus, functionSolveFunctionalEq(ρ, v, b) computes and re-
turns〈v1, b1, . . . , vr, br〉 s.t. for all i ∈ [r], Jvi, biK = fi(x).

C. Synthesis Algorithm: Generating C Code

In this phase, starting from COBDD nodesv1, . . . , vr and
flipping bits b1, . . . , br for functions f1, . . . , fr generated
in the first phase, we generate two C functions: i)void
K(int *x, int *u), which is the required output func-
tion for our methodSynthesize; ii) int K_bits(int

*x, int action), which is an auxiliary function called
by K. A call to K_bits(x, i) returnsfi(x), beingx[j−
1]= xj for all j ∈ [n]. This phase is detailed in Algs. 2
(function GenerateCCode) and 3 (functionTranslate).

Given inputsρ, v1, b1, . . . , vr, br (output bySolveFunc-
tionalEq), Algs. 2 and 3 work as follows. First, function
int K_bits(int *x, int action) is generated. If
x[j − 1]= xj for all j ∈ [n], the call K_bits(x, i)
has to returnfi(x). In order to do this,K_bits(x, i)
traverses the graphG(ρvi

) by taking, in each nodev, the
then edge ifx[j − 1] = 1 (with j s.t. var(v) = xj) and
the else edge otherwise. When node1 is reached, then1 is
returned iff the integer sumc+bi is even, beingc the number
of complemented else edges traversed. Parity ofc + bi is
maintained by initializing a C variableret_b to b̄i, then
complementingret_b when a complemented else edge is
traversed, and finally returningret_b.

Thus, Algs. 2 and 3 generateK_bits in order to obtain
the above described behavior. Namely, for allvi output by
the first phase (functionSolveFunctionalEq), GenerateC-
Code calls Translatewith parametersρ, vi,W , whereW
maintains the set of nodes already translated in C code.
This results, for all suchvi, in a recursive graph traversal of
G(ρvi

) where, for each internal nodew /∈W which was not
already translated, a C code blockB = B1B2 is generated
s.t.B1 is of the formL_w: if (x[j−1]) goto L_h;

531

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



(line 7 of Algorithm 3) andB2 has one of the following
forms: i) else goto L_l; (if flip(w) = 0, line 9 of
Algorithm 3) or ii) else {ret_b = !ret_b; goto
L_l;} (otherwise, line 8 of Algorithm 3). For the terminal
node, the blockL_1: return ret_b; is generated.
Note that maintaining the set of already translated nodes
W allows us to fully exploit COBDDs nodes sharing.

Algorithm 2 Generating C functions
Require: COBDD ρ, v1, . . . , vr, boolean valuesb1, . . . , br
Ensure: GenerateCCode(ρ, v1, b1, . . . , vr, br):

1: print “int K_bits(int *x, int action) {
int ret_b; switch(action) {”

2: for all i ∈ [r] do
3: print “case ”, i − 1, “: ret_b = ”, b̄i, “;

goto L_”, vi,“;”
4: print “}” /* end of the switch block */
5: W ← ∅

6: for all do i ∈ [r] W ←Translate(ρ, vi,W ) done
7: print “} K(int*x,int*u){int
i;for(i=0;i<”,r,“;i++)u[i]=K_bits(x,i);}”

Algorithm 3 COBDD nodes translation
Require: COBDD ρ, nodev, nodes setW
Ensure: Translate(ρ, v,W ):

1: if v ∈W then return W
2: W ←W ∪ {v}, print “L_”, v, “:”
3: if v = 1 then
4: print “return ret_b;”
5: else
6: let i be s.t.var(v) = xi

7: print “if(x[”,i− 1,“]==1)goto L_”, high(v)
8: if flip(v) then print “else {ret_b = !ret_b;

goto L_”, low(v),“;}”
9: else print “else goto L_”, low(v)

10: W ←Translate(ρ, high(v),W )
11: W ←Translate(ρ, low(v),W )
12: return W

Algorithm Correctness:Correctness of our approach,
i.e., of functionSynthesizein Algorithm 1, is stated by Th. 2
(for the proof, see [8]).

Theorem 2. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD withV = X ·∪U , v ∈ V be a node,
b ∈ B be a boolean. LetJv, bK = K(x,u). Then function
Synthesize(ρ, v, b) generates a C functionvoid K(int

*x, int *u) with the following property: for allx ∈
Dom(K), if before a call toK ∀i ∈ [n] x[i− 1]= xi, and
after the call toK ∀i ∈ [r] u[i−1]= ui, thenK(x,u) = 1.
Furthermore, functionK has WCETO(nr).

An Example of Translation:Consider the COBDDρ
shown in Figure 1. Withinρ, consider mgoK(x0, x1,
x2, u0, u1) = J0x17, 1K. By applying SolveFunctionalEq,
we obtain f1(x0, x1, x2) = J0x15, 1K and f2(x0, x1,

 u0 

 u1 

 x0 

 x1 

 x2 

K

0x17

0x120x16

0x10

0x11

0x15

1

0xf

0xe

0x13 0x14

Figure 1. An mgo example

i n t K_bits( i n t *x, i n t action) { i n t ret_b;
swi tch(action) { case 0: ret_b = 0; goto L_0x15;

case 1: ret_b = 0; goto L_0x10; }
L_0x15: i f (x[0] == 1) goto L_0x13;

e l s e { ret_b = !ret_b; goto L_0x14; }
L_0x13: i f (x[1] == 1) goto L_0xe;

e l s e { ret_b = !ret_b; goto L_1; }
L_0xe: i f (x[2] == 1) goto L_1;

e l s e { ret_b = !ret_b; goto L_1; }
L_0x14: i f (x[1] == 1) goto L_0xe;

e l s e goto L_1;
L_0x10: i f (x[0] == 1) goto L_0xe;

e l s e { ret_b = !ret_b; goto L_0xf; }
L_0xf: i f (x[1] == 1) goto L_0xe;

e l s e { ret_b = !ret_b; goto L_0xe; }
L_1: re turn ret_b; }

vo id K( i n t *x, i n t *u) { i n t i;
f o r (i = 0; i < 2; i++) u[i] = K_bits(x, i); }

Figure 2. C code for the mgo in Figure 1 as generated bySynthesize

x2) = J0x10, 1K. Note that0xe is shared betweenG(ρ0x15)

andG(ρ0x10). Finally, by callingGenerateCCode(see Algo-
rithm 2) onf1, f2, we have the C code in Figure 2.

VII. E XPERIMENTAL RESULTS

We implemented our synthesis algorithm in C program-
ming language, using the CUDD package for OBDD based
computations and BLIF files to represent input OBDDs. We
name the resulting tool KSS (Kontrol Software Synthesizer).
KSS is part of a more general tool named QKS (Quantized
feedback Kontrol Synthesizer[4]).

1) Experimental Settings:We present experimental re-
sults obtained by using KSS on given COBDDsρ1, . . . , ρ4
s.t. for all i ∈ [4] ρi represents the mgoKi(x,u) for a buck
DC/DC converter withi inputs (see [6] for a description of
this system), wheren = |x| = 20 and ri = |u| = i. Ki is
an intermediate output of the QKS tool described in [4].

For eachρi, we run KSS so as to computeSynthesize(ρi,
vi, bi) (see Algorithm 1). In the following, we will call
〈v1i, b1i, . . . , vii, bii〉, with vji ∈ Vi, bji ∈ B, the out-
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Table I
KSS PERFORMACES

r CPU MEM |K| |Funsh| |Sw| %

1 2.2e-01 4.5e+07 12124 2545 2545 0.0e+00
2 4.2e-01 5.3e+07 25246 5444 4536 1.7e+01
3 5.2e-01 5.9e+07 34741 10731 8271 2.3e+01
4 6.3e-01 6.5e+07 43065 15165 11490 2.4e+01

put of function SolveFunctionalEq(ρi, vi, bi). Moreover,
we call f1i, . . . , fii : Bn → B the i boolean functions s.t.
Jvji, bjiK = fji(x). All our experiments have been carried
out on a 3.0 GHz Intel hyperthreaded Quad Core Linux PC
with 8 GB of RAM.

2) KSS Performance:In this section we will show the
performance (in terms of computation time, memory, and
output size) of the algorithms discussed in Section VI. Ta-
ble I show our experimental results. Thei-th row in Table I
corresponds to experiments running KSS so as to compute
Synthesize(ρi, vi, bi). Columns in Table I have the following
meaning. Columnr shows the number of action variables|u|
(note that|x| = 20 on all our experiments). ColumnCPU
shows the computation time of KSS (in secs). ColumnMEM
shows the memory usage for KSS (in bytes). Column|K|
shows the number of nodes of the COBDD representation for
Ki(x,u), i.e., |Vvℓi

|. Column|Funsh| shows the number of
nodes of the COBDD representations off1i, . . . , fii, without
considering nodes sharing among such COBDDs. Note that
we do consider nodes sharing inside eachfji separately.
That is,|Funsh| =

∑i
j=1 |Vvji

| is the size of a trivial imple-
mentation off1i, . . . , fii in which eachfji is implemented
by a stand-alone C function. Column|Sw| shows the size
of the control software generated by KSS, i.e., the number
of nodes of the COBDD representationsf1i, . . . , fii, con-
sidering also nodes sharing among such COBDDs. That is,
|Sw| = |∪ij=1Vvji

| is the number of C code blocks generated
by lines 5–6 of functionGenerateCCodein Algorithm 2.
Finally, Column% shows the gain percentage we obtain by
considering node sharing among COBDD representations for
f1i, . . . , fii, i.e., (1− |Sw|

|Funsh|
)100.

From Table I we can see that, in less than 1 second
and within 70 MB of RAM we are able to synthesize the
control software for the multi-input buck withr = 4 action
variables, starting from a COBDD representation ofK with
about 4 × 104 nodes. The control software we synthesize
in such a case has about1.2 × 104 lines of code, whilest
a control software not taking into account COBDD nodes
sharing would have had about1.5×104 lines of code. Thus,
we obtain a24% gain towards a trivial implementation.

VIII. C ONCLUSION AND FUTURE WORK

We presented an algorithm and a tool KSS implementing
it which, starting from a boolean relationK representing

the set of implementations meeting the given system speci-
fications, generates a correct-by-construction C code imple-
menting K. This entails finding boolean functionsF s.t.
K(x, F (x)) = 1 holds, and then implement suchF . WCET
for the generated control software is linear linear innr, being
r the number of functions inF and n = |x|. KSS allows
us to synthesize correct-by-construction control software,
provided thatK is provably correct w.r.t. initial formal spec-
ifications. This is the case in [4], thus this methodology, e.g.,
allows to synthesize correct-by-construction control software
starting from formal specifications for DTLHSs. We have
shown feasibility of our proposed approach by presenting
experimental results on using it to synthesize C controllers
for a buck DC-DC converter.

In order to speed-up the resulting WCET, a natural possi-
ble future research direction is to investigate how to paral-
lelize the generated control software, as well as to improve
don’t-cares handling inF .
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