
Advanced Object Oriented Metrics for Process Measurement

Shreya Gupta

Indian Institute of Information Technology

Deoghat, Jhalwa, Allahabad, India

gupta.shreya29@gmail.com

Ratna Sanyal

Indian Institute of Information Technology

Deoghat, Jhalwa, Allahabad, India

rsanyal@iiita.ac.in

Abstract— Process improvement requires measurement of

specific attributes of process. Measurement of a process gives

us a clear insight into the system. It provides effective ways of

estimation and evaluation. Then, it is essential to develop a set

metrics covering the attributes. Computed measures are used

as indicators for process improvement areas. These indications

if incorporated into the software development, will lead to

development of an effective and reliable system. Mood metrics

has defined some indicators for inheritance like Attribute

Inheritance Factor (AIF), Method Inheritance Factor (MIF),

and for hiding are Attribute Hiding Factor (AHF), Method

Hiding Factor (MHF). We are proposing extensions to these

metrics. These extensions are more specific and give a better

hint towards inheritance and hiding properties.

Keywords-Mood Metrics; Attribute Inheritance Factor;

Method Inheritance Factor; Attribute Hiding Factor; Method

Hiding Factor.

I. INTRODUCTION

Object orientation aims to model a system [1]. They
reflect a natural view and understanding of the system.
Using object modeling, a system is represented as number
of objects and their interaction. Objects are categorized into
classes along with their respective behavioral properties [2].
Inheritance provides the facility for classes to inherit the
behavioral properties of other classes. Encapsulation
packages functions and data in a class. Representing
essential features with exclusion of background
explanations is called abstraction [3].

Object Oriented Software Paradigm gives the way for
effective reuse of program components. The process of
reuse expedites the software development and thereby
resulting in high quality work in minimum time. They are
easy to understand, adapt and scale because of modular
structure, relatively low coupling and high cohesion. Merely
applying object oriented programming will not reap great
results. It is the combination of object oriented domain
analysis, requirement analysis, object oriented design,
database systems and computer aided software engineering
that will lead to best results.

If software is developed without any proper
measurement activities, the resulting product could be
unreliable, inefficient and non-maintainable. We need to
realize the ideology that software needs to be engineered.
For this, standard engineering principles and guidelines are

to be established. Software metrics come into play as
quantify the attributes in the development. Errors undetected
in a development phase are passed in the next phase.
Relative cost of fixing it increases many times. Therefore,
tracing errors early in lifecycle and fixing them are
essential.

Second section describes the prior work in the field of
software metrics particularly C.K. Metrics and Mood
metrics. Since the research paper is proposing an extension
to the AIF, MIF, AHF and MHF, a detailed explanation of
these metrics has been provided with reference to published
research papers. Third section of the paper proposes the
extension to AIF, MIF, AHF and MHF computation along
with the extended formulas for the same. Fourth section is
Result and Analysis section for AIF, MIF, AHF and MHF,
considering a system and showing the variation in values
obtained by the original formulas and the extended ones.
Furthermore, a case study has been taken to validate the
results of these metrics.

II. PRIOR WORK

Six software metrics were proposed for object oriented
design, known as C. K. Metrics [4]. These metrics are
Response of a Class (RFC), coupling between the objects
(CBO), Weighted Methods per Class (WMC), Number of
Children (NOC), Lack of Cohesion Methods (LCOM) and
Depth of Inheritance Tree (DIT). The empirical evidence
specifies how object oriented metrics determine software
defects is described [5].

Mood Metrics (Metrics for Object Oriented Design)
were proposed by Abreu as described [6]. These metrics aim
to evaluate object oriented principles in the software code. It
considers inheritance factor which computes attribute
inheritance factor and method inheritance factor,
encapsulation factor which computes attribute hiding factor
and method hiding factor. All of these metrics result in the
probability value between 0 and 1.

In the following subsections, we have explained and
mentioned the formulas of the existing parts of MOOD
metrics.

A. Attribute Inheritance Factor (AIF)

Attribute Inheritance Factor (AIF) is the ratio of two
measurements. Numerator represents the sum of number of
inherited attributes of all classes in system and denominator
represents sum of number of available attributes which may

318

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

be local or inherited for all classes in system. It expresses
the level of reuse in the system. A threshold is maintained
for AIF measure that is roughly around 50%. Higher values
of AIF indicate high inheritance level thereby leading to
greater coupling and reducing the possibility of reuse.
MOOD Metrics propose the computation of AIF [6] as
given below:

AIF =

TC

i

ii CA
1

)(/

TC

i

ia CA
1

)((1)

where Aa(Ci) = Ad(Ci) + Ai(Ci)
Ai (Ci) is the count of attributes that are inherited.
Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier.
Aa(Ci) is the count of attributes that can be referenced by
class Ci

TC - total count of classes in system/ package.

B. Method Inheritance Factor (MIF)

Method Inheritance Factor (MIF) is the ratio of two
measurements. Numerator represents the sum of number of
inherited methods of all classes in system and denominator
represents sum of number of available methods which may
be local or inherited for all classes in system. Method
Inheritance Acceptable range is 20% to 80%. It highly
depends on the design pattern that we follow. High values of
MIF indicate superfluous inheritance and low values
indicate heavy use of overrides or lack of inheritance.
MOOD Metrics propose the computation of MIF [6] as
given below:

MIF =

TC

i

ii CM
1

)(/

TC

i

ia CM
1

)((2)

where Ma(Ci) = Md(Ci) + Mi(Ci)
Mi (Ci) is the count of methods that are inherited. These
methods should not be overridden.
Md (Ci) is the count of defined non-abstract methods. These
methods can be of any access modifier.
Ma (Ci) is the count of methods that can be called by class
Ci.
TC - total count of classes in system/ package.

C. Attribute Hiding Factor (AHF)

AHF measures the extent of encapsulation of attributes
in a system. Firstly, it will calculate the visibility of each
attribute with respect to each class. Visibility function
assigns 1 for each class, if the attribute is visible from those
classes and 0 if not visible. Visibility measure for class in
which attribute is present itself is considered to be 0. It sums
up the visibility for a particular attribute and then divides by
the (total no. of classes minus 1). Likewise, the visibility of
each attribute is calculated and then values are substituted in
AHF formula. Thus, AHF represents the average amount of
hiding of attributes among all classes in system. Visibility of
private attributes is always zero. Protected attributes act as a
public attribute in the package to which the attribute
belongs, and are visible only in the subclasses in other

packages. Public attributes are visible to all classes in the
system. If all the attributes are private, then AHF=100% and
if all the attributes are public, AHF is 0%. MOOD Metrics
propose the computation of AHF [6] as given below:

AHF =

)(

11

CiAd

m

TC

i

(1-V(Ami)) /

TC

i

id CA
1

)((3)

where

V(Ami) =

TC

i

jmi CAvisibleis
1

),(_ / (TC – 1)

and

is_visible(Ami,Cj)=

otherwise

AreferencemayCandijiff mij

 0

 1

Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier. They should not be inherited
ones.

D. Method Hiding Factor (MHF)

It measures the extent of encapsulation of methods in a
system. Firstly, it will calculate the visibility of methods
with respect to each class. Visibility function assigns 1 for
each class, if the method is visible from those classes and 0
if not visible. Visibility measure for the class in which
method is present itself is considered to be 0. It sums up the
visibility for a particular method and then divides by the
(total no. of classes minus 1). Likewise the visibility of each
method is calculated and then values are substituted in MHF
formula. Thus, MHF represents the average amount of
hiding of methods among all classes in system. Visibility of
private methods is always zero. Protected methods act as a
public method in the package to which the method belongs,
and are visible only in the subclasses in other packages.
Public methods are visible to all classes in the system. If all
the methods are private, then MHF=100% and if all the
methods are public MHF is 0%. MOOD Metrics propose the
computation of MHF [6] as given below:

MHF =

)(

11

CiMd

m

TC

i

(1-V(Mmi)) /

TC

i

id CM
1

)((4)

where

V(Mmi) =

TC

i

jmi CMvisibleis
1

),(_ / (TC – 1)

and

is_visible(Mmi,Cj)=

otherwise

MreferencemayCandijiff mij

 0

 1

Md(Ci) is the count of methods and constructors. These
methods can be of any access modifier. They should not be
abstract or inherited.

319

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

III. PROPOSED EXTENSION

A. Extension in AIF and MIF

Problem with the AIF/MIF formula is that it considers
the count of members a class can reference in a system or a
package. But, when we calculate AIF/MIF for each class,
members outside the class (except for the members that are
inherited) are not to be considered. Justification is that
denominator of the formula of AIF and MIF states that
“Total no. of members that a class Ci can reference”, all the
members that are public can be referenced by a class, no
matter whether it is in its same package or outside the
package. Even protected members act as public members in
their own package. Thus, while calculating AIF, MIF the
count of uncoupled members in the denominator should not
be considered, because access to public, protected members
does not reflect the measure of inheritance factor.

Thus, an extension to the empirical formula is proposed
by us. For denominator, consider the members of ancestor
classes of class Ci and the members defined inside class Ci
only.If a class “x” is present in same package as that of class
Ci and has public members, but has no interaction with the
class Ci, then members of class “x” are not considered.

When a class inherits considerable number of members
from the ancestor classes, it will contribute to a high
measure of AIF, MIF. When a class redefines the ancestor
members and adds the new members will always contribute
to a low measure of AIF, MIF. The extended equation for
AIF is given below:

AIF extended =

TC

i

ii CA
1

)(/

TC

i

iex CA
1

)(

 (5)

where Aex(Ci) = Ad(Ci) + Ai(Ci)

Ai (Ci) is the count of attributes that are inherited.
Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier.
Aex(Ci) is the extended variable. It is the count of attributes
that can be referenced by class Ci considering the attributes
of ancestor classes of class Ci and the attributes defined
inside class Ci only.

The extended equation for MIF is given below:

MIF extended =

TC

i

ii CM
1

)(/

TC

i

iex CM
1

)(

(6)

where Mex(Ci) = Md(Ci) + Mi(Ci)

Mi(Ci) is the count of methods that are inherited. These
methods should not be overridden.
Md(Ci) is the count of defined non-abstract methods. These
methods can be of any access modifier.

Mex(Ci) is the extended variable. It is the count of methods
that can be called b class Ci considering the methods of
ancestor classes of class Ci and the methods defined inside
class Ci only.

Thus, AIF extended and MIF extended give an accurate
idea about the actual level of inheritance that exists in the
code. If the level of inheritance is high, then it is a hindrance
to the reusability, maintainability and understandability of
system. It will be difficult to reuse the modules of code into
some other system because of its dependency on other
modules.

B. Extension in AHF and MHF

Original AHF equation consists of visibility function
that checks that if class may reference the attribute in
consideration. But, in the extension that I have proposed, it
checks whether actually the class has referenced the
attribute or not. This extension in AHF is more specific in
nature and gives a clear hint of the hiding factor. It also
checks for a good design characteristic that attributes of a
class should accessed by methods of the class only. If they
are directly accessed by the objects of some other class, then
design is not stable. The extended equation for AHF is
given below:

AHF extended=

)(

11

CiAd

m

TC

i

(1-V(Aex)) /

TC

i

id CA
1

)((7)

where

V(Aex) =

TC

i

jex CAvisibleis
1

),(_ / (TC – 1)

and

is_visible(Aex,Cj)=

otherwise

AreferencedidCandijiff mij

 0

 1

Ad(Ci) is the count of defined attributes. These attributes can
be of any access modifier. They should not be inherited
attributes.

Original MHF equation consists of visibility function
that checks that if class may reference the method in
consideration. Same extension goes with MHF. We check
whether actually the class has referenced the method or not.
The extended equation for MHF is given below:

MHF extended =

)(

11

CiMd

m

TC

i

(1-V(Mex)) /

TC

i

id CM
1

)((8)

where

V(Mex) =

TC

i

jex CMvisibleis
1

),(_ / (TC – 1)

 and

320

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 is_visible(Mex,Cj)=

otherwise

MreferencedidCandijiff mij

 0

 1

Md(Ci) is the count of methods and constructors. These
methods can be of any access modifier. They should not be
abstract or inherited.
TC - total count of classes in system/ package.

Thus, AHF extended and MHF extended propose a
change in the visibility function of their respective
calculations. This visibility function ensures that whether
the members of a class have been actually referenced by
outside members or not. This helps us in understanding the
amount of abstraction in the system thereby giving clarity in
estimation of actual hiding factors.

IV. RESULTS ANALYSIS

To demonstrate the variation in AIF and AIF extended
values, MIF and MIF extended values, we have used a small
example considering a design for university database.

Figure 1. University Database

We have calculated the AIF values [6] and proposed
extended AIF for each class as well as MIF values [6] and
proposed extended MIF. The class diagram of the example
system along with tabulated results and graph of AIF and
AIF extended, MIF and MIF extended is given below.

A. AIF Analysis

A threshold value of 0.5 is maintained in order to
determine whether level of inheritance is acceptable or not.
For AIF values greater than 0.5, extent of inheritance is high
Classes employee, student, undergraduate, postgraduate
have “AIF extended” values greater than 0.5 and “AIF”
values less than 0.5. Class diagram in Fig. 1 shows us
effectively that these classes inherit large number of
attributes from ancestor classes than the attributes they
actually contain, thereby depicting unacceptable level of
inheritance.

TABLE I. ANALYSIS OF AIF

Classes AIF for each

class

(Farooq,2005)

AIF Extended

for each class

(Proposed)

Person 0.00 0.00

Employee 0.36 0.67

Staff 0.54 0.86

Faculty 0.54 0.86

Student 0.36 0.67

Undergraduate 0.45 0.83

Postgraduate 0.45 0.83

Main 0.00 0.00

Total AIF of the system can be calculated using (1):

AIF= (0+4+6+6+4+5+5) / (11+11+11+11+11+11+11)

 = 0.39

Here, the numerator is the number of attributes inherited

from ancestor classes for each class. As “person” is the base
class, it does not inherit any attribute, “employee” class
inherits four attributes, “staff” class inherits six attributes in
total from person class and employee class, “faculty” class
six, and so on for rest of the classes. Sequence of classes
used in the formula is same as the sequence given in the
table I. Denominator is number of attributes that can be
referenced by each class. Attributes in the class diagram are
protected in nature, but we know that protected members are
public in their own package. Therefore, each class can
reference all the public and protected members in the
system. Denominator is eleven for each class.

We compute AIF extended using (5). The numerator

remains the same as that of AIF but denominator changes as
we consider the attributes of ancestor classes of class Ci and
the attributes defined inside class Ci only. For example,
“person” class is base class; we consider only the four
attributes defined inside it. “Employee” class is inheriting
from person class, so the attributes in consideration are six,
out of which four are from person class and two from
employee class. Similarly, denominators are determined for
rest of the classes.

AIF extended = (0+4+6+6+4+5+5) / (4+6+7+7+5+6+6)
 = 0.73

Therefore, AIF extended is giving a clear idea that level
of inheritance in the system is not acceptable as it is greater
than 0.5.

B. MIF Analysis

Same extension is followed in MIF extended but with

respect to the methods. Classes staff, faculty, undergraduate,

Person

#name
#dob
#address
#ssn

#set_person_detail()
#display()

Employee

#emp_id
#salary

#set_emp_detail()
#display_emp_detail()

Student

#student_id

#set_student_id()
#display_student_detail()

Staff

#rank

#set_staff_detail()
#display_staff_detail()

Faculty

#designation

#set_faculty_detail()
+display_faculty_det()

Undergraduate

#class

#set_undgrad_det()
#display_undgrad_det()

Postgraduate

#degreeprogram

#set_pstgrad_det()
#display_pstgrad_det()

321

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

postgraduate have “MIF extended” values greater than 0.5

and “MIF” values less than 0.5.

TABLE II. ANALYSIS OF MIF

Classes MIF for each

class

(Farooq,2005)

MIF Extended

for each class

(Proposed)

Person 0.00 0.00

Employee 0.14 0.5

Staff 0.29 0.67

Faculty 0.29 0.67

Student 0.14 0.5

Undergraduate 0.29 0.67

Postgraduate 0.29 0.67

Main 0.00 0.00

Total MIF of system is calculated using (2):

MIF = (0+2+4+4+2+4+4+0)/ (14+14+14+14+14+14+14+14)
 = 0.18

Sequence of the classes in the formula remains same as
given in table II. Numerator is number of methods inherited
by each class from ancestor classes. Denominator is number
of methods that can be referenced by each class. As
mentioned earlier that protected members are public in their
own package, each class can reference all public and
protected methods in system. Denominator is fourteen for
each class. Now, we calculate MIF extended of system
using (6).

MIF extended = (0+2+4+4+2+4+4+0)/ (2+4+6+6+4+6+6+1)

 = 0.57

Numerator remains the same as that of MIF.
Denominator changes according to the proposed work. We
need to consider methods of ancestor classes of a class Ci
and the methods defined inside class Ci only. “Person” is a
base class and has two methods of its own. “Employee”
class is inheriting two methods from person class and has
two methods of its own, therefore a count of four. Likewise,
we do the calculation. Therefore, MIF extended is giving a
clear idea that level of method inheritance in system is not
acceptable as it is greater than 0.5.

C. AHF Analysis

We have considered a code to demonstrate the hiding

factor. The sample code is as follows:

322

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

On the basis of above code, we check the current
references made to attributes and methods. First we
calculate AHF. Consider the attributes of Account_bank
class, they are balance_amt, acc_no. Attribute balance_amt
may be referenced by rest of the two classes, i.e.
Interest_Account_bank and Account as it is a public
variable. Therefore, using (3), visibility (bank_amt) is 2/(3-
1), that is 1. Thus, value of (1-V(bank_amt)) is 0. Similarly,
for the attribute acc_no, (1-V(acc_no)) is 0. Now, we
consider the attributes of class Interest_Account_bank, they
are interest_default, rate-int.

TABLE III. ANALYSIS OF AHF

Classes Attributes (1-V(Ami))
in

AHF

(1-V(Aex))
in

AHF ext.

Account_bank balance_amt

0 0.5

Account_bank acc_no

0 0.5

Interest_Account_bank interest_default

1 1

Interest_Account_bank rate-int

1 1

Both the attributes are private; therefore none of the classes
can access them. Visibility is 0 for both the attributes, (1-
V(Ami)) is 1. Now, we apply the formula for AHF from (3).

AHF = (0+0+1+1) / (4) = 0.5

Now, we calculate AHF extended. For the attributes
balance_amt and acc_no of Account_bank class, they are
actually referenced by the object of Interest_Account_bank.
Thus, only one class has made an access to these attributes.
Visibility for these attributes is 1 / (3-1), i.e. 0.5. Therefore,

 (1-V(Aex)) is (1-0.5) i.e. 0.5. Similarly, for interest_default
and rate-int attributes, none of the classes has accessed
them, therefore visibility is 0 and (1-V(Aex)) is 1. Now, we
apply the formula for AHF extended from (7):

AHF extended = (0.5+0.5+1+1) / (4) = 0.75

Higher value of AHF extended indicates that attributes
are not actually referenced, thereby imparting a private
attribute behavior to them. Visibility of attributes is not
properly used by the design of the system.

D. MHF Analysis

First, we calculate MHF. Consider the methods of

Account_bank class. This class has three public methods,

namely initialize_data, deposit_bank and withdraw_bank.

All three methods are public, and can be accessed by rest of

the two classes. Therefore, using (4) visibility of all four

methods is 2/(3-1), that is 1. Thus, value of (1-V(Mmi)) is 0

for all three methods. Class Interest_Account_bank has

three methods, namely initialize_interest,

add_interest_monthly, and get_balance. Getbalance method

is a private method that cannot be referenced by outside

classes. Therefore, its visibility is 0 and (1-V(Mmi)) is 1.

TABLE IV. ANALYSIS OF MHF

Now, we apply the formula for MHF from (4):
MHF= (0+0+0+0+0+1) / (6) = 0.17

Now, we calculate MHF extended. For methods
initialize_data, deposit_bank and withdraw_bank of
Account_bank class have been actually referenced by the
object of Interest_Account_bank class. By using (8),
visibility of these methods is 1/(3-1) i.e. 0.5. Therefore, (1-
V(Mex)) is (1-0.5) i.e. 0.5. Methods of
Interest_Account_bank have not been referenced by any
other class, therefore, their visibility is 0 and (1-V(Mex)) is
1. Now, we apply the formula for MHF extended from (8):

MHF Extended= (0.5+0.5+0.5+1+1+1) / (6) = 0.75

Such a high value of MHF extended indicates that most of
methods are not being actually referenced by the outside
classes.

E. Case Study Analysis

Library Management system for a college is used as a

case study. It has separate java files for books, catalogue,

members, librarian etc. Books may be reference book or

issuable book. Members may be student or a faculty

member. All the four metric i.e. AIF, MIF, AHF and MHF

were applied on the case study. Also, the proposed

extensions to these metrics were applied.

TABLE V. CASE STUDY RESULT

Metric (Farooq,2005) Extended Versions

AIF 0.25 0.52

Classes Methods (1-

V(Mmi))

in

MHF

(1-

V(Mex))

in

MHF

ext.

Account_bank Initialize_data

0 0.5

Account_bank withdraw_bank

0 0.5

Account_bank deposit_bank

0 0.5

Interest_Account_bank Initialize_interest

0 1

Interest_Account_bank add_interest_monthly

0 1

Interest_Account_bank get_balance

1 1

323

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

MIF 0.18 0.59

AHF 0.52 0.98

MHF 0.94 0.11

There was variation in results, confirming the extensions

were specific and gave a hint about design of the system.

Metric values are capable to comment on stability of design

and actual hiding factors. In all the cases, extended metrics

resulted in values higher than the original metrics. Extended

AIF and extended MIF gave values higher than threshold

indicating the system has higher inheritance. Classes are

highly coupled in system. Extended AHF and extended

MHF also result in higher values than original metric

showing greater hiding factor.

CONCLUSION AND FUTURE WORKS

The extensions in AIF and MIF are more accurate than

previous definitions as they give a better idea about usage of

inheritance property in the code. Results are accompanied

with analysis part showing the variation in the values.

Clearly, classes that have AIF, MIF values greater than

threshold value needs some modification in their design.

Extensions in AHF and MHF check whether a member (data

or method) has been actually referenced or not. This gives

clarity in estimation of actual hiding factors. Therefore,

proposed extensions give accurate estimation of inheritance

and hiding factor. Regarding future works, developed tool

must have a provision for suggesting corrections to user,

based on result of metrics. Developed tool analyses java

source files and class files. Thus, tool can give results only

after coding phase. An approach may be developed to apply

metrics in earlier phases of development.

ACKNOWLEDGMENT

The authors highly acknowledge the immense support of
Indian Institute of Information Technology, Allahabad, for
providing the adequate resources to carry out this research
work.

REFERENCES

[1] Jacobson I., Christerson M., Jonsson P., and Overgaard G.

Object-Oriented Software Engineering, Pearson Education,

Singapore, Ninth Indian Reprint, 2004.

[2] Pressman R. S., Software Engineering: A Practitioner's

Approach, McGraw Hill Publication, Singapore, Sixth edition,

2005.

[3] Balagurusamy E., Programming with Java: A Primer, McGraw

Hill Publication, New Delhi, Thirtieth reprint, 2006.

[4] Shyam R. C. and Chris F. K. “A Metrics Suite for Object

Oriented Design “IEEE Transactions on Software Engineering,

Vol. 20, No. 6, June 1994.

[5] Subramanyam R. and Krishnan M.S. “Empirical Analysis of

CK Metrics for Object-Oriented Design Complexity: Implications

for Software Defects” IEEE Transactions on Software

Engineering, Vol. 29, No. 4, April 2003.

[6] Farooq A., Braungarten R., and Dumke R.R. “An Empirical

Analysis of Object-Oriented Metrics for Java Technologies” 9th

International Multitopic Conference, pp. 1-6, IEEE INMIC 2005.

324

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

