
Edola: A Domain Modeling and Verification Language for PLC Systems

Hehua Zhang
School of Software, KLISS, TNLIST

Tsinghua University
Beijing, China

Email: zhanghehua@gmail.com

Ming Gu
School of Software, KLISS, TNLIST

Tsinghua University
Beijing, China

Email: guming@tsinghua.edu.cn

Xiaoyu Song
Dept. ECE

Portland State University
Oregon, USA

Email: song@ee.pdx.edu

Abstract—Formal modeling and verification of PLC systems
become paramount in engineering applications. The paper
presents a novel PLC domain-specific modeling language
Edola. Important characteristics of PLC embedded systems,
such as reactivity, scan cycling, real-time and property patterns,
are embodied in the language design. Formal verification meth-
ods, such as model checking and automatic theorem proving,
are supported in Edola modeling. The TLA+ specification
language constitutes an intermediate language layer between
Edola and the verification tools, enhancing a large degree
of reusability. A prototype IDE for Edola and its seamless
integration of a model checker TLC and an automatic theorem
prover Spass are implemented. A case study illustrates and
validates the applicability of the language.

Keywords-domain-specific modeling language; formal verifi-
cation; PLC; TLA+.

I. INTRODUCTION

Programmable Logic Controllers (PLCs) are widely used
in industry for embedded systems [1]. A PLC interacts
with its environment, following a so-called scan cycling
mechanism. It starts with inputting environmental data, then
performs a local computation, and finally outputs the results
to the environment [2]. With their increasing use, PLC
systems become more and more complex. Formal modeling
and verification becomes paramount in PLC engineering
applications to ensure the correctness.

There are several expressive formal modeling languages
that has been adopted in the modeling and verification of
PLC systems, such as timed automata [3], timed Petri net [4],
SMV [5] and TLA+ [6].

Many PLC modeling work focus on a high level of
abstraction, so that a small model can be obtained for
verification. However, the characteristics like scan cycling
are not considered, and a wide gap exists between the
abstract models and their PLC implementations. To get a
suitable level of abstraction to model PLC systems, their
characteristics like reactivity, scan cycling, real-time and
property patterns should be embodied in the modeling
language. Although the existent formal modeling languages
are powerful, the characteristics of PLC applications are not
directly supported.

In this paper, we presented a novel PLC domain-specific
modeling language Edola, which provides notations for

better understanding and easier modeling of applications in
the PLC domain. Formal verification methods, like model
checking and automatic theorem proving are supported in
Edola modeling. Edola provides a suitable level of abstrac-
tion to model PLC systems, which can express features of
PLC systems and also rule out unnecessary details. We adopt
the TLA+ specification language as an intermediate layer
between the Edola language and the verification tools, to
enhance a large degree of reusability. With the inherent logic
of TLA+, it is possible to verify an Edola model with a state
based method like model checking and also a logic based
reasoning method like theorem proving. A prototype IDE
for Edola has been implemented, which provides both the
user-interface for modeling and the seamless integration of
two verification tools: TLC [7] and Spass [8].

The paper is organized as follows. We introduce the
syntax, the intuitive semantics of Edola in Section III. The
formal semantics is illustrated in Section IV. Section V
explains the verification method of Edola models, including
the transformation rules and the optimization strategies taken
in the procedure. Section VI introduces the prototype IDE
tool. A case study is illustrated in Section VII to validate
the applicability of the language. Finally, we conclude our
work in Section VIII.

II. AN EXAMPLE: FIRE-FIGHTING PLC CONTROL
SYSTEM

To better explain the language Edola and its tool, we first
introduce a fire-fighting PLC control system which is used
in ship docks. We will take part of the case now and then, to
explain the syntax, semantics and our design considerations
of Edola.

This running case is a system used to fight fire that may
happen at ship docks. It operates the fire-fighting cannons
under the control of a user and displays information about
the current operating state. The cannons are used in some
specified fire cases and are connected with several valves.
When there is a fire-fighting request, the user can control
the equipments in the control panel. A possible designed
control panel with two cannons and two fire-fighting cases
are sketched in Figure 1. The preparatory steps of the
operations are as follows: (1) powering up the system; (2)

281

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

cancel confirm

berth1 berth2

power openpump closepumpberth1 berth2

confirmed

cannon1 cannon2

hand-handle
alarm

pump power

Figure 1. A sketch of the control panel of the system

opening the pump; (3) selecting the firing place (case);
(4) confirming the selection; (5) controlling the direction
of the cannon by the hand-handle. After the fire fighting,
the user proceeds as follows to shut down the system: (6)
closing the pump; (7) canceling the current fire-fighting case;
(8) restarting the system for another fire-fighting case or
powering down the system to finish. Note that because of
the technic requirement, only one cannon can be used at the
same time. On the other hand, the system should consider
the case when the controlled devices or the communication
network go wrong, and the users should be alarmed. In this
example, we consider a typical alarm, that is, when the PLC
program sends the command to open the pump, while the
pump does not open in 5 seconds, the beeper in the control
panel rings 3 seconds and the control system goes to the
initial state.

III. THE SYNTAX OF EDOLA

An outline of the Edola syntax is shown in Figure 2.
Details are omitted for the sake of space limitation. The
Edola language is composed by modules. The main body
includes module extensions, static declarations, dynamic
definitions and verification requests. An EXTENDS statement
can extend standard modules like Naturals, Reals in Edola
or user-defined modules.

The auxiliary symbols are declared by a series of Edola
formulas (GeneralDef).Taking the fire-fighting case as an
example, we can use Direction == {“up”, “down”, “left”,
“right”, “none”} to denote the possible moving directions of
a cannon, where Direction is defined as a enumeration type
with 5 elements.

Constant declarations start with CONSTANT , denoting the
parameters of a module. The declared parameters cannot be
changed in the latter dynamic definitions.

Variable declarations are classified by the input variables
(INPUTVAR), output variables (OUTPUTVAR) and system
variables (SYSTEMVAR), according to the PLC scan cycling
mechanism. Input variables denote the environment of a
PLC software, including the commands from users by the
control panels and the signals from the physical devices.
The values of input variables are unchanged during a single
scan cycle. Output variables denote the output signals of a
PLC software, controlling the moving of physical devices or

EDOLA-module ::= AtLeast4("-") MODULE ModuleName (AtLeast4("-")

 (nil | EXTENDS CommaList(Name))

 GeneralDef

Declarations

ActionDef

 Constraints

 (nil | Properties)

 AtLeast4("=")

GeneralDef ::= nil | (formula)*

Formula ::= LeftF '= =' Exp

LeftF ::= Name | Name “(” CommaList(ID) “)”

Declarations ::= ConstDeclarations VarDeclarations

ConstDeclarations ::= nil | CONSTANT CommaList(OpDec)

OpDec ::= ConstName | ConstName “(” CommaList(“_”) “)”

VarDeclarations ::= INPUTVAR varDecList

 OUTPUTVAR varDecList

 SYSTEMVAR varDecList

ActionDef ::= INIT formula

 ACTION ActionList

ActionList ::= (Formula)+

Constraints ::= EnvConstraint

 (nil | TimeConstraints)

EnvConstraint ::= ENV TOTAL

 | ENV (Formula)*

TimeConstraints ::= TIME (Duration | Interval | Delay | Deadline | Timeout | Waituntil) +

Properties ::= PROP PropName “: ”

(Respond | Compete | Sequence | Priority | Inv | ActInv)+

Respond ::= (nil | Quantif) RESPOND “(” Actname, SysStateExp, EnvStateExp “)”

Quantif ::= (\A | \E) Name \in SetName

……

Figure 2. The excerpt of the Edola syntax

displaying the status of the system in control panels. System
variables are used by the PLC software to implement the
controlling functionalities. The values of system variables
are usually changed during a scan cycle. The variables are
defined by their name and type. For example,

INPUTVAR realPump ∈ BOOLEAN
OUTPUTVAR alarm ∈ BOOLEAN ,

s handle ∈ [Cannon–>Direction]
SYSTEMVAR state ∈ SysState

(1)

declares an input boolean variable realPump, which de-
notes the opening state of the water pump; an output boolean
variable alarm to denote the beeper rings or not , the other
output variable s handle representing the control commands
to the water cannons, which is an array represented in the
functional style. A system variable state is also declared to
represent the current state of the PLC software.

The dynamic definitions describe how the PLC software
works in a specified environment. The behaviors of PLC
software are defined by an initial state and a series of actions
in Edola. The initial state is represented by the keyword INIT

282

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

following an Edola formula, to assign the initial value for all
the variables. The keyword ACTION starts the definition of a
series of actions. Each action is represented by an Edola
formula, to define the next-state action of PLC software
in the current system state. Edola permits the definition of
parameterized actions. For example, the following formula

SelectCase(i) == (2)
(∀j ∈ UnlockedButton : j#i ⇒ u button[j])
i ∈ FireCase
∧ u button[“power”]
∧ s sysState ∈ {“pumpopened”, “selected”}
∧ u button[i]
∧ s buttonLight ′ = [j ∈ ButtonLight 7→

IF j /∈ FireCase THEN s buttonLight [j] ELSE
IF j = i THEN TRUE ELSE FALSE]

∧ s sysState ′ = “selected”

defines the on-fire case selecting action, which means that,
for any fire case, if the power is on, the system is in the
expected state, only the button for fire case i is pushed down,
the case i is successfully selected. Only the corresponding
light for case i is set to on and the system state is modified
accordingly. The type of the parameter should be specified in
the formula definition, which will be checked by the Edola
compiler.

PLC applications are reactive, thus the environment
should also be specified besides the behaviors of a PLC
software. Edola provides two possibilities for environmen-
tal modeling. Users can define the specific behaviors of
the environment by a series of formulas starting with the
keyword ENV or use the keyword ENV TOTAL to leave the
environment modeling work to Edola compiler. In the latter
case, the compiler will generate a complete environmental
model automatically, which covers all the possibilities of the
environmental inputs.

When there are time constraints on system behaviors,
they can be described in Edola by the part starting with
the keyword TIME . We provide several time operators for
describing the constraints on an action (Duration) or on
the interval between actions (Interval), respectively. Four
advanced operators Delay, Deadline, Timeout and WaitUntil
are also supported for the usability. For example, the opening
pump time limit 5 can be represented in Edola by applying
the Timeout operator on the action OpenPump and the ac-
tion BeeperRing : TIMEOUT (OpenPump,BeeperRing , 5).

The verification requests are represented in Edola by a
series of properties, and start with the keyword PROP . The
given properties should be checked whether they are satisfied
by the PLC software behaviors under the specified envi-
ronment and the requested time constraints. Edola provides
six property patterns: the responding properties (with the
keyword RESPOND), the competing properties (COMPETE
), the sequential properties (SEQUENCE) , the priority
properties (PRIORITY) and two patterns more general: state

invariants (STATEINV) and action invariants (ACTINV).
For example, in a fire-fighting application, the correctness
property

CannonUsedOnlyOne : (3)
\A i \in Cannon, j ∈ Cannon :

COMPETE (i#j ,Selected [i],Selected [j])

denotes the competing requests among selection of can-
nons: at any moment, at most one cannon can be selected.
Note that all the provided property patterns are safety
properties, which denotes in general that something bad will
never happen.

IV. THE FORMAL SEMANTICS OF EDOLA

In this section, we give the formal semantics of Edola by
the transformational method with the specification language
TLA+.

A. Preliminaries of TLA+

TLA+ [9] is a formal specification language based on
the Temporal Logic of Actions TLA, first-order logic and
Zermelo-Fränkel set theory. It is un-typed, abstracted and
widely used in the high-level specification of concurrent and
reactive systems.

The characteristic form of the TLA+ specification of a
transition system is a formula of the form Spec , Init ∧
2[Next]vars ∧ L, where vars is a tuple containing all state
variables of the system. The first conjunct Init describes the
possible initial states of the system. The second conjunct
of the specification asserts that every step (i.e., every pair
of successive states in a system run) either satisfies Next
or leaves the term vars (and therefore all state variables)
unchanged.The third conjunct L is a temporal formula
stating the liveness conditions of the specification, and in
particular can be used to rule out infinite stuttering.

B. Module extensions and static declarations

The semantics of an Edola module is given by a TLA+

module. The EXTENDS and CONSTANT statements of Edola
are assigned the same semantics with the ones in TLA+.
The input variables, output variables and system variables
are explained by the variables declarations in TLA+ together
with a type invariant to be ensured, since TLA+ is an un-
typed language.

C. Dynamic definitions

The definition of the PLC behaviors in Edola includes
the INIT part and the ACTION part. The two components
are illustrated by the corresponding TLA+ components,
intuitively. The INIT part in Edola corresponds the initial
state formula in TLA+, which is composed by the whole
INIT definition in Edola with the conjunction of the initial
value of the variable aux, that is, zero. An action definition

283

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

in the ACTION part of Edola corresponds an action definition
in TLA+, with the conjunction of an UNCHANGED statement.

The value changing of the variables in TLA+ is total,
which requests the explicit statements of all the variables that
are unchanged. This feature is good for mathematical reason-
ing, but is unintuitive and tedious for writing a model [10].
Edola then possesses the advantages on both modeling and
mathematical reasoning by the transformational semantics.
The semantics of the complete Edola specification (based on
TLA+) depends on the time description. We will explain it
in the end of this section.

The semantics of the environmental model lies on whether
it’s a total one generated by the Edola compiler or not.
The former is illustrated by an TLA+ action EnvInput
which changes the input variables randomly on condition
of the type invariant is satisfied. The latter corresponds to
the TLA+ action definitions, similar to the ones for PLC
actions , except that the UNCHANGED statement denoting
the unchanged value for the input variables that are not
defined instead. The transformation for ENV TOTAL is shown
in Table I.

Table I
THE FORMAL SEMANTICS OF ENV TOTAL IN EDOLA

Edola definitions The formal semantics with TLA+

ENV TOTAL EnvInput
∆
=

∧
i ∈ ni

invar ′i ∈ ValRangei

A real-time TLA+ module RealTimeNew is provided to
interpret the time operators in Edola. The time in Edola is
logical and continuous, which was interpreted with a real
type variable now in TLA+. A time constraint in Edola is
then interpreted on an action denoting the constraints of
its enabling time with the running of real time now. Each
time pattern in Edola corresponds a defined time action in
RealTimeNew. The details of the time module are introduced
in our work [11].

Finally, we define the formal semantics of the Edola
dynamic behaviors. When there isn’t any time constraint in
a Edola module, the whole Edola specification is interpreted
as the formula SpecName , Init ∧ 2[Next]vars , where
SpecName is needed in TLA+, so it is generated by the
Edola compiler according to the module name. Init is the
formula name used for defining the initial state in Edola and
Next is defined by

Next
∆
= ∨ ∧ aux = 0

∧ EnvInput ∧ UNCHANGED SOV
∧ aux ′ = 1

∨ ∧ aux = 1
∧ SystemAction ∧ UNCHANGED IV
∧ aux ′ = 0.

(4)

EnvInput denotes the environment model we introduced
above. SOV denotes the system variables and the output
variables declared in Edola, while IV denotes the declared
input variables. SystemAction defines a complete set of pos-
sibilities for PLC responses, which includes all the expected
actions defined in the ACTION part, and the case when none
of them are enabled.

When there are time constraints in an Edola module, the
Edola specification is interpreted in a module RTModule ,
which extends a FuncModule for the functional modeling.
The specification is then illustrated by SpecName

∆
=

BigInit ∧ 2[BigNext]RTvars ∧ RTL, where the functional
semantic interpretations of Edola like Init , Next are same as
the former introduced ones, but encapsulated in the module
FuncModule . The initial state BigInit and the next-state
action BigNext of the timed specification is composed by
the functional parts and the settings of the variable now and
the n timers t1, . . . , tn appeared in the TIME part of the
Edola model.

D. Verification requests

The property definitions provided in Edola are illustrated
by the property definitions with temporal logic of actions
(TLA) in TLA+ language. The excerpt of the translation is
shown in Table II.

Table II
THE FORMAL SEMANTICS OF PROPERTY DEFINITIONS IN EDOLA

Edola Property definitions The formal semantics with TLA+

RESPOND (Act ,EnvS ,SysS) 2(EnvS ∧ ¬SysS
⇒ ¬(ENABLED Act))

COMPETE (Cond ,S1,S2) 2(Cond ⇒ ¬(State1 ∧ State2))
SEQUENCE (Act ,SysS) 2[Act ⇒ SysS]vars
PRIORITY (Act ,SysS) 2(SysS ⇒ (ENABLED Act

∧¬ENABLED (OtherActs)))
STATEINV (SysS) 2(SysS)
ACTINV (Act) 2(Act)vars

V. THE VERIFICATION OF EDOLA MODELS

Providing the automatic verification support for the Edola
language is important to improve its usability. Model check-
ing and automatic theorem proving are the two dominant
automatic verification methods. The Edola compiler imple-
ments the support for both model checking and automatic
theorem proving, with the intermediate language TLA+. To
make the verification procedure pragmatically efficient, we
took two major optimization strategies in the transformation
procedure.

First, when the environmental model is specified by the
ENV TOTAL keyword, the compiler will generate the formula
for EnvInput with the input clearing action ClearEnvInput
added, which resets the values of all the input variables
to the initial value. According to the PLC scan cycling
mechanism, PLC gathers the new values of its environment
at the beginning of each cycle, so the values of the input

284

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

variables in the last cycle are discarded. It ensures the logical
correctness of adding a ClearEnvInput action in the end of
each cycle. The new definition of Next saves much state
space and search space for verification and thus improves
the efficiency.

Second, when all the verification requests are functional
properties (which means that none of the timer variables
appears in the PROP part of Edola), even though some time
constraints are described in the TIME part, the compiler
will generate a un-timed TLA+ model for it. The reason
is that the timed model RTModule refines its functional
part FuncModule: RTModule ⇒ FuncModule , so that for
each property P , if it holds on the functional model, say
FuncModule ⇒ P , with the transitivity of logic implication,
it also holds for the timed model RTModule . As a result,
we can check the functional properties on the functional part
instead of the complete one, thus a better space and time cost
can be saved in the verification.

The model checking of the Edola model is achieved by
the transformation and the TLC model checker. As to the
automatic theorem proving support, we can prove inductive
invariants with the reasoning rule in TLA+:

Init ⇒ P , P ∧ Next ⇒ P ′, P ∧ v = v ′ ⇒ P ′

Init ∧2[Next]v ⇒ 2P
. (5)

The verification is then reduced to the first-order logic level
without temporal operators.

VI. THE EDOLA TOOL

We implemented a prototype IDE to model and verify
PLC systems with the Edola language, see Figure 3. The
tool includes an editor to write the model, and a compiler
to check, transform and verify the model. It is implemented
with Java 1.6. The interface is developed with Netbeans IDE
6.7 and the compiler is implemented with the scanner/parser
generator JavaCC 4.2 with the JJTree preprocessing func-
tionality. The compiler implements syntax and semantic
checking, and then the seamless integration of the model
checker TLC and the automatic theorem prover Spass to
verify an Edola model.

Beside the general semantic checking same with other
language compilers, the Edola compiler provides also se-
mantic checking specific to PLC applications. We check
whether the actions defined in ACTION part are possible to
execute one by one. If an action can never be executed,
an alarm information is provided. We also check whether
the disjunction of conditions for all the actions defined in
ACTION part is TRUE. If not, an alarm is provided.

The semantic checking and the later model checking
and automatic theorem proving provides strong verification
of Edola models. The checking procedure is completely
automatic.

Figure 3. The prototype IDE of Edola

VII. CASE STUDY

The Edola language and its IDE has been applied in
several medium-scale PLC applications,like the answering
machine problem, the steeves control in a theater and the
fire-fighting controls in a dock. In this section, the case
about a fire-fighting PLC system used for the docks is
chosen and presented to further illustrate and validate the
Edola language and its tool. We introduce the Edola model,
the TLC model checking and the Spass automatic theorem
proving of it, respectively.

In the Edola model, we set the physical connections
of the fire-fighting system as parameters. They are de-
clared as: FireCase for the set of fire cases, Cannon
for the set of used cannons, Valve for the set of valves,
CannonInCase() denoting which cannon is used in which
fire case, and BelongTo() representing which valve belongs
to the connection of which cannon.

The operations are described in the ACTION part of
Edola by a series of actions: PowerUp, OpenPump,
SelectCase(i), Confirm , HandleControl , ClosePump,
Cancel and PowerDown . The environmental model is cho-
sen to be generated automatically through the keyword ENV
TOTAL in the Edola model. No time constraint is needed in
the simplified case.

The 8 requested properties are specified in the TOPROVE
part. For example,

C losePumpNotRespond : RESPOND (ClosePump, (6)
s sysState = “cannonOnUse”, u button[“closepump”]).

asserts that the action ClosePump is disabled unless the

285

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

user has pressed the button closepump as well as the current
system state is “cannonOnUse”.

Model checking technique can be used to verify the
finite instances of a parameterized model. As a result, when
choosing TLC model checker as the verification tool in the
Edola IDE, a window is popped up to config the parameters.
We instantiate the model by 2 fire cases, 2 cannons, and 4
valves. The TLC model checker is then called automatically
to check the 8 properties. It generates 66, 713 different states
in total and verifies that all the 8 properties hold in 10.0
seconds.

We can also try to prove the 8 properties with the
integrated automatic theorem prover Spass. It can prove
the properties (if and only if they are inductive invariants)
directly on a parameterized Edola model, without the need
of instantiation. The result of proving the 8 properties are
shown in Table III. The two popular verification methods
complement each other and provide the powerful verification
capability for Edola.

Table III
THE SPASS PROVING RESULT OF THE 8 PROPERTIES IN EDOLA IDE

Properties Spass result Time
1. ClosePumpNotRespond Proof found. 12.4s
2. SelectCaseNotRepsond Proof found. 10.6s
3. CaseSelectOnlyOne Proof found. 1m33s
4. CannonUsedOnlyByOne Proof found. 39.2s
5. ValveMutex Proof found. 18m33s
6. OpenPumpAfterPower Proof found. 1m37s
OpenPump ⇒
s buttonLight [“power”] Completion found. 17.2s
�Inv Proof found. 1m26s
OpenPump ∧ Inv
⇒ s buttonLight [“power”] Proof found. 10.3s

7. SelectAfterOpenPump Proof found. 1m49s
8. ClosePowerAlwaysRespond Proof found. 16.2s

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel PLC domain-specific
modeling language Edola. It provides useful notations to
denote the features of PLC like reactivity, scan cycling,
real-time and property patterns. As a result, with the Edola
language, we can get a better understanding and easier
modeling of PLC applications. It is noteworthy that both the
two popular automatic verification methods: model checking
and automatic theorem proving are supported in Edola
modeling. To implement this functionality, we adopt the
TLA+ specification language as the intermediate language
between Edola and the verification tools, enhancing a large
degree of reusability. A prototype IDE for Edola has been
implemented, which provides the user-friendly interface for
modeling and the seamless integration of two tools TLC and
Spass for verification.

As to the future work, we will enrich the Edola language
with module compositions, action priorities, etc. to increase
its expressiveness. The support of other verification tools like

the model checker UPPAAL [12] and the theorem prover
CVC3 [13] will also be considered.

ACKNOWLEDGMENT

This research is supported in part by NSFC Pro-
grams (No.91018015, No.60811130468) and 973 Program
(No.2010CB328003) of China.

REFERENCES

[1] R.W. Lewis. Programming industrial control systems using
IEC 1131-3,volume 50 of Control Engineering Series. The In-
stitution of Electrical Engineers, Stevenage, United Kingdom,
1998.

[2] F. Bonfatti, P.D. Monari, and U. Sampieri. IEC 1131-
3 Programming Methodology. CJ International, Fontaine,
France, 1999.

[3] R.Wang, X.Song, and M. Gu. Modelling and verification
of program logic controllers using timed automata. IET
Software, 4:127–131, 2007.

[4] Hehua Zhang, Ming Gu, and Xiaoyu Song. Modeling and
analysis of stage machinery control systems by timed colored
Petri nets. In Proceedings of the 3rd International Symposium
on Industrial Embedded Systems, (SIES 2008), pages 103–
110, 2008.

[5] G. Canet, S. Couffin, J. J Lesage, A. Petit, and Ph. Schnoebe-
len. Towards the automatic verification of PLC programs writ-
ten in instruction list. In Proceedings of IEEE International
conference on Systems, Man and Cybernetics (SMC’2000),
pages 2449–2454, 2000.

[6] Hehua Zhang, Stephan Merz, and Ming Gu. Specifying and
verifying plc systems with TLA+. In Proceedings of the
3rd IEEE International Symposium on Theoretical Aspects
of Software Engineering (TASE 2009), pages 293–294, 2009.

[7] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model
checking TLA+ specifications. In Proceedings of Correct
Hardware Design and Verification Methods (CHARME’99),
volume 1703, pages 54–66. Springer Verlag, 1999.

[8] The SPASS homepage: http://www.spass-prover.org/index.
html[Accessed: 13 Aug. 2011].

[9] Leslie Lamport. Specifying Systems. Addison-Wesley,
2002. See also http://research.microsoft.com/users/lamport/
tla/tla.html.

[10] Leslie Lamport and Lawrence C. Paulson. Should your
specification language be typed. ACM Trans. Program. Lang.
Syst., 21(3):502–526, 1999.

[11] Hehua Zhang, Ming Gu, and Xiaoyu Song. Specifying
time-sensitive systems with TLA+. In 34th Annual IEEE
International Computer Software & Applications Conference
(COMPSAC 2010), pages 425–430, 2010.

[12] The UPPAAL homepage: http://www.uppaal.com/[Accessed:
13 Aug. 2011].

[13] The CVC3 homepage: http://www.cs.nyu.edu/acsys/
cvc3/[Accessed: 13 Aug. 2011].

286

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

