
Functional Complexity Measurement: Proposals and Evaluations

Luigi Lavazza

Dipartimento di Informatica e Comunicazione

Università degli Studi dell’Insubria

Varese, Italy

luigi.lavazza@uninsubria.it

Gabriela Robiolo

Departamento de Informática

Universidad Austral

Buenos Aires, Argentina

grobiolo@austral.edu.ar

Abstract — Several definitions of measures that aim at

representing the size of software requirements are currently

available. These measures have gained a quite relevant role,

since they are one of the few types of objective data upon which

effort estimation can be based. However, traditional

Functional Size Measures do not take into account the amount

and complexity of elaboration required, concentrating instead

on the amount of data accessed or moved. This is a problem,

when it comes to effort estimation, since the amount and

complexity of the required data elaboration affect the

implementation effort, but are not adequately represented by

the current measures, including the standardized ones.

Recently, a few approaches to measuring aspects of user

requirements that are supposed to be related with functional

complexity and/or data elaboration have been proposed by

researchers. The authors of this paper have also proposed a

measure of the functional complexity as specified in user

requirements. In this paper we take into consideration some of

these proposed measures and compare them with respect to

their ability to predict the development effort, especially when

used in combination with COSMIC measures of functional

size.

Keywords-Functional size measurement; Function Points;

COSMIC function points; effort estimation; functional

complexity measurement.

I. INTRODUCTION

COSMIC function points [8][12] are growingly used for
measuring the functional size of applications, i.e., to measure
the size of functional user requirements. The measure of
functional size is typically used to drive the estimation of the
development effort. To this end, effort models require
several inputs in addition to the functional size, including the
complexity of the software to be [3][7]. In fact, problem
complexity is recognized as one of the elements that
contribute to the comprehensive notion of software size [9].

The need to account for software complexity when
estimating the development effort does not depend on the
functional size measurement method used: for instance,
when more traditional measures of the functional size –like
IFPUG function points [12]– are used, complexity has to be
accounted for as well.

Actually, both COSMIC and IFPUG function points fail
to represent the amount and complexity of data elaboration
required. COSMIC function points concentrate on the
measure of the data movements, neglecting the data

elaboration. More precisely, the model of software used by
the COSMIC method –illustrated in Figure 1–includes data
elaboration, but no indication on how to measure it is
provided. The COSMIC measurement manual [8] simply
assumes that every data movement accounts for some
amount of data elaboration, and that such amount is
proportional to the number of data movements, so that by
measuring data movements one measures also data
manipulation.

 Functional User

Requirements

Sub-process types

Functional
Process Type

Data Movement

Type

Data Manipulation

Type

Figure 1. The COSMIC generic software model.

Before proceeding, it is useful to spend some words on
the fact that throughout the paper we treat the terms
“complexity” and “amount of data elaboration” as
synonyms. This is due to the fact that complexity is an
inherently elusive concept, and also to the fact that at the
functional requirements level it is not clear what should be
the difference between the amount and the complexity of
data elaboration: for instance, in many cases, complexity is
considered proportional to the number of alternatives in a
process execution, but this number is also clearly related to
the size of the process.

When dealing with effort estimation, the most popular
methods require an evaluation of the complexity of the
application. Currently such evaluation is of a purely
qualitative nature. For instance, COCOMO II [7] provides a
table that allows the user to evaluate complexity on an
ordinal scale (from “very low” to “extra high”) according to
five aspects (control operations, computational operations,
device-dependent operations, data management operations,
user interface management operations) that have to be
evaluated in a qualitative and subjective way: e.g., the
characterization of computational operations corresponding

257

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

to the “Nominal” complexity is “Use of standard math and
statistical routines. Basic matrix/vector operations” [7].

It is quite clear that it would be greatly beneficial to
replace such subjective and approximate assessment of
complexity with a real measure, based on objective and
quantitative evaluations, since this would enable the
construction of more objective and accurate models of effort.

Several different possible measures of functional
complexity were proposed. For instance, in [5] the number of
inputs and outputs, the number of decision nodes, the sum of
predicates of all decision nodes, the depth of decision tree
and the length of paths are considered as possible indicators
of complexity.

In [6], Cao et al. propose the usage of the number of data
groups (NOD), the number of conditions (NOC) and entropy
of system (EOS). They also study how these measures (also
in combination with COSMIC FP) are correlated with the
development effort.

Another measure of complexity, the Paths, was defined
on the basis of the information typically available from use
case descriptions [21]. The measure of the complexity of use
cases is based on the application of the principles of
McCabe’s complexity measure [18] to the descriptions of
use cases in terms of scenarios. In fact, use cases are usually
described giving a main scenario, which accounts for the
‘usual’ behaviour of the user and system, and a set of
alternative scenarios, which account for all the possible
deviations from the normal behaviour that have to be
supported by the system. Robiolo and Orosco [21] apply to
the use case textual descriptions the same measure applied
by McCabe to code. Every different path in a given use case
scenario contributes to the measure of the use case’s
complexity. The definition of Paths conforms to several
concepts enounced by Briand et al. [4]: Paths represent “an
intrinsic attribute of an object and not its perceived
psychological complexity as perceived by an external
observer”, and they represent complexity as “a system
property that depends on the relationship between elements
and is not an isolated element's property”. A detailed
description of the Paths measure and its applicability to use
cases described in UML can be found in [15].

Previous work showed that effort models that take into
consideration complexity measures are more precise than
those based on the functional size only. In particular, the
authors of this paper showed that development effort
correlates well with COSMIC function points and Path [15],
and that the inclusion of a Path-based complexity measure
improves the models based on size, whatever size measure is
used (IFPUG Function Points, CFP, or even Use Case
Points) [16].

In this paper we enhance the dataset used in [16] with
some measures that represent potential complexity
dimensions, build effort estimation models that exploit these
measures, and discuss the precision of fit of these models.

The results of the measurements and analyses reported in
the paper contribute to enhancing the knowledge of how it is
possible to measure functional complexity at the
requirements level, and what is the contribution of such
measure to effort estimation.

II. THE EXPERIMENTAL EVALUATION

In the research work reported here, we used measures
that are conceptually very close to those proposed in
previous studies [5][6]. However, we did not stick exactly to
the previous proposals, essentially for practical reasons. We
used Paths instead of NOC because both measures capture
essentially the same meaning, and the measures of Paths
were already available. Similarly, we used the number of
data groups instead of NOD, because –having measured the
size of the applications in CFP, the documentation on the
data groups was already available, thus the measurement
could be performed very easily.

Finally, we decided to use another “by product” of CFP
measurement, namely the number of functional processes, as
a simplified measure of size.

A. The Dataset

In order to evaluate the measures mentioned above with
respect to their usability as effort predictors, we collected all
such measures for a set of projects. We could not use data
from the best known repositories –such as the PROMISE or
ISBSG– because they do not report the size of each project
according to different FSM methods; moreover, the Paths
measure is very recent, and no historical data exist for it.

TABLE 1. THE DATASET

ProjID
Actual

effort
Path CFP

Func.

Proc.

Data

groups

Pers.

DG

P1 410 71 143 39 21 7

P2 473.5 73 118 28 15 9

P3 382.4 60 109 24 15 12

P4 285 49 74 25 14 8

P5 328 34 48 12 17 7

P6 198 35 67 10 15 7

P7 442.02 50 81 16 12 6

P8 722.65 97 115 27 19 10

P9 392 83 105 24 22 11

P10 272 42 73 21 9 9

P11 131 18 51 13 5 5

P12 1042 118 85 30 29 12

P13 348 32 46 12 12 6

P14 242.5 68 96 26 18 9

P15 299.76 33 54 12 12 4

P16 147 20 53 14 15 4

P17 169 17 30 5 10 6

We measured 17 small business projects, which were

developed in three different contexts: an advanced
undergraduate academic environment at Austral University,
the System and Technology (S&T) Department at Austral

258

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

University and a CMM level 4 Company. The involved
human resources shared a similar profile: advanced
undergraduate students who had been similarly trained
worked both at the S&T Department and at the CMM level 4
Company. All the selected projects met the following
requisites:
a) Use cases describing requirements were available.
b) All projects were new developments.
c) The use cases had been completely implemented, and the

actual development effort in PersonHours was known.
The dataset is reported in TABLE 1. Note that we

distinguished the number of persistent data groups (column
Pers. DG) from the total number of data groups, which
includes also transient data groups. Our hypothesis is that
persistent data groups are more representative of the amount
of data being handled by the application.

B. Analysis of the dataset using log-log transformations

As a first approach to evaluating the correlation of effort
with other measures, we used linear regression after log-log
transformation, as is usually done in studies concerning
effort (see for instance COCOMO [3][7]).

We started by checking the correlation between effort
and CFP. The results are not very good: after eliminating
outliers, we got a model featuring adjusted R

2
 = 0.335.

Then we moved to univariate analysis of the correlation
between Effort and each variable mentioned in TABLE 1:
– Path [Path]
– COSMIC Function Points [CFP]
– Functional Processes [FPr]
– Data Groups [DG]
– Persistent Data Groups [PDG]

 We also systematically tested the correlation between
effort and the following density measures:
– Path per Functional Process [Path/FPr]
– Path per CFP [Path/CFP]
– Data Groups per Functional Process [DG/FPr]
– Data Groups per CFP [DG/CFP]
– Persistent Data Groups per Functional Process

[PDG/FPr]
– Persistent Data Groups per CFP [PDG/CFP]

These density measures introduce the concept of
complexity per size unit. The complexity of a system is a
property that depends on the relationships among system’s
elements [4]. So, the measures listed above represent the
density of relationships among elements per unit size. As
size units we adopted both the fine grained CFP and the
coarse grained number of functional processes. In fact, the
number of functional processes is suggested as a reasonable
approximation of the size in CFP in [8].

Quite interestingly, we got significant models only based
on variables involving Paths. The results are synthetically
reported in TABLE 2. For each model, we have also assessed
the precision of the fit by using what are considered the de
facto currently used goodness-of-fit indicators in Empirical
Software Engineering, i.e., the Mean Magnitude of Relative
Error (MMRE) and the percentage of data points whose
actual effort falls within 75% and 125% of the estimated
value (pred(25)) and the error range.

In TABLE 2 are reported only the models that satisfy the
applicability conditions of linear regression (e.g., the
residuals are normally distributed), are statistically
significant (e.g., their p-value is < 0.05), and have coefficient
of determination (Adjusted R

2
) sufficiently high (>0.6).

TABLE 2. CORRELATIONS WITH EFFORT (LOG-LOG UNIVARIATE REGRESSION)

Var.
Adj.

R2
p-value Outl. MMRE Pred(25)

Error

range

Path 0.79 < 10-5 2 22.7 70.6
-35%..

82%

Path/FPr 0.73 < 10-3 5 37.2 58.8
-48% ..

169%

Path/CFP 0.65 < 10-4 0 24.1 52.9
-43% ..

66%

The regression line of the model representing Effort vs.

Paths –which appears as the best univariate model– is
illustrated in Figure 2.

3.0 3.5 4.0 4.5

5
.0

5
.5

6
.0

6
.5

Path

A
c
tu

a
l
E

ff
o

rt

Figure 2. Effort vs. Path: log-log regression line.

The distribution of relative residuals is given in Figure 3.

-4
0

-2
0

0
2
0

4
0

6
0

8
0

%
 r
e

s
id

u
a

ls

Figure 3. Log-log regression of effort vs. Path: distribution of relative

residuals.

259

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

We then proceeded to the analysis via multiple
regression. Again, we systematically tested the correlation of
Effort with any combination of the aforementioned variables.

The statistically significant models obtained are reported
in TABLE 3.

TABLE 3. CORRELATIONS WITH THE ACTUAL EFFORT (LOG-LOG MULTIPLE

REGRESSION)

Var.
Adj.

R2
Pr(>|t|) Outl. MMRE Pred(25)

Error

range

FPr,

Path /FPr
0.71 < 10-3 1 19.4 70.6

-37%..

67%

FPr,

Path /CFP
0.78 < 10-3 0 18.7 82.4

-31% ..

80%

Path/FPr,

PDG/FPr
0.64 < 10-3 1 22.9 64.7

-45% ..

53%

Path/CFP,

DG/FPr
0.69 < 0.03 1 22.6 64.7

-30% ..

73%

Path/CFP,

DG/CFP
0.72 <0.02 1 21.3 64.7

-41%..

69%

Path/CFP,

PDG/FPr
0.75 <0.02 0 18.5 70.6

-35%..

74%

Path/CFP,

PDG/CFP
0.80 < 10-2 0 17.8 82.4

-36%..

72%

DG,

Path/FPr,

DG/FPr

0.75 < 10-2 0 18.6 70.6
-29%..

76%

Path/FPr,

DG/CFP,

PDG/FPr

0.67 <0.05 3 23.9 58.8
-66%..

79%

It is quite interesting to see that none of the obtained

models uses size in CFP as an independent variable. On the
contrary, most of the other variables (including size
expressed as number of Functional Processes, computation
density, amount of data and data density) can be used to
build valid and significant models.

It is also interesting to see that these models appear quite
good both in terms of their ability to explain the variation of
effort depending on the variation of the size and complexity
measures (as indicated by the values of the adjusted R

2
) and

in terms of precision of the fit (as indicated by MMRE,
pred(25) and the relative error range).

Although it is quite clear that some models appear better
than others, e.g., with respect to precision of fit and adjusted
R

2
, it is not so obvious which one is best.
A possible way for identifying the best model is by

comparison of the relative absolute residuals (since we are
considering the ability to predict effort, we have to look at
relative absolute residuals, since an error of, say, two
PersonMonths can be irrelevant or very important,
depending on the total effort). The models that feature the
highest values of the adjusted R

2
 are those based on

a) Paths
b) Path per CFP and PersistentDataGroups per CFP
c) Functional Processes and Path per CFP

The boxplots representing relative absolute residuals of
these models are reported in Figure 4 .

a) b) c)

0
2

0
4

0
6

0
8

0

%
 r

e
s
id

u
a

ls

Figure 4. Model comparison: relative absolute residuals.

The comparison of boxplots does not allow selecting a
model as clearly the best, although it seems that the
univariate model is a bit less precise than both the other two
models. In order to evaluate whether a model can be elected
the best, Kitchenham et al. [14] suggest to use paired tests of
the absolute residuals. We then proceeded to compute the
paired tests. We used t-tests when appropriate (i.e., when the
distributions were close to normal) and the Wilcoxon signed
rank test otherwise. Also the paired tests did not indicate a
clear winner. Therefore, we must conclude that further
research is needed to understand if it is possible to build a
model that explains in the best possible manner the
dependency of effort from size and complexity measures.

C. Analysis of the dataset using plain linear regression

Having performed the analysis on log-log transformed
data, we checked if valid and significant models can be built
using ordinary least squares (OLS) linear regression, i.e.,
without log-log (or any other) transformation.

We found that a linear model linking Effort and Paths
exists: it features adjusted R

2
 = 0.71, p-value < 10

-3
, MMRE

= 23.5%, Pred(25) = 58.8%, Error range = -33% .. 81%.
The models involving two independent variables are

summarized in TABLE 4.

TABLE 4. CORRELATIONS WITH THE ACTUAL EFFORT (OLS MULTIPLE

REGRESSION)

Var.
Adj.

R2
Pr(>|t|) Outl. MMRE Pred(25)

Error

range

CFP,

Path /CFP 0.82 < 10-3 4 18.5% 76.5%

-20%..

84%

FPr,

Path/CFP 0.64 < 10-2 3 20% 76.5%

-31%..

76%

It is interesting to note that in this case the best model
involves the usage of a size measure (CFP) and a complexity
density measure (Paths/CFP).

260

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

III. DISCUSSION

The only models based on a single variable that feature
adjusted R

2
 greater than 0.6 involve either Path or Path

density. Anyway, Path seems to be better than both Path per
CFP and Path per Functional Processes as far as R

2
, MMRE

and Pred(25) are concerned. The reason why Path appears as
a good predictor of effort is probably that this measure
summarizes the needed information concerning both size (a
la COSMIC) and amount of required elaboration.

Concerning models using two independent variables, we
can observe that they appear of similar precision (e.g.,
MMRE ranges from 17.8% to 23.9%).

As already mentioned, there is no statistically evidence
that any of these models features a better fitting that
univariate models.

Also in these models, Path per CFP appears as an
independent variable in several good models, together with
– the density of data (DataGroups per CFP, DataGroups

per FunctionalProcess, PersistentDataGroups per CFP or
PersistentDataGroups per FunctionalProcess);

– the number of functional processes.
Interestingly, the persistent data groups (a concept close

to unweighted data functions in Function Point Analysis)
appear to be a better predictor than the whole number of data
groups (i.e., including transient ones).

Path per Functional Process provides –as Path per CFP–
good models in combination with the density of data
(PersistentDataGroups per FunctionalProcess) or the number
of functional processes.

It should be noted that we found some models based
exclusively on density (such as the second and third in TABLE

2 or the seventh in TABLE 3). These models are rather
unexpected, as they say that the size of the programs is not
important at all. This result is probably due to the fact that
the variation of size was relatively little in the set of projects
that we analysed. Additional research is needed to explore
this point.

Finally, Path per Functional Process appears also as an
argument in models featuring three independent variables.
So, the complexity density (i.e., Paths divided by a size
measure) appears in all the models.

When considering models obtained via OLS regression
(i.e., without log-log transformation) we find again an
elaboration density measure (Path per CFP), this time in
combination with a size measure (CFP or Functional
Processes).

IV. RELATED WORK

A few attempts to account for data elaboration in FSM
have been done.

3D Function Points [22] consider three dimensions of the
application to be measured: Data, Function, and Control. The
Function measurement considers the complexity of
algorithms; and the Control portion measures the number of
major state transitions within the application.

Bernárdez et al. [2] measured the cyclomatic complexity
of a use case in order to validate the use case definition,
while Levesque [17] measured the conditions of inputs in a

sequential diagram in order to add the concept of complexity
to the COSMIC method.

Bashir and Thomson [1] used traditional regression
analysis to derive two types of parametric models: a single
variable model based on product complexity and a
multivariable model based on product complexity and
requirements severity. Generally, the models performed well
according to a number of accuracy tests. In particular,
product complexity explained more than 80% of variation in
estimating effort. They concluded that product complexity as
an indicator for project size is the dominant parameter in
estimating design effort.

Our results are in agreement with those by Bashir and
Thomson, in fact several of our models explain 80% (or just
slightly less) of the variation of effort.

Hastings and Sajeev [11] proposed a Vector Size
Measure (VSM) that incorporates both functionality and
problem complexity in a balanced and orthogonal manner.
VSM is used as the input to a Vector Prediction Model
(VPM) which can be used to estimate development effort
early in the software life cycle. The results indicate that the
proposed technique allows for estimating the development
effort early in the software life cycle with errors not greater
than 20% across a range of application types.

Our results are in accordance with the consideration
expressed by Morasca on the definition of measures [19] as it
appears that the notion of complexity may be represented by
taking into account several basic indicators (size, control
flow, data, ...) that can be used individually (i.e., without the
need to build a derived measure defined as a weighted sum)
in estimation models.

Finally, Gencel and Demirors [10] point out that we still
need a new Base Functional Component (BFC) Types for
the boolean operations of Functional User Requirements,
which are often not considered to be algorithmic operations,
but which are related to complexity. This point of view
highlights the necessity of considering the complexity of
elaboration required in FSM, and they suggested
introducing as a new BFC type which differs from authors’
proposal.

V. CONCLUSIONS

The work reported here moves from the consideration
that development effort depends (also) on the complexity or
the amount of computation required, but no suitable measure
has emerged as a reliable way for capturing such complexity.
In fact, very popular methods like COCOMO II [3][7] still
use just an ordinal scale measure for complexity, based on
the subjective evaluation performed by the user.

We approached the problem of measuring the required
functional complexity by considering (a subset of) the
approaches presented in the literature, and testing them on a
set of projects that were measured according to the COSMIC
FSM.

The results of our analysis do not allow us to draw
definite conclusions about the best set of measures to use for
effort estimation. However, we observed that all the most
significant models obtained were based on a notion of
computation density, which is based on the measure of Paths

261

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[21], i.e., the number of computation flows in functional
processes.

Since Paths are quite easy to measure [15] and appear as
good effort predictors, we suggest that future research on
COSMIC based effort estimation takes into consideration the
possibility of involving a Path based measure of functional
complexity.

We plan to continue experimenting with measures of
functional complexity. Since in this type of experimentations
a critical point is the difficulty to get measures, we kindly
invite all interested readers that are involved in effort
estimations to perform functional complexity measurement
and share the data with us and the research community.

ACKNOWLEDGMENT

The research presented in this paper has been partially
funded by the IST project QualiPSo [20], sponsored by the
EU in the 6th FP (IST-034763), the project “Metodi e
tecniche per l’analisi, l’implementazione e la valutazione di
sistemi software” funded by the Università degli Studi
dell’Insubria, and the Research Fund of School of
Engineering of Austral University.

REFERENCES

[1] Bashir, H. and Thomson,V. Models for estimating design effort and
time. Elsevier. Design Studies, vol.22, n.2, 2001.

[2] Bernárdez B., Durán A., and Genero M. Empirical Evaluation and
Review of a Me-trics–Based Approach for Use Case Verification.
Journal of Research and Practice in Information Technology, vol. 36
n. 4, 2004.

[3] Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K.,
Steece, B., Winsor Brown, A., Chulani S., and Abts, C. Software Cost
Estimation with Cocomo II. Prentice Hall, 2000.

[4] Briand L.C., Morasca S., and Basili V.R. Property-Based Software
Engineering Measurement. IEEE Transactions on Software
Engineering, Vol. 22, 1996.

[5] Cao, De Tran, Lévesque, G., and Abran, A. From Measurement of
Software Functional Size to Measurement of Complexity, ICSM
2002, Montreal, Canada , 2002.

[6] Cao, De Tran, Lévesque, G., and Meunier, J-G. A Field Study of
Software Functional Complexity Measurement, 14th International
Workshop on Software Measurement, IWSM/METRIKON’04,
Berlin, 3-5 November 2004.

[7] COCOMO II Model Definition Manual. http://
csse.usc.edu/csse/research/COCOMOII/ cocomo_downloads.htm

[8] COSMIC – Common Software Measurement International
Consortium, 2009. The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual (The COSMIC
Implementation Guide for ISO/IEC 19761: 2003), May 2009.

[9] Fenton, N.E. Software Metrics: A Rigorous Approach. Chapman and
Hall, London, 1991.

[10] Gencel, C. and Demirors, O. Functional Size Measurement Revisited.
ACM Transactions on Software Engineering and Methodology,
17(3), 2008.

[11] Hastings, T. and Sajeev, A. A Vector-Based Approach to Software
Size Measurement and Effort Estimation. IEEE Transactions on
Software Engineering, vol.27 n.4. 2001.

[12] ISO/IEC19761:2003, Software Engineering – COSMIC-FFP – A
Functional Size Measurement Method, ISO.

[13] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1 Unadjusted
functional size measurement method – Counting Practices Manual,
International Organization for Standardization, Geneve.

[14] Kitchenham, B., Pfleeger, S.L., McColl, B., and Eagan, S., An
empirical study of maintenance and development accuracy, Journal of
Systems and Software, vol. 64, 2002.

[15] Lavazza, L. and Robiolo, G. Introducing the Evaluation of
Complexity in Functional Size Measurement: a UML-based
Approach, 4th International Symposium on Empirical Software
Engineering and Measurement - ESEM 2010, Bozen, 16-17
September 2010.

[16] Lavazza, L. and Robiolo, G., The Role of the Measure of Functional
Complexity in Effort Estimation, 6th International Conference on
Predictive Models in Software Engineering (PROMISE 2010),
Timisoara, Romania, 12-13 September 2010.

[17] Levesque G., Bevo V., and Cao, De Tran, Estimating Software size
with UML Models. In Proceedings of the 2008 C3S2E conference,
ACM International Conference Pro-ceeding Series, vol. 290, 2008.

[18] McCabe, T.J. A complexity measure. IEEE Transactions on Software
Engineering, vol.2, n.4, 2005.

[19] Morasca, S. On the use of weighted sums in the definition of
measures. ICSE Workshop on Emerging Trends in Software Metrics
(WETSoM '10), Cape Town, South Africa, May 04, 2010.

[20] QualiPSo project portal. http://www.qualipso.eu/

[21] Robiolo, G. and Orosco, R. Employing use cases to early estimate
effort with simpler metrics. Innovations Syst. Softw. Eng, vol.4,
2008.

[22] Whitmire, A., An Introduction to 3D Function Points, Software
Development, vol. 3 n.4, 1995.

262

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

