
Empirical Case Study of Measuring Productivity of Programming Language Ruby
and Ruby on Rails

Tetsuo NDOA
Information-processing Center

Shimane University
Matsue, Japan

nodat@soc.shimane-u.ac.jp

Chi JIA
Faculty of Law and Literature

Shimane University
Matsue, Japan

jiachi@soc.shimane-u.ac.jp

Abstract— This short paper is intended as a trial balloon of the
evaluation of open source software, by measuring the
productivity of programming language Ruby and web
application framework Ruby on Rails, compared with other
open source software.

Keywords-component; Open Source; Ruby; Ruby on Rails;
Productivity; Programming Languag

I. INTRODUCTION

Ruby is the Object-oriented Script Language released by
Mr. Yukihiro Matsumoto, called "Matz" in open source
communities, and was opened to the public in 1993. Matz
lives in Matsue City in Japan and has been developing Ruby
with many open source developers all over the world through
the Internet. The number of core committers of Ruby is
about seventy in 2011, and the two-third of them are
Japanese. So Ruby is one of very few open source projects
that Japanese engineers are mainly engaged in developing.

At first, though Ruby commanded attention through
geeks, it had not been spread in business uses. But, in 2005,
David Heinemeier Hansson – a programmer in Denmark,
released Ruby on Rails, web application framework
constructed by Ruby. Hence, Ruby came to attract attention
and to be used also in enterprise areas. According to TIOBE
Programming Community Index, which announces the
ranking based on the retrieval by keyword of the search
engine, the share of Java is 18.5% in the investigation of in
2010, and PHP is confronted to 7.8%, and Ruby is at level of
1.9% (ranking 10th place) [1]. But the number of Ruby’s
engineers has been increasing remarkably. It is forecast that
the engineer who will use Ruby by 2013 reaches four million
people according to the investigation of United States
research company Gartner [2].

Then IPA (Information-technologies Processing Agency)
[3], the Japanese government agency, started to support the
Ruby project. It has been driving forward the standardization
of Ruby. Because Ruby is open source, there are many
implementations of Ruby. Besides the Ruby 1.8 affiliate
(implemented by C language) and this Ruby 1.9 affiliate
(implemented by virtual machine YARV), IronRuby
(implemented to operate Ruby on .NET Framework),
MacRuby(implemented to operate Ruby on Mac OS X), and
Rubinius (bytecode interpreter on a virtual machine), etc.
Thus there are variety of implementations. But the standard

specifications of Ruby language had not existed. So, IPA
started standard specifications making, first domestically
based on standard specifications in 2008, and constituted it
as JIS (Japanese Industrial Standards) in 2011. Now, Ruby is
proposed to ISO (International Standard).

This process will improve the interconnectivity of the
portability and external systems by making it in accordance
with this standard. Moreover, it will develop the foothold of
the specification when the server environments to execute
the program written with Ruby. The reason why IPA, the
Japanese government agency, is bringing forward this
process is to increase the market of Ruby, Japanese-Oriented
Programming Language, in enterprise areas.

However, the reason why Ruby and Ruby on Rails have
been used recently is the productivity of them. The
productivity of Ruby and Ruby on Rails has been said
tendentiously as such “The productivity of Ruby is ten times
higher than that of Java”. But we must proof the productivity
of them empirically and scientifically, if Ruby and Ruby on
Rails are good for enterprise areas. So, we measured the
productivity of them compared with other script languages.
In this context, the term of “productivity” means software
productivity by man-hours, including experience years of
using language. In this paper we mention the method and the
result of the productivity’s comparison, and we also hope
this method will be an “active pointer” of measuring
software’s productivity.

II. PRODUCTIVITY OF RUBY

The script languages like Ruby have to be compiled the
source codes to object codes at each execution, so that the
processing speed of them tends to slow extremely. The
simpler the characteristic of language is, the slower the
processing speed of it becomes. However, due to faster grow
of the information processing abilities symbolized in the
Moore's Law, the improvement of the processing speed has
become to be owed to computer hardware, mainly the power
of CPU. And as for the service of Web, prompt (agile) and
flexible development and release is required.

The amount of the description of codes by Ruby is less
than that of other programming languages, and the grammar
expresses man's imagination similarly near human language,
so that the its productivity of development becomes higher as
a result. Therefore, the productivity of Ruby is evaluated in

367

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

the development of the Web application from which quick
release and a frequent change are required. If the domination
of such productivity is actually proven, introducing Ruby
into the production site of development will be able to not
only raise the productivity of development, but also decrease
the stress of engineers. So we measured the productivity of
Ruby compared with other programming languages.

We compare the productivity among Ruby, Java, and
Perl cooperated with an IT company [4]. We developed the
Web applications that have the same functions (Message
board systems that have functions of comments contribution,
multiple contribution prevention, indispensable check, and
the automatic deletion) by Ruby, Java and Perl, daringly
without using web application frameworks. TABLE I is the
result of the comparison of each programming language’s
productivity.

TABLE I. COMPARISON OF PRODUCTIVITY (2010)

Languages Java Ruby Perl
Lines 177 46 42

Man-Hour
(Coding and Test)

Coding : 8
hours

Test: 1 hours

Coding and
Test: 2 hours

Coding and
Test: 0.75

hours
Require Modules 19 2 4 (uses)

Operating
Condition

Servlet Http Server Http Server

Operating
Checking Server

Tomcat Apache Anhttp Apache Anhttp

Experience Years
of Using Language

7 years 0 years 5 years

Experience Years
of Development

7 years 7 years 7 years

As a result, Ruby exceeded both amounts of the codes
and the manufacturing time greatly compared with Java in
productivity. Ruby was proven to be as several times
productive as Java at the manufacturing time (4.5 times if it
simply compare). But it was proved that Ruby is not more
productive than Perl. However, in spite of the first
manufacturing in Ruby engineers could write the same
amount of codes that Perl engineers, who need five years’
experiences, write. Though, the speed manufacturing time
of Ruby engineers is slower than that of Perl engineers, if
they are trained coding, the productivity will be expected
much higher.

III. PRODUCTIVITY OF RUBY ON RAILS

As has been previously described, Ruby became to attract
attention since the release of Ruby on Rails. So we
continuously measured the productivity of Ruby on Rails
compared to Java’s developing framework cooperated with
an IT company [5]. We tried combustion and additional
function requirement of 70% of the Working management
system by Ruby on Rails. The system had previously (in
2007) developed by Java and JBoss Seam, web application
framework.

To compare the amount of source codes, we divided the
system into three elements, Model which is the kernel of

processing of the software design, View which rules display
and output, and Controller: which receives input and controls
View and Model according to the content And we compared
each number of steps for these three elements. TABLE II is
the result of the comparison.

TABLE II. TABLE TYPE STYLES (2010)

Elements
Ruby on Rails Java + Jboss

Seam
Java + Jboss Seam
/0.7

Controller 5.1K 18.4K 26.3K
Model 1.2K 12.6K 38.1K
View 4.2K 4K 5.7K
Totla 10.5K 35K 50K

If we simply compare the numbers of steps, the
productivity of Ruby on Rails is three times of that of Java
and its web application framework. Moreover, if we
consider that the development by Ruby on Rails was 70% of
that by Java, the productivity is five times of Java. And, by
the function point method (FP/man-hour comparison),
which is an unit of measurement to express the amount of
business functionality an information system provides to a
user. The cost (in dollars or hours) of a single unit is
calculated from past projects, the productivity of Ruby on
Rails is 1.4 times of that of Java.

IV. ISUUES AND FORESIGHT

Though the productivity of Ruby and Ruby on Rails was
measured by these case studies, the number of cases is
obviously few. So we must continue to study much more
cases. And, it will be difficult to compare productivity under
the same developing condition. However, as the method of
comparison of productivity was put on a firm footing,
continuance of this study will enable us to compare the
productivity of software empirically and scientifically.

Moreover, the performance of software must be measured
by considering the effective speed in processing. For this
reason, IPA is driving forward the standardization of Ruby.
At the same time, in this study we compared the
productivity in developing. Then we must measure and
evaluate the performance of software totally. This process
will be conducible to the evaluation of open source software
which does not receive baptism of market pricing.

[1] TIOBE Programming Community Index
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[2] Ruby is Fastest-Growing Web Development Language: Gartner

http://www.pdfzone.com/cp/bio/Darryl-K.-Taft/

[3] IPA (Information-technologies Processing Agency)
http://www.ipa.go.jp/index-e.html

[4] Central Information Coorporation in Hiroshima

http://www.cis-net.co.jp/outline.html

[5] TOSCO Coorporation in Okayama

http://www.tosco.co.jp/

368

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

