
Querying Source Code Using a Controlled Natural Language

Oleksandr Panchenko Stephan Müller Hasso Plattner Alexander Zeier
Hasso Plattner Institute for Software Systems Engineering

PO Box 900460, 14440 Potsdam, Germany
Email: {panchenko, stephan.mueller, office-plattner, zeier}@hpi.uni-potsdam.de

Abstract—Source code documents are of dual nature: they
are in fact texts containing information for developers and they
have an explicit structure for compilers and other tools. Several
representations for the structured information of source code
exist: abstract syntax tree, call graph, data flow graph, and
others. Although the questions developers ask about source
code seem easy to formulate, the complex code structure
requires writing intricate queries. Developers use both, lexical
and structured information for queries, though they dislike
writing complex queries. Querying source code is an important
activity in software development and maintenance. But often it
cannot rely on predefined queries alone and requires writing
more intricate queries. There is a need for a simple, user-
friendly querying interface. This paper discusses an imple-
mentation of such a user interface based on a controlled
natural language which is an unambiguous subset of the
English language. When the developer enters the query, the
source code grammar and the actual search results are used
to automatically propose possibilities for query refinement and
further navigation on the result set. The controlled natural
language queries are then transformed to structured queries
to retrieve data from a source code repository. The proposed
approach provides a better expressiveness compared to simple
keyword-based queries and enables consideration of complex
structured relations between source code elements.

Keywords-Source code repository; source code query lan-
guage; development tools; controlled natural language.

I. INTRODUCTION

The availability of efficient software development tools
leads to lower development and maintenance costs, better
code quality, and better organization of the development
process. An important area of activities to be supported
by tools is information gathering: searching source code,
navigating through code and investigating related entities,
performing various code inspections, calculating metrics,
and mining code repositories. Source code repositories have
been developed to enable code search using structured
information contained in it. In general, this representation
is based on a graph or a tree, whose vertices represent
source code entities and whose edges represent relationships
(implicit or explicit) between entities. Depending on the
selected granularity level, entities can be single tokens in
source code, modules, or entire subsystems. Examples of
such structures are abstract syntax trees (ASTs), call graphs,
data flow graphs, and module dependency graphs. Since each
node contains lexical information, queries against such a

data structure should be able to combine both types of data:
keyword-based search and structured queries.

Usually, the repositories require some structured query
language: e.g., SQL, XPath, XQuery, Relation Manipulation
Language [1] or Datalog [2]. Given a complex grammar
of a programming language and complex relations between
entities in the repository, even simple developers’ questions
require writing complex queries. Although developers use
both, lexical and structured information for queries, they
refuse formulating complex queries. For certain kind of
tasks (metrics calculation, code inspections, etc.) a complex
notation is acceptable, because the queries are written once
and the developer can reuse them. Other scenarios, however,
require more interaction and the possibility to enter a query
manually with an easily understandable syntax and semantic
of the query language.

This paper introduces a user-friendly interface for flexible
source code querying that allows for queries up to high com-
plexity using a controlled natural language (CNL). Further,
we use XPath as the underlying structural query language.
XPath expressions are evaluated on tree representations of
ASTs. In our previous work we have shown that AST-
based representation of source code can leverage querying of
syntactical patterns in source code [3]. While we started with
a query language that is similar to the surface programming
language, in this project we investigate CNL as a query
language.

Instead of using keywords or code snippets, the developer
can compose queries using a CNL. Queries in CNL are
transformed into a suitable query language to retrieve data
from a code repository. This paper exemplifies the proposed
approach based on a repository which contains detailed
structured information in the form of abstract syntax trees
and uses XPath as a structured query language.

The following section relates our approach to existing
research. An introduction of controlled natural languages is
given in Section 3, and Section 4 introduces a simple use
case. Section 5 describes our implementation details. We
conclude the paper in Section VI and give an overview of
possible directions for future work.

II. RELATED WORK

Traditionally, regular expressions have been used to search
source code. Although this simple method is useful for many

369

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

tasks, the relations between source code entities are disre-
garded. Moreover, the search scope is limited to few files
because of performance issues. To overcome performance
limitations, Marcus et al. proposed to use an information
retrieval approach to store lexical information in an inverted
index [4]. However, structured information of the source
code was not included in the index.

There is a large body of research on source code repos-
itories and query languages. Bull et al. proposed to com-
bine regular expressions with structured queries [5]. The
approach works well for simple structured queries, but has
limitations because of restricted expressiveness. A set of
query languages (e.g., Relation Manipulation Language [1]),
which are based on predicate calculus, have been used
to query software artifacts. Hajiyev et al. have proposed
to use safe Datalog, a query language based on the use
of logic programming. Their tool, CodeQuest, maps safe
Datalog queries to a relational database system [2]. JQuery
is a tool supporting exploration of source code [6], [7].
The flexibility of the exploration views is achieved by
a query-based customization of the content presented in
the views. CodeQuest and JQuery aim at supporting high-
level navigation and understanding software systems. Since
existing source code querying systems store only coarse-
grained software artifacts, the complexity of possible queries
remains limited. But, as soon as the source code data model
gains in complexity, queries become unwieldy.

The idea of providing a natural language interface for
developers is not new. Würsch et al. presented a framework
based on an OWL ontology to present data extracted by
classical software analysis tools [8]. They used knowledge
processing technologies from the Semantic Web and a
guided-input natural language to answer questions about
static source code information. The approach presented in
our paper addresses developers’ questions of the similar
type. However, we focus on smaller syntactic code patterns
based on AST representation of code. The major difference
to the existing approaches is the capability of automatic
generation of refinement proposals.

Further, there is a need for a flexible interface that
enables keyword-based search over source code and takes
into account its fine-grained and complex structure.

III. CONTROLLED NATURAL LANGUAGE

A controlled natural language is an unambiguous sub-
set of a natural language with a restricted grammar and
a domain-specific vocabulary. As a subset of the natural
English language, CNL can be read and understood by a
human user without any training. Although writing requires
some training, it can be efficiently used to express formal
statements, lowering the entry barrier to formal languages.
Instead of learning a new language, the user is simply
trained which subset of the ordinary language to apply. The
writing process can be further supported by corresponding

intelligent authoring tools. Among many available CNL
implementations, Attempto Controlled English (ACE) stands
out due to high research activity and a wide range of
available tools [9] and is thus used in this project. The ACE
Editor is an example of a menu-based editor that facilitates
the construction of ACE sentences with no need to explicitly
know the syntactical restrictions [10].

Being effectively a formal language, ACE is unambigu-
ously translated to first-order logic, that is appropriate for
reasoning about the expressed contents by the machine.
Since many formal languages use first-order logic as a
logical foundation, transformations to those languages are
possible. In the ACE implementation, sentences are trans-
lated to discourse representation structures (DRS) which is
a syntactical variant of first-order logic [11].

A CNL is applicable in a variety of areas. It can be used
for software specifications, documentation, ontology author-
ing, rules and policy formulation as well as an interface
to other formal languages. The idea of transforming CNL
into a query language is not new. The tool LingoLogic is
an implementation that translates a CNL to SQL [12]. The
contribution of this paper is the use of the structure of the
underlying data model and actual search result to generate
refinement proposals and offer these to developers.

Opposed to plain keywords, a sentence written in CNL is
capable of carrying more semantics. The words relate to one
another and enable the construction of complex sentences
with higher expressivity.

IV. EXAMPLE USE CASE

Generally speaking, many of the programmers’ queries
reported so far [13] can be answered by our approach. This
paper illustrates the approach with several simple examples.
In the test scenario, a developer wants to find all references
to a variable xyz, where the variable is assigned a value.
The structured query to answer this trivial question is quite
complex: all references to the variable should be found; it
should be ensured, that no other variable with the same
name, but from another namespace, pertains to the result set.
Finally, the references should be selected, where the variable
is placed in the left side of the assignment operator. Since
the query is supposed to be used ad hoc, developers expect
the tool to provide this functionality at their fingertips. On
the other hand, since there are thousands of such questions,
it is not possible to prepare a list of queries for developers to
select from. A simple, user-friendly query language would
allow a flexible, handy interface to a complex information
repository.

The proposed interactive approach guides the developer
from a very simple keyword-based query to the required
result by refining the query step by step selecting one of
the proposed alternative queries. The developer starts with
a simple keyword query:

370

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

xyz (1)

In the background, this query is automatically extended
to a correct CNL sentence that conforms to the ACE
construction rules [9]:

Which entities are named xyz? (2)

Then, the CNL form is translated into an XPath statement,
which is executed by the source code repository. The result
set is presented with alternatives for refinement, which are
proposed by the query generator:

Which classes are named xyz? (3)
Which entities are named xyz

and are methods? (4)
Which variables are named xyz? (5)
Which entities are named xyz

and are parameters? (6)

At this point it is important to mention that the query
generator checks if the proposed queries may return non-
empty result set. In our example queries 3 and 4 will be
hidden if there is no class or method called xyz.

The developer chooses the query 5 and hereupon the query
generator proposes a set of further possibilities:

Which statements define a variable

that is named xyz (7)
Which statements use a value of a variable

that is named xyz? (8)
Which statements read a value of a variable

that is named xyz? (9)
Which statements change a value of a variable

that is named xyz? (10)

By selecting the query 10, the developer gets the intended
query and the desired result set. XPath statements created
and executed by the source code repository are as follows
while query 11 corresponds to 2, 12 to 5, and 13 to 10:

//[. =′ xyz′] (11)
//IDENT [. =′ xyz′] (12)

//COMPUTE/RESULT/IDENT [. =′ xyz′] (13)

This example demonstrates how a query is interactively
created with just a few clicks. Figures 1 and 2 illustrate
the transformation of the query 10 into query 13. Figure 1
represents the query tree of the original CNL expression
generated by the ACE parser. The phrase structure parsing
approach decomposes the query into its elements. The query
which is effectively a question consists of a noun phrase (np)
and a verb phrase (vp), which are each refined recursively.

While the noun phrase is made up of a question determiner
(qt) and a noun (n), the verb phrase consists of a verb (v)
and another noun phrase, decomposing it further.

Figure 2 shows the resulting query tree in which the CNL
parse tree was transformed. For simplicity reasons, a XPath
query tree, which is the main part of the 13, is shown. The
description of each vertex in the query tree includes the
type of the vertex (in the Figure 2 it is reflected as the name
of the corresponding Java class in the upper box) and the
local name of the instance of the class, as shown in the
bottom box. Each edge corresponds to a movement along
an axis and is labeled by the name of the corresponding
axis. Some transformation patterns can be recognized: e.g.,
the vertex rel cl (Figure 1) is transformed into the vertex
PredicateNodeTest (Figure 2). Nevertheless, the complete
list of transformation rules is still to be designed.

Figure 1. CNL parse tree of query 10

Figure 2. XPath query tree of query 13

V. PROPOSED ARCHITECTURE

The proposed architecture is presented in Figure 3. The
client part is implemented as an Eclipse plugin that enables

371

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 3. Prototype architecture

indexing of the local workspaces, which are sent to a
central repository, and provides a user interface for querying.
Eclipse Java development tools are used to parse source code
and to construct ASTs. The server side is responsible for re-
ceiving developers’ requests formulated in CNL, translating
these requests into XPath, generating proposals for the query
refinements, and returning the result set. As a database of
the source code repository, MonetDB/XQuery is used which
natively supports XQuery as a method for accessing data.

The central source code repository stores code in the form
of ASTs. The indexer parses code into ASTs, annotates the
vertices of the trees with meta data (class name, responsible,
last editor, data and time of the last modification, etc.), and
stores the trees in the index.

The primary function of the query translator is the trans-
formation of CNL statements as provided by the developer,
or selected from the proposed ones, into a logical form. The
logical form is the DRS and can be regarded as the actual
system language for information integration. The parsing is
done by the Attempto parsing engine, though CNL grammar
and CNL lexicon containing domain-relevant words and
their grammatical categories are prepared in advance to
describe a certain programming language. The resulting
DRS of the query 10 is depicted below:

[A, B, C, D, E, F]

object(A, xyz, named, na, eq, 1)-1

query(B, which)-1

object(B, statements, countable, na, geq, 2)-1

object(C, value, countable, na, eq, 1)-1

object(D, variable, countable, na, eq, 1)-1

predicate(E, named, D, A)-1

relation(C, of, D)-1

predicate(F, change, B, C)-1

For querying the index, this logical form is transformed
into the XPath query. The implementation of corresponding
transformations is subject to the ongoing research. The
logical form from the CNL parser can serve domain-

independently as the integrative platform.
In order to represent the result of the query in a user-

friendly way, it has to be structured appropriately and to
yield functionality for further activities. For this purpose,
once the query has been entered by the developer, the
source code grammar and the actual search results are used
to automatically propose possibilities for query refinement
and further navigation on the result set. In this example
to generate queries 7-10, source code grammar should re-
flect that a variable has a definition, variables are used in
statements, and statements can read or change the value
of a variable. All this information is already available in
language specifications and should be made available to the
CNL parser. Thus, a set of CNL queries are generated and
proposed to the developer. This is facilitated through the
ACE verbalization that takes the logical form, which is the
DRS, and generates valid English sentences [14].

VI. CONCLUSION

The utilization of user-friendly interfaces for flexible
information exploration in complex software environments
leverages an indispensable contribution to a top-quality
development framework, allowing for precise formulation
of information needs. This leads to accurate information
access, easy-to-use handling, flexibility and extensibility of
interface functionality, high reusability in other domains, and
significant lower development costs.

This paper discusses the usage of controlled natural lan-
guage for querying source code. This approach is comple-
mentary to the keyword-based search and is a simple par-
lance that enables expression of complex relations between
source code entities. Due to the fact that CNL is a subset of
natural language, it can be read without any training.

The syntactic restrictions that have to be considered in the
writing process are handled by a smart query authoring tool.
Moreover, in most of the cases developers have only to select
the query out of few automatically generated proposals.

The AST is not the only information to be indexed. There
is a lot of relevant information available that is gathered
in the development or maintenance process: test coverage
measurements, code convention checks, change frequency,
organizational metadata, customer complain messages, hot
fixes, etc. This data can be made available as search criteria
in the index.

REFERENCES

[1] D. Beyer, A. Noack, and C. Lewerentz, “Efficient relational
calculation for software analysis,” IEEE Transactions on
Software Engineering, vol. 31, no. 2, pp. 137–149, 2005.

[2] E. Hajiyev, M. Verbaere, and O. de Moor, “CodeQuest: Scal-
able Source Code Queries with Datalog,” in Proceedings of
the European Conference on Object-Oriented Programming,
ser. LNCS, vol. 4067. Springer, 2006, pp. 2–27.

372

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[3] O. Panchenko, J. Karstens, H. Plattner, and A. Zeier, “Precise
and Scalable Querying of Syntactical Source Code Patterns
Using Sample Code Snippets and a Database,” in Proceed-
ings of the 19th IEEE International Conference on Program
Comprehension, 2011, pp. 41–50.

[4] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An In-
formation Retrieval Approach to Concept Location in Source
Code,” in Proceedings of the Working Conference on Reverse
Eng., 2004, pp. 214–223.

[5] R. I. Bull, A. Trevors, A. J. Malton, and M. W. Godfrey,
“Semantic grep: regular expressions + relational abstraction,”
in Proceedings of the 9th Working Conference on Reverse
Engineering, 2002, pp. 267–276.

[6] E. McCormick and K. D. Volder, “JQuery: Finding Your
Way through Tangled Code,” in Proceedings of the Conf.
on Object-oriented programming systems, languages, and
applications. ACM, 2004, pp. 9–10.

[7] D. Janzen and K. D. Volder, “Navigating and querying code
without getting lost,” in Proceedings of the international
conference on Aspect-oriented software development. ACM,
2003, pp. 178–187.

[8] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall, “Supporting
Developers with Natural Language Queries,” in Proceedings
of the International Conference on Software Engineering.
IEEE Computer Society, 2010.

[9] N. E. Fuchs, K. Kaljurand, and T. Kuhn, “Attempto Controlled
English for Knowledge Representation,” in Reasoning Web,
Fourth International Summer School, ser. LNCS, C. Baroglio,
P. A. Bonatti, J. Małuszyński, M. Marchiori, A. Polleres, and
S. Schaffert, Eds., no. 5224. Springer, 2008, pp. 104–124.

[10] T. Kuhn and R. Schwitter, “Writing Support for Controlled
Natural Languages,” in Proceedings of the Australasian Lan-
guage Technology Association Workshop, 2008, pp. 46–54.

[11] H. Kamp and U. Reyle, From Discourse to Logic: Introduc-
tion to Modeltheoretic Semantics of Natural Language, For-
mal Logic and Discourse Representation Theory. Dordrecht:
Kluwer, 1993.

[12] C. W. Thompson, P. Pazandak, and H. R. Tennant, “Talk to
Your Semantic Web,” IEEE Internet Computing, vol. 9, no. 6,
pp. 75–78, 2005.

[13] B. de Alwis and G. C. Murphy, “Answering Conceptual
Queries with Ferret,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE. New York,
NY, USA: ACM, 2008, pp. 21–30.

[14] N. E. Fuchs, “Verbalising Formal Languages in Attempto
Controlled English,” University of Zurich, deliverable I2-D5,
2005.

373

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

