
 Transformation of Composite Web Service for QoS Extension into ACME\Armani

 Amel Mhamdi Raoudha maraoui Mohamed Graiet
MIRACL, ISIMS, TUNISIA MIRACL, ISIMS, TUNISIA MIRACL, ISIMS, TUNISIA
 amel.mhamdi1@yahoo.fr maraoui.raoudha@gmail.com mohamed.graiet@imag.fr

 Mouard Kmimech Mohamed Tahar Bhiri Eric Cariou
MIRACL, ISIMS, TUNISIA MIRACL, ISIMS, TUNISIA Université de Pau et des pays de l’Adour
 mkmimech@gmail.com tahar_bhiri@yahoo.fr Eric.Cariou@univ-pau.fr

Abstract— After the great proliferation of Web services, we

can find many services that have the same answer. The Quality
of the Service QoS of Web services has become the famous
criterion to choose one of many responses. The effective
instantiation of solution is provided by the ADL (Architectural
Description Language) with an architectural style. The Acme
with the ARMANI design language provides software architects
with a rich language for describing software architecture
designs. Recently, the application of Model Driven Architecture
(MDA) to Web services has received a considerable attention.
This paper focuses on the extension of the meta-model of the
transactional composite Web service TCWS to the QoS of Web
service. This paper presents a transformation of the meta-model
of TCWS with QOS to the meta-model of acme, in order to
facilitate the development of an architectural style with the Acme
ADL.

Keywords- Web Services Composition, QoS, MDE,
Transformation, ACME/ARMANI ADL.

I. INTRODUCTION

 More businesses are planning to build their future
solutions on Web service technology. Currently, SOAP,
WSDL and UDDI have become standards in the field of a
reliable execution of Web service. Like most Web services
will need to establish and maintain the standards, the quality
of service will become a point of differentiation of these
services. Recently, there have been attempts to find a
standardized participation form to describe the QoS with
which the services are performed. At any time, it is
necessary to combine a set of Web services into a more
complex Web service to respond to more complex
requirements. To ensure a reliable Web service composition
and resolve the problem of heterogeneities, the work in [1]
browses to describe a protocol for mediation using the
concept of architectural styles of ACME and refers to
ARMANI to detect incompatibilities of the software
architectures. In this paper, we focused, on the one hand, on
formalizing a reliable composition of a Web service based
on non-functional properties of Web services; that is the

quality of the service. To achieve this, we describe a Web
service composition using the ACME concept of the
architectural style and ARMANI, to detect architecture’s
software disparities. Then, we automate partially our
proposed formalization methodology using an MDE
(Model-Driven Engineering) approach. In this context, we
recover the meta-model of the proposed composite Web
services and we elaborate the ACME meta-model. These
meta-models respectively play the role of source and target
meta-models for the exogenous transformation of composite
Web services to ACME. In addition, we implemented
SWC2ACME, a tool for transforming a composite Web
service software architecture into on ACME using the MDE
language ATL (ATLAS Transformation Language). We are
then able to check the composition of the Web services
through the ACME verification tools.

The paper is organized as follows. We shall start by the

related works. Next, we describe in Section 3 our automatic
MDE approach for an exogenous transformation from Web
services to an ACME. Section 4 describes the specification
of the QoS of the Web service and we sketch a meta-model
for the composite Web service with the QoS. Then, we
formalize a reliable composition of Web services in
ACME/ARMANI. After that and to translate the source
meta-model to the target, a set of transformations is
introduced. The final part of Section 5 applies the
transformation to the running example. Finally, Section 6
represents a conclusion.

II. RELATED WORKS

 Although, there are many researches which tried to
identify and classify the QoS parameters; there is no specific
consensus on all the important QoS for Web services. Most
of the work [2][3] took into consideration these parameters
to which other parameters are associated. There are several
proposals of the QoS model for Web services. We can
classify the models into three classes. That which suggests a
classification based on attributes that are independent of the

411

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

service environment (functional part) and attributes
depending on the service environment (non-functional part)
[2]. This model provides a general approach that some
attributes of the QoS must be measured by examining the
service implementation. Another modelling identified and
organized by the QoS attributes of the Web services into
categories (attributes related to the execution, to the
transaction support, to security and the price and
configuration management) [3]. It is likely that the
consumer of a service does not require all the categories of
the service quality. Other works [4] have classified the QoS
attributes into two parts: the specific services and the
generic QoS. These are divided into measurable parameters
and immeasurable ones. This classification takes into
consideration the specific qualities of services that are
related to the business logic of applications. In our work, we
try to model the QoS of the non-functional parameters; these
parameters are divided into measurable and immeasurable
parameters. We formalize the quality of service for Web
services with an architecture description language. Yet,
most approaches that formalize the Web services, with an
ADL, ignore the specification of the non-functional
properties such as integrity and performance. We must be
able to define the QoS of the Web services through the ADL
specifications since the ADL techniques are a way to check
the properties of the Web services. We can, then, check the
properties of the composition and the QoS of the Web
services through the ADL ACME.
 To achieve this goal, we rely on the MDE approach defined
in the following section.

III. PROPOSED APPROACH

 Transformations are the heart of the MDA approach.
They can get different views of a model, refine or abstract. In
addition they can move from one language to another. In
MDA, each model is based on a specific meta-model, which
defines the language that the model is created in. The Meta
Object Facility (MOF) represents the only basis of the meta-
model for which any new meta-model. Therefore, the
transformation rules between two MOF compliant meta-
models; the source and the target define the transformation
model to model. In this paper, the source meta-model is the
composite Web service for QoS extension, this composition
reifies all non-functional properties: the transactional
properties and quality of the service, and the destination
meta-model is the Acme (Fig.1).

Transformation rules define a mapping between a source
and destination meta-model that preserves an equivalent or
similar semantic. A transformation engine executes the rules
of transformation on the source model (input) to generate the
equivalent model of destination (output).

 Figure 1 illustrates the principle of an automatic
translation of the Web services composition for the QoS
extension in the ACME\ARMANI. We distinguish two
levels of specification: M2 (a meta-model level) and M1 (a
model level), as defined by the MDA approach. An M1 level
model is said to be conform to an M2 meta-model if it

satisfies the consistency rules described in the meta-model in
addition to the specific rules outlined at the M1 model level.
In our approach, the M2 level contains the Web services
composition for the QoS extension meta-model on one hand
and the ACME/ARMANI one on the other hand. The M1
level allows the definition of Web services models conform
to the Web services composition meta-model [5].

Figure 1. The proposed approach for an automatic transformation of a

composite Web service for QoS extension.

These models will be automatically transformed into the
ACME models (conform to the ACME\ ARMANI meta-
model). We aim at checking the conformity of these
transformed models to specific constraints. These constraints
are defined at the model level (M1) and are checked thanks
to the ACME Studio environment, which enables the
evaluation of the ARMANI constraints [6]. To achieve the
formalization of the Web service composition for the QoS
extension in the ACME and check the consistency of this
composition; we proceed to the automatic translation of this
composition onto the ACME. This approach of translation
covers all ACME constructs including the notion of style.
These constructs are: a system, a component, a connector, a
port, etc. The source and target models (Web service
composition for QoS and architectural style of Web services
described in ACME) and the tool WSC2ACME are
consistent with their meta-models for the Web services,
ACME and ATL. These meta-models are consistent with the
MOF meta-model.

IV. METAMODELING OF QUALITE OF SERVICE OF WEB

SERVICE

 In this section, we provide an overview of the meta-
model of quality of service we have defined. This meta-
model reifies all the characteristics of a reliable composition
of the Web services. It provides the description of the QoS
and this by integrating a set of specifications as a slight
extension of the WSDL. We modeled in an earlier work [7]
the manager of mediation for a Web service composition.
The manager is seen as a set of service integration of Web
services which aims at resolving heterogeneities between

412

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Web services and explicitly contains the non functional
service manager, a set of adaptive interface service for all
functional properties and a set of data mediation service on
the heterogeneity of data exchanged between Web services
compounds. In our work, we modeled the non-functional
QoS parameters. This is because they should also think
about non-functional requirements and their integration with
functional requirements to provide better quality Web
services. The non-functional QoS parameters are divided
into specific parameters (SQoS) and generic parameters
(GQoS). The generic parameters are also divided into
measurable parameters (SMP) and immeasurable parameters
(SIP) (Fig. 2).

Figure 2. The meta model of the manager of QoS.

 Then, we focus on a measurable service manager. These
specifications are the most used. They define the
quantitative attributes that could be measured. The QoS
meta-model will give benefits to both service providers and
requesters. The new QoS meta-model is a lightweight
extension to the WSDL.
The details of these factors are:
� Integrity: is the quality feature that refers to the

maintaining of correct and consistent interaction to the
source and for transaction completeness [8] (Fig. 3).

 Integrity = ExpectedResult – ProvidedResult

Figure 3. The meta model of Integrity property.

� Availability: ensures the Web service is that present or
ready for instantaneous use. TimeToRepair (TTR) and
TimeBetweenFailure (TBF) can be applied to measure
it. Besides, we would like to add two dimensions
StartTime (the start time of a service when it is
available to end users) and EndTime (the last time
when of a service is available to end users) [8]. It can
be measured and specified as shown in Figure 4:

 Availability = TBF / (TBF + TTR)

Figure 4. The meta model of Availability property.

� Accessibility: is quantified by MaxNumberOfResponse
(is the maximum number of responses that can be
processed) and NumberOfCorrectResponse (the number
of response that fulfil user’s requirements) [8] (Fig. 5).

Accessibility = (NumberOfCorrectResponse /

MaxNumberOfResponse)* 100%

Figure 5. The meta model of Accesibility property.

• Reliability: represents the ability of a Web service to
perform its required functions under stated conditions
for a specified time interval. FlowControl and
InactivityTimeOut [8] can be applied to measure it (Fig.
6).

Reliability = FlowControl + InactivityTimeOut

413

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

� Service Time: It is the sum of the time when the service
provider receives a request for a Web service
(ReceiveRequest) and the time when the service
provider sends the response to requester
(SendResponse). It can be specified as shown in Figure
7.

Figure 6. The meta model of the Reliability property.

Figure 7. The meta model of Service Time property.

V. FORMALIZATION OF QOS FOR WEB SERVICES

A. The ADL ACME\Armani

 The ADL ACME [9] [10], developed at Carnegie
Mellon, is a common foundation for architecture description
languages. The ARMANI language allows describing
architectural properties in the invariant or heuristics forms
attached to any architectural element (component, family,
system, connector, etc.). Such properties are achievable
within the ACME Studio environment [11]. In the same
way, the ADL ACME supports the type concept. One can
define the types of architectural elements (component type,
connector type, role type, port type and style type). The
concept property of ACME used in the type and instance
levels allows attaching non-functional properties to the

architectural elements. Lastly, the ACME provides basic
types (int, float, Boolean and string) and type builders
(enum, record, set and sequence).

B. Formalization with ACME/ARMANI

Our work began with the improvement of an existing style.
We have studied the work of [12] dealing with the
composition of Web services without mediation approach,
or control over the execution flow of services. We have
formalized this protocol mediation to ensure reliable
composition of Web services [1]. Figure 8 shows an ACME
description of style implementing the transactional aspect of
the composition of Web services.

Family WSM = {
Property Type Interfaces = Enum {Client,Service};
Property Type legalSoapVersions = Enum {SOAP1_1,
SOAP1_2};
Property Type EndPoint = Record [Transport:
legalTransportProtocols; Encoding: legalSoapVersions;];
Property Type EndPoints = Set {EndPoint};
Component Type CompTWSCommon = {
 Rule NameUnique = invariant forall p1:
PortTWSCommon in self.PORTS | forall p2:
PortTWSCommon in self.PORTS | (p1 != p2) -> p1.name
!= p2.name; }
Component Type CompTWSClient extends
CompTWSCommon with {
 rule rule25 = invariant forall p : Port in self.PORTS |
satisfiesType(p, PortTWSClient) ;
 rule rule26 = invariant size(self.PORTS) > 0; }
Connector Type ConnTWSAct extends ConnTWS with {
 rule CondActivation = invariant forall r1 : Role in
self.ROLES | forall r2 : Role in self.ROLES | forall p1 :
PortTWSClient in r1.ATTACHEDPORTS |
 forall p2 : PortTWSService in r2.ATTACHEDPORTS |
 (r1 != r2 AND attached(r1, p1) AND attached(r2, p2)) ->
(p1.Prec == terminate AND p2.Prec == activate) OR
(p2.Prec == terminate AND p1.Prec == activate); ……}

Figure 8. The ACME description of the style with non functional
properties

The contributions of different added properties of quality of
the services were formalized as constraints and properties
with ACME. Indeed, ACME disposes of concepts for
expressing properties and constraints with verifiable tools.
These properties and constraints can be expressed on each
entity or on the overall behavior of the architecture. For
example, ResponseTime was formalized with a property of
type int in the component service. This property takes into
consideration two other parameters of the type int
ResponseCompletionTime and ConsumeRequestTime.
The calculation of the response time is formalized using the
Design invariant concept of ACME.

414

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 However, to calculate the factor successability, it took two
rules to define it as a form of invariant to calculate
respectively the number of messages sent and the number of
that received successfully. Note that earlier, we defined a
property SendsFirstMessage of a type boolean in a port in
order to accumulate the number of messages sent in case
that the property SendsFisrtMessage was evaluated to be
true. Similarly, we define a property of a type boolean
InOurControlDomain in a port in order to accumulate the
number of messages received in case that
InOurControlDomain property was evaluated to be true.
Figure 9 shows an excerpt of the formalization of these
properties at a client component.

Component Type CompTWSClient extends
CompTWSCommon with {
 Property ResponseComopletionTime : int;
 Property UserRequestTime : int;
 Property ResponseTime : int ;
 Property succ : int ;
 rule rule25 = invariant forall p : Port in self.PORTS |
 satisfiesType(p, PortTWSClient) << label : string =
"External ports are all Client type"; errMsg : string = "Only
client type ports are allowed"; >> ;
 rule rule26 = invariant size(self.PORTS) > 0 << label :
string = "Component has at least one port"; errMsg : string
= "Component should have at least one port"; >> ;
//
Design Invariant ResponseTime == (
ResponseComopletionTime - UserRequestTime);
 rule MsgReq = invariant forall p : PortTWSCommon in
self.PORTS | p.SendsFirstMessage == Yes -> p.NbMsgReq
== p.NbMsgReq + 1 ;
 rule MsgRes = invariant forall p : PortTWSCommon in
self.PORTS | p.InOurControlDomain == Yes ->
p.NbMsgRes == p.NbMsgRes + 1 ;
 rule successibility = invariant forall p
:PortTWSCommon in self.PORTS | succ == p.NbMsgRes /
p.NbMsgReq;}

Figure 9. The ACME description of QoS of Web service .

 Now we consider the example of the throughput factor that
is a constraint expressed at the component level through the
External Analysis concepts of ACME by using the rate
Analysis function of Armani. Here is the formalization of
this property:

External Analysis throughputRate(comp :Component) :
int = armani.tools.rateAnalyses.throughputRate(comp);

VI. EXOGENOUS TRANSFORMATION OF COMPOSITE WEB

SERVICE TO ACME

 This section demonstrates how a composite Web service
for extension can be modeled as an ACME\ARMANI ADL
and how it can be mapped to an equivalent MOF based
model representing an ACME\ARMANI. In this part of the
paper, we aim at automatically transforming composite Web
services for the QoS extension into ACME. To achieve this
automation, we get the meta-model of composite Web
service proposed elaborate the partial ACME\ ARMANI
meta-model. In addition, we implemented WSC2ACME, a
tool for transforming a composite Web service software
architecture to an ACME using the MDE transformation
language ATL [13].

A. An Overview of the tool WSC2ACME

 Our model transformation, which defines the generation
of a target model from a source model, is described by a
transformation definition, consisting of a number of
transformation rules that are executed by a transformation
case tool. There are various methods of specifying the
model transformation [14].
In this Section, we present in a detailed way the
WSC2ACME tool written in ATL allowing the
transformation of the software architecture of the Web
services towards an ACME model. In order to design and
develop our WSC2ACME tool, we used the following
constructions: standard rule, defined in the context of
models element offered by the model transformation
language ATL.
An ATL module corresponds to the transformation of a set
of source models into a set of target models in accordance
with their meta-models. Its structure is formed by a header
section, an optional import section, a set of helpers and a set
of rules. The header section defines the names of the
transformation module and the variables according to the
source and target models. It also encodes the module
execution mode that can be either normal (defined by the
keyword form) or refining. The syntax of the header section
is defined as follows:

module WSC2ACME; -- Module Template
create OUT : acme from IN : Webservice;

OUT and IN are the names of the source and target models.
They are not used thereafter. Both model types are
respectively Web Service and ACME. Thus, they must
conform to the meta-model defining their type.

• Translating of functional Web service properties
(WSDL)

A Web service is translated into the ACME. We start by the
functional property. To achieve this transformation we
based our rules to the meta-model of the WSDL.
We define the example of rule which allows us to transform

415

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

a WSDL and reifies all correspondences between the source
component and the target system component.

rule definition2System {
from
s : Webservice!definition
to
t : acme!System (name <- s.name,Connector <-
s.dependance,Component <- s.services,links <-
s.bindings,Property<- Sequence { targetnamespace,
xmlns,msg, imports, Types,porttype}),...}

• Translating of composite Web service
A composite Web service is translated into the ACME. This
composition presents an empty structure. We define the
rule which allows us to transform a composite service
and reifies all correspondences between the source
component and the target system component.

rule Port2Port {
from
s : Webservice!Port
to
t : acme!Port (name <- s.name, Property <- Sequence {
Integrity,
s.reliability,Interface,SendFirstMessage,InOurControlDoma
in,WSDLDocRefs,EndPointAdressList, s.SOAP, s.prec,
s.reliability}),
Integrity:acme!Property(name <- 'Integrity',val <-
s.integrity.getIntegrity().toString()),
Interface:acme!Property(name <- 'Interface',val <-
s.Interface),
SendFirstMessage:acme!Property(name <-
'SendFirstMessage',val <- s.SendFirstMessage. toString()),
InOurControlDomain:acme!Property(name <-
'InOurControlDomain',
val <- s.InOurControlDomain.toString()),
WSDLDocRefs: acme!Property(name <-
'WSDLDocRefs',val <- s.WSDLDocRefs),
EndPointAdressList:acme!Property(name <-
'EndPointAdressList',val <- s.endpointadresslist)}

• Translating of transactional Web service
properties

A transactional Web service is translated into the ACME.
To achieve this transformation we based our rules to the
meta-model of Web service for the transactional extension
proposed in [7]. We define the example of rule which allows
us to transform a meta-model of Web service for the
transactional extension and reifies all correspondences
between the source component and the target system
component.
rule Prec2Property {
from

s : Webservice!precondition
to
t : acme!Property(name <- 'Prec ' ,val <- s.name)}

rule Dependance2Connector {
from
 s : Webservice!dependance
to
t : acme!Connector(name <- s.name)}

• Translating QoS of Web service properties

A composite Web service for the QoS extension is
translated into the ACME. To achieve this transformation
we based our rules to the meta-model of the QoS of Web
service. We define the example of rule which allows us to
transform a meta-model of the QoS of Web service
and reifies all correspondences between the source
component and the target system component.

Example of helper:

helper context Webservice!Responsetime def :
getResponseTime() : Integer =
self.ResponseCompletionTime.val-
self.ConsumeRequestTime.val ;

Example of rule:

rule reliability2Property {
from
 s : Webservice!reliability
to
 t : acme!Property(name <- 'Reliability',val <-
s.getreliability().toString())
}

VII. CONCLUSION

 The work deals with the modeling of the QoS of the
Web service extension. This paper studies a model
transformation of composite Web services for the QoS from
the PSM, created Acme\Armani style architecture, into PSM.
We have presented a specification of the QoS. We have also
introduced the meta-model for the QoS of the Web service
and the meta-model for Acme\Armani. To translate the
composite Web services for the QoS extension to the
Acme\ARMANI, we have introduced a set of the ATL
transformation rules to implement WSC2ACME tools in
order to transform a Web services model conform to its
meta-model to a partial ACME model conform to the meta-
model of the ACME.

In our future works we are considering the following
perspectives:

• Improve the efficiency of our WSC2ACME using
the large logistic problem.

416

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• Assessing the WSC2ACME quality using
verification techniques applicable on the model
transformation: structural tests, mutation analysis,
statistical analysis, contracts [15], [16], [17], [18].

REFERENCES
[1] M. Graiet, R. Maraoui, M. Kmimech, M.T. Bhiri , W.

Gaaloul:Towards an approach of formal verification of
mediation protocol based on Web services, 12th International
Conference on Information Integration and Web-based
Applications & Services (iiWAS2010), Paris-France,
November 2010.

[2] S. Araban and L. S. Sterling. Measuring quality of service for
contract aware Web services. In First Australian Workshop on
Engineering Service-Oriented Systems, pages 54–56, 2004

[3] R. Shuping A model for Web services discovery with qos.
SIGecom Exch., 4(1) :1–10, 2003.

[4] R.Ben Hlima , Conception, implantation et expérimentation
d’une architecture en bus pour l’auto-réparation des
applications distribuées à base de services Web, l’Université
Toulouse III - Paul Sabatier et la Faculté des Sciences
Économiques et de Gestion – Sfax, Le Jeudi 14 Mai 2009,

[5] M. Kmimech, M. Tahar Bhiri, M. Graiet and P. Aniorté.:
Checking component assembly in ACME: an approach
applied on UML 2.0 components model. In 4nd IEEE
International Conference on Software Engineering Advances
(ICSEA'2009), Portugal, IEEE CS Press, Septembre 2009.

[6] Garlan, D., R. Monroe, and D. Wile (2001). ACME:
Architectural Description of Compo-nent-based (2001).
Capturing software architecture design expertise with
Armani. Tech-nical Report CMU-CS-98-163, Carnegie
Mellon University School of Computer Science.

[7] Maraoui R., Graiet M., Kmimech M., Bhiri M.T., and Elayeb
B., Formalisation of protocol mediation for Web service
composition with ACME/ARMANI ADL, Service
Computation IARIA 2010-Lisbon-Portugal, Nov 2010.

[8] Wan Nurhayati AB. R., UML QoS Profile exploration for the
specifications of a generic QoS metamodel for designing and
developing good quality Web services , School of Computing,
Science & Engineering University of Salford, Salford, UK,
March 2010.

[9] D.Garlan, R.T Ronroe, D. Wile ACME.: An Architecture
Description Interchange Language , Proceedings of CASCON
97, Toronto, Ontario, November,169--183,1997.

[10] D.Garlan, R. T. Monroe, and D. Wile. ACME: Architectural
Description of Composed-Based Systems. Gary Leavens and
Murali Sitaraman, ed.s Kluwer, 2000.

[11] Group2006, http://www.cs.cmu.edu/˜ACME/ACME Studio/.
[12] C. Gacek. C, and C. Gamble (2008): Mismatch Avoidance in

Web Services Software Architectures. Journal of Universal
Computer Science, vol. 14, no. 8 (2008), 1285-1313.

[13] Combemale. B, Approche de méta-modélisation pour la
simulation et la vérification de modèle, application à
l’ingénierie des procédés : Thèse de Doctorat, Toulouse,(11
juillet 2008).

[14] Belzad B. and Anthanasios S., On bihavioural model
transformation in Web service, scool of computer science,
University of birminghan.

[15] Küster, J. M. Definition and validation of model
transformations. Software and systems Modeling, in press
2006.

[16] Mottu, J. M., Baudry, Brottier. E and LeTrao. Y (2005)
Génération automatique de tests pour les transformartions de
modèles. Première journée sur IDM, Paris,2005.

[17] Baudry. B, Ghosh. S, Fleurey. F,France. R, Le Traon. Y and
Mottu. J. M. Barries to systematic model transformation
testing. Communications of the ACM, Vol. 53, No. 6 (2009).

[18] E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL
Contracts for the Verification of Model Transformations. In
Proceedings of the Workshop the Pragmatics of OCL and
Other Textual Specification Languages at MODELS 2009,
volume 24. Electronic Communications of the EASST, 2009.

417

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

