
Towards Functional and Constructional Perspectives
on Business Process Patterns

Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans, Herwig Mannaert
Department of Management Information Systems

University of Antwerp
Antwerp, Belgium

{peter.debruyn,dieter.vannuffel,philip.huysmans,herwig.mannaert}@ua.ac.be

Abstract—Contemporary organizations need to be more agile
to keep up with the swiftly changing business environment.
The Normalized Systems theory has proven to introduce this
required agility within an organization, starting at the software
level. However, in order to realize an agile enterprise, also
business processes have to exhibit this evolvability. Currently,
the relevance of Normalized Systems theory at the business
process level has been demonstrated, however no equivalent
to the software elements at the organizational level have been
developed. Therefore, this paper investigates whether it is possible
to base such elements on the available business process patterns
in literature. After investigating the usefulness of the MIT Process
Handbook with regard to this purpose, this paper emphasizes the
importance of recognizing the so-called functional–constructional
gap and identifies the need for developing modular and evolvable
constructional business process design patterns to further extend
Normalized Systems theory on the business level.

Index Terms—Normalized Systems, business process patterns,
analysis patterns, evolvability, MIT Process Handbook

I. INTRODUCTION

Contemporary organizations need to be more agile to keep
up with the swiftly changing business environment. As a
consequence, all constructs of an organization—structure,
business processes, information systems—have to evolve at
an equivalent pace. The Normalized Systems (NS) theory has
proven to introduce this required agility within an organiza-
tion. First, the theory prescribes how to design and implement
information systems that are able to evolve over time, and are
thus designed to accommodate change [1]. It is based on the
systems theoretic concept of stability and on the prevention
of so-called combinatorial effects, i.e., changes of which the
impact is not only dependent on the kind of the change but
also on the size of the system. As such, NS proposes four
design principles that need to be adhered at all times [2]:

• separation of concerns requires that every change driver
or concern is separated from other concerns;

• data version transparency requires that data is communi-
cated in version transparent ways between components;

• action version transparency requires that a component
can be upgraded without impacting the calling compo-
nents;

• separation of states requires that actions or steps in
a workflow are separated from each other in time by
keeping state after every action or step.

The design principles show that software constructs, such as
functions and classes, by themselves offer no mechanisms to
accommodate anticipated changes in a stable manner. The NS
theory therefore proposes to encapsulate software constructs
in a set of five higher-level software elements: action ele-
ment, data element, workflow element, trigger element, and
connector element [3]. These elements are modular structures
that adhere to these design principles, in order to provide the
required stability with respect to anticipated changes [2]. As
these elements themselves are free of combinatorial effects,
also the applications based on them are free of combinatorial
effects.

However, it does not suffice to introduce agility within
the information systems to realize an agile enterprise. Other
organizational artifacts have to evolve in the same way as
well. Therefore, the NS theory was extended to other orga-
nizational elements, such as business processes and enterprise
architectures [4]. Regarding the former, business processes, the
applicability of the extension is already demonstrated [5].

Nevertheless, the authors have not yet been able to identify
an equivalent of the five software elements at the business
process level. Although preliminary research findings indicate
that Notification and Payment might classify as such a business
process element [5], additional research is required. Therefore,
this paper investigates whether it is possible to base such ele-
ments on the available business process patterns in literature.

When selecting appropriate business process elements, an
important distinction needs to be made between patterns from
a functional and the constructional perspective. The func-
tional and constructional view on a system are fundamentally
different conceptualizations of a system [6]. The functional
perspective is concerned with the external behavior of the
system [7]. This perspective is adequate for the purpose of
using or controlling a system. Therefore, knowledge of the
required input variables, transfer function and output vari-
ables are key components of this perspective. In contrast,
the constructional perspective describes what a system really
is [8]. In this perspective, knowledge about the composition
(i.e., which components constitute the system) and structure
(i.e., how these components are related) is focused on. The
function of a system is brought about by the operation of
its construction. However, the construction cannot be deduced
from the functional description, since the two perspectives deal

459

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



with fundamentally different components. Consistent with the
NS elements, we aim to propose process elements using a
constructive perspective. Therefore, it is important to consider
these perspectives when building on business process patterns
found in literature.

The remainder of this paper will be structured as follows:
in Section II we will briefly discuss some already existing
analysis and design patterns in literature. Next, we will in-
vestigate to which extent we can derive corresponding NS
conform elements and patterns from those available business
process patterns by studying one frequently cited and used
framework, being the MIT Process Handbook, in Section III.
Afterwards, we will discuss how NS theory extends towards
normalized business process design patterns and Section V
will end up with some final comments and opportunities for
further research.

II. RELATED WORK

The use of patterns in software development and informa-
tion systems analysis has been increasingly gaining attention
during the past decade. One of the first publications on
software development patterns that generated considerable
interest was probably the so-called Gang of Four (GoF) book
of Gamma et al. [9]. Gamma et al. identified patterns as
ideas that senior developers have used many times while
solving commonly occurring problems [9]. Essentially, the
overall meaning or intention of this concept has remained
rather unchanged throughout many later publications on design
patterns. Further summarizing, patterns are frequently claimed
to exhibit the following characteristics:

• starting from a generally occurring problem in the con-
sidered problem domain;

• proposing standard and / or best practice solutions to
these problems applicable to a myriad of analogous
situations;

• incorporating domain knowledge and expertise some-
times requiring multiple years of experience to gather
independently;

• exhibiting high-quality and robustness by representing
frequently tested solutions;

• increasing pace of the development / modeling process by
avoiding to systematically start from scratch and trying
to ‘reinvent the wheel’.

Moreover, they are generally claimed to be a sign of a
discipline becoming somewhat more mature, in the sense that
an accumulation of generally recurring problems and their
best-practice solutions becomes identified and documented. As
such, existing knowledge from experts can be consolidated,
published, and made available for a whole community [10].

After the work of Gamma et al. [9], additional, more
analysis-oriented frameworks arised. As such, we will present
here a brief illustrative, yet not exhaustive, overview. Given
the plethora of available frameworks, a lot of different classi-
fication approaches exist as well. Some pattern frameworks for
example mainly focus on the data aspects of an organization
model, such as Hay [11] and Fowler [12]. Elaborating on

these previous two frameworks, an interesting work was also
delivered by Silverston providing domain data models for
several industries such as manufacturing, telecommunications,
health care, insurance, etc. [13], [14]. More process-oriented
patterns can be found in, for example, Larman [15]. Further-
more, some claim that the broad area of workflow patterns are
to be considered as some form of process-oriented analysis
patterns (see e.g., [16]). Scheer also provided domain models
for several functional domains of a typical organization, and
combined both data and process related aspects [17]. Moving
to more abstract levels, some frameworks claiming to state
more generic and universal patterns can be noticed. For
example, Dietz models every enterprise as an aggregation of
instantiations of one universal transaction pattern [18]. Also
REA (resources, events, agents) similarly views an enterprise
as an aggregation of transactions representing some kind of
economic exchange [19], [20]. Finally, one could argue that
also some general reference models could be considered to
a certain extent as analysis patterns, such as the value chain
model of Porter [21], the eTOM model for the telecommu-
nications sector or the SCOR model representing a reference
model for supply chain operations [22].

III. INVESTIGATING CURRENT BUSINESS PROCESS
DESIGN AND REFERENCE MODELS

In this section we will discuss the extent to which currently
available analysis patterns and reference models can be applied
to and serve as a means to extent the previously discussed
NS theory to the level of normalized design patterns at the
business level (i.e., modular and evolvable business process
design patterns). As the number of available frameworks in
this regard is rather extensive at first sight (cf. Section II)
and due to the limited available space, we chose to focus our
attention initially to only one framework that formulates a
number of functional patterns at the business process level:
the MIT Process Handbook. This approach allowed us to
analyze this one specific framework in a rather profound
way. The pattern framework was selected mainly because of
the fact that it is a generally well known, publicly available
framework, extensively discussed and referred to in both
academic and practitioners literature. Also, as will be further
clarified later on, this framework’s motivation seems to be
closely resembling our previously stated purpose in Section
I: the formation of a repository consisting out of generally
reusable business process patterns. As such, the purpose is to
investigate whether these functional patterns can be translated
in the required modular and evolvable design patterns.

The MIT Process Handbook initiative originated around
1994 reacting to an identified need of enabling more easily
business process redesign and the knowledge management re-
garding those business processes [23]. As such, the purpose of
the project was to identify similarities between and alternatives
regarding different business processes at various organizations
[23]. This resulted in an online available “process handbook”
to exchange ideas regarding organizational practices ending

460

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



up with a “repository” of knowledge about business processes
and featuring more than 5900 entries in July 2002 [24].

In its very essence, the MIT Process Handbook structures
its business process repository around two main dimensions:
parts and types. Process parts represent the fact that a business
process can be subdivided into several “sub” business pro-
cesses or activities as for example the “sell product” business
process is broken down into the more detailed processes like
“identify potential customers”, “inform potential customers”,
“obtain order”, “deliver product”, etc. Process types represent
different alternatives or “specializations” of a generic activity,
as for example the processes “sell by mail order” and “sell in
retail store” can be considered as two specializations of the
generic process “sell product”. Using these two dimensions
to situate the different business processes then results in the
so-called “Process Compass” where processes are depicted on
the vertical axe according to their different parts / subactivities
and on the horizontal axe according to their different types /
alternatives [23].

Clearly, this way of working already implies a certain
amount of modularity: in a top-down way, the general, more
“high-level” activities are constantly broken down into more
detailed constituent subactivities, representing the respective
modular “building blocks”. In addition, the different types /
alternatives available for certain processes suggest the pos-
sibility of being able to compose new processes in a kind
of “plug and play” manner: for each subactivity, frequently
some “equivalent” types are proposed, apparently allowing the
designer of a new or ameliorated process to choose and trade-
off between different alternatives or replace on a later time an
existing activity by an alternative “version” of that subactivity.

In order to assess whether the Handbook can provide suffi-
cient support regarding our attempt to extend our framework
on modularity and evolvability to patterns on the business
level, let us start for example on the overall activity of the
Process Handbook (i.e., the most generic and high-level one,
claimed as being the basis for most business processes):
“produce as a business”. A schematic overview of this process
is provided in Figure 1. One can notice that the business
process “produce as a business” has five parts (i.e., design
product and process, buy, make, sell and manage a business).
The figure moreover is partially expanded for the parts “design
product and process” and “sell”. When trying to leverage these
business processes and parts to our constructional building
blocks created at the software level in NS theory, three
somewhat related issues arise: under-specification, lack of
adherence to prescriptive design principles and an inherent
top-down approach.

A. Underspecification

The repository of the Process Handbook regularly seems
to be lacking highly specified and detailed descriptions of its
different processes and activities. Frequently, some relevant
subactivities seem to be omitted and the structure of decom-
position already stops before one has attained a very fine-
grained modular overview of all the needed, broken-down,

Fig. 1. Partial breakdown of the “Produce as a business” business process
based on the MIT Process Handbook

activities which are required for exhaustively executing a
more generic high-level process. Consider for example the
subprocess “identify needs or requirements” as shown in
Figure 1. This subprocess has been given the rather vague
essential description that it is a process for “identifying the
usability parameters of a resource that is managed in a
flow dependency” and it is already situated at the bottom
of the Process Compass. Therefore, no further subactivities
are identified in the Process Handbook. However, one could
reasonably argue that this process can still be refined into
more fine-grained activities such as, e.g., conducting a market
survey, analyzing preceding sales results, etc, which could then
be detailed into even more specific subprocesses. As such, the
process descriptions frequently leave considerable room for
interpretation about the actual specific activities entailed in
certain processes.

Indeed, it has not been the objective of the initiators of
the Process Handbook to provide such a very fine-grained
overview of each process. While Malone et al. mention in their
introduction that their Handbook is expected to be useful in
automatically generating software, they argue later on that as
their main focus is to support human decision-makers “there
is no requirement that all our process descriptions be detailed
or formalized enough to be executable by automated systems”
[23, p. 426]. Explicitly referring to Hammer and Champy’s
[25] concept of analysis paralysis, they further claim that it is
more important to be able to make a rapid assessment of the
basic caracteristics of a process, rather than an elaborate and
detailed overview. Proposing an approach to further fill in the
Process Handbook, Pentland et al. [26, p. 3] also emphasize
that it is “pointless to spend a lot of energy mapping out [in
a detailed way] how a particular activity is accomplished”.
However, in order to directly apply a NS approach, it is
necessary to break down the action entities up to the point
that it enables the identification of each individual concern
which can potentially be considered as a separate “change
driver” [1]–[3]. Also applying the NS principles at the business
level requires the rather fine-grained identification of such
individual change drivers related to individual elementary life
cycle information objects, albeit that they can depend on time,
context and subjective interpretation [4], [5].

461

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



B. Lack of adherence to prescriptive design principles

Also few or no applied prescriptive design guidelines can be
retrieved towards the design of the process repository. Previous
research regarding evolvable modularity at the software level
[1]–[3] and the business level [5] however points out that
some very stringent principles should consistently be adhered
to with this respect. Consider for instance again the example
previously outlined and depicted in Figure 1. “Identify needs
or requirements” is a subprocess of “design product and
process”, which is at its turn a part of the general process
“produce as a business”. “Identify potential customer needs”
is a subprocess of “sell” which is at its turn a part of the same
general process “produce as a business”. While not completely
clear from the descriptions delivered by the Handbook, one
could argue that certain functionality is common or repeated
within these two distinct processes (each having no ‘lower’
subprocesses / parts in the process compass). Specializing the
“sell” process towards “sell via electronic store” has a subpro-
cess “identify customer needs in electronic store”, which again
seems to cover at least some common functionality, apart from
the employed distribution channel. Surprisingly, the “identify
customer needs in electronic store” process is subdivided
into several other parts, not reused in the processes “identify
needs or requirements” or “identify potential customer needs”.
Similar instances of common functionality scattered around in
various business processes were noticed regarding the delivery
of products, advertising via diverse channels, etc. In terms of
evolvability, this would imply that the need for e.g., changing
something in the way customer needs are identified, could
have a possible impact on all business processes involved
with this functionality. This evidence suggests that at least one
of the four basic principles of NS theory is not adhered to.
The principle of Separation of Concerns namely enforces one
to separate each individual change driver in its own distinct
construct in order to encapsulate and limit the impact of a
change driver in its own construct. More specifically, NS
theory demands that during the design of evolve software
or business processes, common parts of data or business
processes should be kept in a non-redundant form, whereas
each variation should be kept separated from the common part.

This lack of unambiguous and stringent prescriptive design
guidelines to compose the Process Handbook is not only
apparent when analyzing the respective processes, but also
while studying the guidelines directed to the users of and con-
tributors to the Handbook. For example, it is stated that: “we
believe that [. . . our structure] is comprehensive and intuitive
[. . . ] we have, in general, tried to maintain a branching factor
of about “7 plus or minus 2” in the specialization hierarchy
[. . . and use it] primarily as a rough guideline for editing
the Process Handbook” [24, p. 250]. Later on, one can read:
“wherever possible, we have tried to create groupings that
constitute a mutually exclusive and exhaustive partitioning
of the possible specializations of that activity” [24, p. 250].
Finally, Malone et al. [23, p. 439] even explicitly mention that
their Handbook is primarily a resource to suggest people what

to do rather than proposing “prescriptive rules” in drafting
the Handbook and are confident in the “role of intelligent
human “editors” to select, refine, and structure the knowledge
represented in the Handbook to tackle the editioral challenge.”

C. Top-down modeling

Finally, the systematic way of structuring the different
business processes in a top-down fashion (i.e., starting from
general high-level processes and then refining them into more
detailed ones including some possible alternatives) inherently
contributes to the functional–constructional gap as mentioned
in Section I.

The breakdown of the “produce as a business” business
process can illustrate this point. From a functional point of
view, one tries to relate the input variables to the output
variables through a transfer function. Knowing the transfer
function, insight is gained in how the systems responds to
various instances of input parameters from the environment.
In this case, one tries to understand which resources (input
variables) are required to deliver products or services (output
variables) to the customers. However, such a transfer function
is generally extremely complicated. Therefore, the technique
of functional decomposition can be applied to reduce this com-
plexity. Using functional decomposition, the transfer function
is replaced by a set of sub-systems of which the transfer
function is easier to understand. In the “produce as a busi-
ness” business process, design, buy, make, sell, and manage
are identified as sub-systems. Consequently, one now has to
understand the inputs and outputs of, for example, the “sell”
transfer function. However, these systems are still considered
using a functional perspective: together, they describe in more
detail how resources can be converted to products or services.
On these functionally decomposed processes, one can again
apply functional decomposition, resulting in very detailed
descriptions of transfer functions. In traditional architecture
literature, this process is referred to as analysis [27]. However,
this activity is radically different from designing a structure
which brings about this transfer function. When designing
process elements, we aim to describe the structure to bring
about the business process functionality. In design studies,
this activity is referred to as synthesis [28]. Unsurprisingly,
the design of a system which brings about the “produce as
a business” function will be very complex. Analogously to
functional decomposition, constructional decomposition can
then be applied. However, the elements which are identified
in a constructional decomposition are different in nature than
the elements from a functional decomposition. Consequently,
it does not make sense to try to relate the elements of a
functional decomposition to the elements of a constructional
decomposition. In other words, one cannot expect to arrive at
essential constructional process building blocks by describing
very detailed functionally decomposed elements, as proposed
by the MIT Process Handbook.

Indeed, as Kodaganallur [10] seems to be noticing rightfully,
few development methodologies seem to be seamlessly inte-
grated with the use of patterns at the analysis level. However,

462

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



using a systematic integrated bottom-up approach starting
from data and action entities, encapsulating them in higher-
order elements with proven stability and finally aggregating
them into evolvable business process (patterns) is the inherent
rationale in the NS theory. In our view, designing organiza-
tions towards (proven) evolvability requires such a bottom-
up approach where in a first phase some very fine-grained
building blocks exhibiting proven evolvability by adhering
to the predefined principles (e.g., “send notification”) are
developed. Later on, these fine-grained building blocks can
be reused in a safe and black-box way to construct more
coarse-grained blocks, again conforming to the predefined
design principles (e.g., “decide on customer creditworthness”).
Only in a final phase these coarse-grained blocks could be
aggregated towards such general processes as depicted in
Figure 1 and enabling the transformation of, for instance,
“sell product” to NS compatible patterns. Again, this suggests
that the MIT Process Handbook is not directly applicable
with respect to evolvable and modular constructional business
process patterns.

These three issues are obviously highly related to one
another and add up to the conclusion that the MIT Process
Handbook primarily gives a functional overview of possible
business processes in an enterprise. When designing new
business processes or trying to ameliorate existing ones, the
Process Handbook gives of an overview of some available
options regarding the general functional elements such a
business process should or could incorporate without giv-
ing any further compelling guidance on the way in which
they should be aggregated or structured. Additionally, it still
leaves (consciously) some room for interpretation regarding
the specific activities and change drivers incorporated in each
activity or business process. As such, the Process Handbook
can (and maybe should) be considered as primarily a kind
of reference model containing mainly domain knowledge on
broad aspects affecting many enterprises: HR, supply chain
management, marketing, etc. It can signify a considerable
help and contribution when one is indeed looking for the
functionalities common business processes have to perform.
However, the Process Handbook does not adhere to specific
modularity and evolvability guidelines and was essentially also
not established with that main purpose in mind.

IV. THE NEED FOR MODULAR AND EVOLVABLE
CONSTRUCTIONAL BUSINESS PROCESS DESIGN PATTERNS

In the previous section, we argued that the MIT Process
Handbook can have considerable value regarding the func-
tional analysis and decomposition of business processes, but
that it can not be simply translated to existing NS software ele-
ments for several reasons. Without explicitly discussing several
other existing and possibly relevant reference frameworks or
claimed business process patterns, it seems reasonable to argue
that some of the aforementioned arguments can be applied to
multiple other existing frameworks as well: several of them in-
deed emphasize the modeling of best-practices and functional
requirements in a top-down way. As such, a first important

Fig. 2. A visualization of the functional–constructional gap and the need for
modular and evolvable constructional business process design patterns

conclusion to be made is that this functional–constructive
gap is again clearly been proven to be present and offers
considerable challenges to unifying models on the business
level with those on the software level. However, the existence
of this gap is frequently underestimated or even not mentioned
or addressed at all by many current methodologies. Obviously,
the question then remains how to indeed develop modular
and evolvable business process design patterns, focusing on
constructive components instead of functional components.

Based on the NS theory rationale, Mannaert et al. [1]
have already emphasized the existence of the functional–
constructional gap and the importance of adhering to certain
design principles when developing information systems. More
specifically they suggest to consider the development of an
information system as a linear transformation of a set of
functional requirements (i.e., data entities, action entities and
connectors) into a set of instantiations of software constructs
(i.e., data structures and processing functions) at a certain
point in time. Also, they show that this transformation can
be quite straightforward when one is studying information
systems from a static perspective. However, when focusing
on the dynamic perspective (i.e., incorporating a marginal
transformation of a set of additional functional requirements
into a set of additional instantiations of software constructs) it
is easy to show that the impact of a single ‘extra’ functional
requirement is not necessarily limited to the addition or
modification of a single software primitive. Stated otherwise,
the impact of 1 functional change can have impact n on the
constructional side, thus showing instability.

In order for this instability to be avoided, the NS rationale
would require to first decompose the complex (high-level)
functional requirements into a kind of more basic require-
ments. The next step would then be to look for Normalized
linear transformations where — at least part of — the basic
functional requirements can be deterministically transformed
into constructional business process patterns, thus allowing a 1

463

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



to 1 mapping. Ideally, when representing this transformation in
matrix form, the transformation matrix should indeed be of a
diagonalized form or at least of a Jordan normal form. Finally,
this reasoning is also visually depicted in Figure 2: instead
of searching for business process patterns on the functional
view, NS proposes to try to decompose these functional
requirements to very basic ones and subsequently considering
the transformation to constructive business process patterns.

These transformations should then again be analyzed from
both a static and a dynamic perspective. Ideally, these trans-
formations should be linear and normalized. This would entail
from a static perspective that the realization of functional
requirements, including the possible insufficiencies, could be
located in a bounded and identifiable set of constructional
primitives. From a dynamic perspective, this would entail
that an increase in an existing functional requirement, or the
addition of a functional requirement, would have a bounded
impact on the constructional view.

V. CONCLUSION AND FUTURE WORK

This paper investigated the extent to which currently avail-
able business process patterns can be applied in order to de-
velop ‘normalized’ elements at the business process level, with
the purpose to further extend the NS theory at the business
level. Focusing our attention primarily on the MIT Process
Handbook, three issues arose as hampering the application of
this framework directly to NS elements: under-specification,
lack of adherence to prescriptive design principles and an
inherent top-down approach. Regarding the latter, it was noted
that this aspect is strongly related to the concept of the so-
called functional–constructional gap, in that lots of the existing
pattern frameworks seem to provide functional decomposition.
Therefore, they can be useful in managing domain knowledge
and expertise, but are not directly transformable to construc-
tional primitives at the NS level. Hence, the necessity for
future identification of modular and evolvable constructional
business process design patterns was called for and a NS
theory based approach was proposed for studying the needed
transformation between functional and constructional patterns
in a dynamic context, emphasizing the need for evolvability.

A limitation of this paper is that it focused its attention
into discussing only one existing framework in a rather de-
tailed way. While we expect our proposed reasoning regard-
ing the important, yet frequently underestimated functional–
constructional gap to be applicable to many, if not most
currently available pattern frameworks, some future research
could then obviously investigate the extent to which our
conclusions can also be applied to other existing frameworks.

Other related research at our research group will clearly be
aimed at trying to find those necessary constructional business
process elements. Previous research suggested Notification
and Payment as potential business process design patterns,
however further research and extension is definitely needed.

ACKNOWLEDGMENTS

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
pp. 1210–1222, 2010.

[2] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software Practice and Experience, vol. Early View,
2011.

[3] H. Mannaert and J. Verelst, Normalized systems: re-creating information
technology based on laws for software evolvability. Koppa, 2009.

[4] D. Van Nuffel, H. Mannaert, C. De Backer, and J. Verelst, “Towards
a deterministic business process modeling method based on normalized
systems theory,” International Journal on Advances in Software, vol. 3,
no. 1-2, pp. 54–69, 2010.

[5] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Ph.D. dissertation, University of Antwerp, 2011.

[6] G. M. Weinberg, An Introduction to General Systems Thinking. Wiley-
Interscience, 1975.

[7] L. Bertalanffy, General Systems Theory: Foundations, Development,
Applications. New York: George Braziller, 1968.

[8] M. Bunge, Treatise on Basic Philosophy: Vol. 4: Ontology II: A World
of Systems. Boston: Reidel, 1979.

[9] E. R. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns
– Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[10] V. Kodaganallur and S. Shim, “Analysis patterns: A taxonomy and its
implications,” Information Systems Management, vol. 23, no. 3, pp. 52–
61, SUM 2006.

[11] D. C. Hay, Data Model Patterns: Conventions of Thought. Dorset
House, 1995.

[12] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley Professional, 1996.

[13] L. Silverston, The Data Model Resource Book: v.1: A Library of
Universal Data Models for All Enterprises: Vol 1. John Wiley & Sons,
2001.

[14] ——, The Data Model Resource Book: A Library of Universal Data
Models by Industry Types: v. 2. John Wiley & Sons, 2001.

[15] C. Larman, Applying UML and Patterns. Prentice Hall PTR, 1997.
[16] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,

“Workflow patterns,” Distributed and Parallel Databases, vol. 14, pp.
5–51, 2003.

[17] A. Scheer, Business Process Engineering – Reference Models for Indus-
trial Enterprises. Springer-Verlag, 1998.

[18] J. L. G. Dietz, Enterprise Ontology: Theory and Methodology. Springer,
2006.

[19] W. McCarthy, “The REA Accounting Model: A Generalized Framework
for Accounting Systems in a Shared Data Environment,” The Accounting
Review, vol. 57, no. 3, pp. 554–578, 1982.

[20] P. Hruby, J. Kiehn, and C. Scheller, Model-Driven Design Using
Business Patterns. Springer, 2006.

[21] M. Porter, Competitive Advantage: Creating and Sustaining Superior
Performance. Free Press, 1998.

[22] Supply Chain Council (SCC), “Supply Chain Operations Reference
Model (SCOR): Version 10.0.”

[23] T. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,
J. Quimby, C. Osborn, A. Bernstein, G. Herman, M. Klein, and
E. O’Donnell, “Tools for inventing organizations: Toward a handbook
of organizational processes,” Management Science, vol. 45, no. 3, pp.
425–443, MAR 1999.

[24] T. Malone, K. Crowston, and G. Herman, Organizing Business Knowl-
edge: The MIT Process Handbook. The MIT Press, 2003.

[25] M. Hammer and J. Champy, Reengineering the Corporation: A Mani-
festo for Business Revolution. HarperCollins, 1993.

[26] B. Pentland, C. Osborn, G. Wyner, and F. Luconi, “Useful descriptions
of organizational processes: Collecting data for the process handbook,”
August 1999, Unpublished Working Paper. Center for Coordination
Science, MIT, Cambridge, MA.

[27] C. Alexander, Notes on the Synthesis of Form. Harvard University
Press, 1964, iSBN: 0674627512.

[28] J. S. Gero and U. Kannengiesser, “The situated function-behaviour-
structure framework,” Design Studies, vol. 25, no. 4, pp. 373–391, 2004.

464

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6


