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Abstract — Several definitions of measures that aim at 

representing the size of software requirements are currently 

available. These measures have gained a quite relevant role, 

since they are one of the few types of objective data upon which 

effort estimation can be based. However, traditional 

Functional Size Measures do not take into account the amount 

and complexity of elaboration required, concentrating instead 

on the amount of data accessed or moved. This is a problem, 

when it comes to effort estimation, since the amount and 

complexity of the required data elaboration affect the 

implementation effort, but are not adequately represented by 

the current measures, including the standardized ones. 

Recently, a few approaches to measuring aspects of user 

requirements that are supposed to be related with functional 

complexity and/or data elaboration have been proposed by 

researchers. The authors of this paper have also proposed a 

measure of the functional complexity as specified in user 

requirements. In this paper we take into consideration some of 

these proposed measures and compare them with respect to 

their ability to predict the development effort, especially when 

used in combination with COSMIC measures of functional 

size. 

Keywords-Functional size measurement; Function Points; 

COSMIC function points; effort estimation; functional 

complexity measurement. 

I.  INTRODUCTION 

COSMIC function points [8][12] are growingly used for 
measuring the functional size of applications, i.e., to measure 
the size of functional user requirements. The measure of 
functional size is typically used to drive the estimation of the 
development effort. To this end, effort models require 
several inputs in addition to the functional size, including the 
complexity of the software to be [3][7]. In fact, problem 
complexity is recognized as one of the elements that 
contribute to the comprehensive notion of software size [9]. 

The need to account for software complexity when 
estimating the development effort does not depend on the 
functional size measurement method used: for instance, 
when more traditional measures of the functional size –like 
IFPUG function points [12]– are used, complexity has to be 
accounted for as well. 

Actually, both COSMIC and IFPUG function points fail 
to represent the amount and complexity of data elaboration 
required. COSMIC function points concentrate on the 
measure of the data movements, neglecting the data 

elaboration. More precisely, the model of software used by 
the COSMIC method –illustrated in Figure 1–includes data 
elaboration, but no indication on how to measure it is 
provided. The COSMIC measurement manual [8] simply 
assumes that every data movement accounts for some 
amount of data elaboration, and that such amount is 
proportional to the number of data movements, so that by 
measuring data movements one measures also data 
manipulation. 
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Sub-process types

Functional 
Process Type

Data Movement 

Type
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Type

 

Figure 1. The COSMIC generic software model. 

Before proceeding, it is useful to spend some words on 
the fact that throughout the paper we treat the terms 
“complexity” and “amount of data elaboration” as 
synonyms. This is due to the fact that complexity is an 
inherently elusive concept, and also to the fact that at the 
functional requirements level it is not clear what should be 
the difference between the amount and the complexity of 
data elaboration: for instance, in many cases, complexity is 
considered proportional to the number of alternatives in a 
process execution, but this number is also clearly related to 
the size of the process.  

When dealing with effort estimation, the most popular 
methods require an evaluation of the complexity of the 
application. Currently such evaluation is of a purely 
qualitative nature. For instance, COCOMO II [7] provides a 
table that allows the user to evaluate complexity on an 
ordinal scale (from “very low” to “extra high”) according to 
five aspects (control operations, computational operations, 
device-dependent operations, data management operations, 
user interface management operations) that have to be 
evaluated in a qualitative and subjective way: e.g., the 
characterization of computational operations corresponding 
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to the “Nominal” complexity is “Use of standard math and 
statistical routines. Basic matrix/vector operations” [7]. 

It is quite clear that it would be greatly beneficial to 
replace such subjective and approximate assessment of 
complexity with a real measure, based on objective and 
quantitative evaluations, since this would enable the 
construction of more objective and accurate models of effort. 

Several different possible measures of functional 
complexity were proposed. For instance, in [5] the number of 
inputs and outputs, the number of decision nodes, the sum of 
predicates of all decision nodes, the depth of decision tree 
and the length of paths are considered as possible indicators 
of complexity. 

In [6], Cao et al. propose the usage of the number of data 
groups (NOD), the number of conditions (NOC) and entropy 
of system (EOS). They also study how these measures (also 
in combination with COSMIC FP) are correlated with the 
development effort. 

Another measure of complexity, the Paths, was defined 
on the basis of the information typically available from use 
case descriptions [21]. The measure of the complexity of use 
cases is based on the application of the principles of 
McCabe’s complexity measure [18] to the descriptions of 
use cases in terms of scenarios. In fact, use cases are usually 
described giving a main scenario, which accounts for the 
‘usual’ behaviour of the user and system, and a set of 
alternative scenarios, which account for all the possible 
deviations from the normal behaviour that have to be 
supported by the system. Robiolo and Orosco [21] apply to 
the use case textual descriptions the same measure applied 
by McCabe to code. Every different path in a given use case 
scenario contributes to the measure of the use case’s 
complexity. The definition of Paths conforms to several 
concepts enounced by Briand et al. [4]: Paths represent “an 
intrinsic attribute of an object and not its perceived 
psychological complexity as perceived by an external 
observer”, and they represent complexity as “a system 
property that depends on the relationship between elements 
and is not an isolated element's property”. A detailed 
description of the Paths measure and its applicability to use 
cases described in UML can be found in [15]. 

Previous work showed that effort models that take into 
consideration complexity measures are more precise than 
those based on the functional size only. In particular, the 
authors of this paper showed that development effort 
correlates well with COSMIC function points and Path [15], 
and that the inclusion of a Path-based complexity measure 
improves the models based on size, whatever size measure is 
used (IFPUG Function Points, CFP, or even Use Case 
Points) [16].  

In this paper we enhance the dataset used in [16] with 
some measures that represent potential complexity 
dimensions, build effort estimation models that exploit these 
measures, and discuss the precision of fit of these models. 

The results of the measurements and analyses reported in 
the paper contribute to enhancing the knowledge of how it is 
possible to measure functional complexity at the 
requirements level, and what is the contribution of such 
measure to effort estimation. 

II. THE EXPERIMENTAL EVALUATION 

In the research work reported here, we used measures 
that are conceptually very close to those proposed in 
previous studies [5][6]. However, we did not stick exactly to 
the previous proposals, essentially for practical reasons. We 
used Paths instead of NOC because both measures capture 
essentially the same meaning, and the measures of Paths 
were already available. Similarly, we used the number of 
data groups instead of NOD, because –having measured the 
size of the applications in CFP, the documentation on the 
data groups was already available, thus the measurement 
could be performed very easily. 

Finally, we decided to use another “by product” of CFP 
measurement, namely the number of functional processes, as 
a simplified measure of size. 

A. The Dataset 

In order to evaluate the measures mentioned above with 
respect to their usability as effort predictors, we collected all 
such measures for a set of projects. We could not use data 
from the best known repositories –such as the PROMISE or 
ISBSG– because they do not report the size of each project 
according to different FSM methods; moreover, the Paths 
measure is very recent, and no historical data exist for it. 

TABLE 1. THE DATASET 

ProjID 
Actual 

effort 
Path CFP 

Func. 

Proc. 

Data 

groups 

Pers. 

DG 

P1 410 71 143 39 21 7 

P2 473.5 73 118 28 15 9 

P3 382.4 60 109 24 15 12 

P4 285 49 74 25 14 8 

P5 328 34 48 12 17 7 

P6 198 35 67 10 15 7 

P7 442.02 50 81 16 12 6 

P8 722.65 97 115 27 19 10 

P9 392 83 105 24 22 11 

P10 272 42 73 21 9 9 

P11 131 18 51 13 5 5 

P12 1042 118 85 30 29 12 

P13 348 32 46 12 12 6 

P14 242.5 68 96 26 18 9 

P15 299.76 33 54 12 12 4 

P16 147 20 53 14 15 4 

P17 169 17 30 5 10 6 

 
We measured 17 small business projects, which were 

developed in three different contexts: an advanced 
undergraduate academic environment at Austral University, 
the System and Technology (S&T) Department at Austral 
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University and a CMM level 4 Company. The involved 
human resources shared a similar profile: advanced 
undergraduate students who had been similarly trained 
worked both at the S&T Department and at the CMM level 4 
Company. All the selected projects met the following 
requisites: 
a) Use cases describing requirements were available. 
b) All projects were new developments. 
c) The use cases had been completely implemented, and the 

actual development effort in PersonHours was known. 
The dataset is reported in TABLE 1. Note that we 

distinguished the number of persistent data groups (column 
Pers. DG) from the total number of data groups, which 
includes also transient data groups. Our hypothesis is that 
persistent data groups are more representative of the amount 
of data being handled by the application. 

B. Analysis of the dataset using log-log transformations 

As a first approach to evaluating the correlation of effort 
with other measures, we used linear regression after log-log 
transformation, as is usually done in studies concerning 
effort (see for instance COCOMO [3][7]).  

We started by checking the correlation between effort 
and CFP. The results are not very good: after eliminating 
outliers, we got a model featuring adjusted R

2
 = 0.335. 

Then we moved to univariate analysis of the correlation 
between Effort and each variable mentioned in TABLE 1: 
– Path [Path] 
– COSMIC Function Points [CFP] 
– Functional Processes [FPr] 
– Data Groups [DG] 
– Persistent  Data Groups [PDG] 

 We also systematically tested the correlation between 
effort and the following density measures: 
– Path per Functional Process [Path/FPr] 
– Path per CFP [Path/CFP] 
– Data Groups per Functional Process [DG/FPr] 
– Data Groups per CFP [DG/CFP] 
– Persistent Data Groups per Functional Process 

[PDG/FPr] 
– Persistent Data Groups per CFP [PDG/CFP] 

These density measures introduce the concept of 
complexity per size unit. The complexity of a system is a 
property that depends on the relationships among system’s 
elements [4]. So, the measures listed above represent the 
density of relationships among elements per unit size. As 
size units we adopted both the fine grained CFP and the 
coarse grained number of functional processes. In fact, the 
number of functional processes is suggested as a reasonable 
approximation of the size in CFP in [8]. 

Quite interestingly, we got significant models only based 
on variables involving Paths. The results are synthetically 
reported in TABLE 2. For each model, we have also assessed 
the precision of the fit by using what are considered the de 
facto currently used goodness-of-fit indicators in Empirical 
Software Engineering, i.e., the Mean Magnitude of Relative 
Error (MMRE) and the percentage of data points whose 
actual effort falls within 75% and 125% of the estimated 
value (pred(25)) and the error range. 

In TABLE 2 are reported only the models that satisfy the 
applicability conditions of linear regression (e.g., the 
residuals are normally distributed), are statistically 
significant (e.g., their p-value is < 0.05), and have coefficient 
of determination (Adjusted R

2
) sufficiently high (>0.6). 

TABLE 2. CORRELATIONS WITH EFFORT (LOG-LOG UNIVARIATE REGRESSION) 

Var. 
Adj. 

R2 
p-value Outl. MMRE Pred(25) 

Error 

range 

Path 0.79 < 10-5 2 22.7 70.6 
-35%.. 

82% 

Path/FPr 0.73 < 10-3 5 37.2 58.8 
-48% .. 

169% 

Path/CFP 0.65 < 10-4 0 24.1 52.9 
-43% .. 

66% 

 
The regression line of the model representing Effort vs. 

Paths –which appears as the best univariate model– is 
illustrated in Figure 2. 
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Figure 2. Effort vs. Path: log-log regression line. 

The distribution of relative residuals is given in Figure 3. 
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Figure 3. Log-log regression of effort vs. Path: distribution of relative 

residuals. 
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We then proceeded to the analysis via multiple 
regression. Again, we systematically tested the correlation of 
Effort with any combination of the aforementioned variables. 

The statistically significant models obtained are reported 
in TABLE 3. 

TABLE 3. CORRELATIONS WITH THE ACTUAL EFFORT (LOG-LOG MULTIPLE 

REGRESSION) 

Var. 
Adj. 

R2 
Pr(>|t|) Outl. MMRE Pred(25) 

Error 

range 

FPr, 

Path /FPr 
0.71 < 10-3 1 19.4 70.6 

-37%.. 

67% 

FPr, 

Path /CFP 
0.78 < 10-3 0 18.7 82.4 

-31% .. 

80% 

Path/FPr, 

PDG/FPr 
0.64 < 10-3 1 22.9 64.7 

-45% .. 

53% 

Path/CFP,

DG/FPr 
0.69 < 0.03 1 22.6 64.7 

-30% .. 

73% 

Path/CFP,

DG/CFP 
0.72 <0.02 1 21.3 64.7 

-41%.. 

69% 

Path/CFP,

PDG/FPr 
0.75 <0.02 0 18.5 70.6 

-35%.. 

74% 

Path/CFP,

PDG/CFP 
0.80 < 10-2 0 17.8 82.4 

-36%.. 

72% 

DG, 

Path/FPr, 

DG/FPr 

0.75 < 10-2 0 18.6 70.6 
-29%.. 

76% 

Path/FPr, 

DG/CFP, 

PDG/FPr 

0.67 <0.05 3 23.9 58.8 
-66%.. 

79% 

 
It is quite interesting to see that none of the obtained 

models uses size in CFP as an independent variable. On the 
contrary, most of the other variables (including size 
expressed as number of Functional Processes, computation 
density, amount of data and data density) can be used to 
build valid and significant models. 

It is also interesting to see that these models appear quite 
good both in terms of their ability to explain the variation of 
effort depending on the variation of the size and complexity 
measures (as indicated by the values of the adjusted R

2
) and 

in terms of precision of the fit (as indicated by MMRE, 
pred(25) and the relative error range). 

Although it is quite clear that some models appear better 
than others, e.g., with respect to precision of fit and adjusted 
R

2
, it is not so obvious which one is best. 
A possible way for identifying the best model is by 

comparison of the relative absolute residuals (since we are 
considering the ability to predict effort, we have to look at 
relative absolute residuals, since an error of, say, two 
PersonMonths can be irrelevant or very important, 
depending on the total effort). The models that feature the 
highest values of the adjusted R

2
 are those based on 

a) Paths 
b) Path per CFP and PersistentDataGroups per CFP 
c) Functional Processes and Path per CFP 

The boxplots representing relative absolute residuals of 
these models are reported in Figure 4 . 
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Figure 4. Model comparison: relative absolute residuals. 

The comparison of boxplots does not allow selecting a 
model as clearly the best, although it seems that the 
univariate model is a bit less precise than both the other two 
models. In order to evaluate whether a model can be elected 
the best, Kitchenham et al. [14] suggest to use paired tests of 
the absolute residuals. We then proceeded to compute the 
paired tests. We used t-tests when appropriate (i.e., when the 
distributions were close to normal) and the Wilcoxon signed 
rank test otherwise. Also the paired tests did not indicate a 
clear winner. Therefore, we must conclude that further 
research is needed to understand if it is possible to build a 
model that explains in the best possible manner the 
dependency of effort from size and complexity measures. 

C.  Analysis of the dataset using plain linear regression 

Having performed the analysis on log-log transformed 
data, we checked if valid and significant models can be built 
using ordinary least squares (OLS) linear regression, i.e., 
without log-log (or any other) transformation. 

We found that a linear model linking Effort and Paths 
exists: it features adjusted R

2
 = 0.71, p-value < 10

-3
, MMRE 

= 23.5%, Pred(25) =  58.8%, Error range = -33% .. 81%. 
The models involving two independent variables are 

summarized in TABLE 4. 

TABLE 4. CORRELATIONS WITH THE ACTUAL EFFORT (OLS MULTIPLE 

REGRESSION) 

Var. 
Adj. 

R2 
Pr(>|t|) Outl. MMRE Pred(25) 

Error 

range 

CFP, 

Path /CFP 0.82 < 10-3 4 18.5% 76.5% 

-20%.. 

84% 

FPr, 

Path/CFP 0.64 < 10-2 3 20% 76.5% 

-31%.. 

76% 

It is interesting to note that in this case the best model 
involves the usage of a size measure (CFP) and a complexity 
density measure (Paths/CFP). 
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III. DISCUSSION 

The only models based on a single variable that feature 
adjusted R

2
 greater than 0.6 involve either Path or Path 

density. Anyway, Path seems to be better than both Path per 
CFP and Path per Functional Processes as far as R

2
, MMRE 

and Pred(25) are concerned. The reason why Path appears as 
a good predictor of effort is probably that this measure 
summarizes the needed information concerning both size (a 
la COSMIC) and amount of required elaboration. 

Concerning models using two independent variables, we 
can observe that they appear of similar precision (e.g., 
MMRE ranges from 17.8% to 23.9%). 

As already mentioned, there is no statistically evidence 
that any of these models features a better fitting that 
univariate models. 

Also in these models, Path per CFP appears as an 
independent variable in several good models, together with 
– the density of data (DataGroups per CFP, DataGroups 

per FunctionalProcess, PersistentDataGroups per CFP or 
PersistentDataGroups per FunctionalProcess); 

– the number of functional processes. 
Interestingly, the persistent data groups (a concept close 

to unweighted data functions in Function Point Analysis) 
appear to be a better predictor than the whole number of data 
groups (i.e., including transient ones). 

Path per Functional Process provides –as Path per CFP– 
good models in combination with the density of data 
(PersistentDataGroups per FunctionalProcess) or the number 
of functional processes. 

It should be noted that we found some models based 
exclusively on density (such as the second and third in TABLE 

2 or the seventh in TABLE 3). These models are rather 
unexpected, as they say that the size of the programs is not 
important at all. This result is probably due to the fact that 
the variation of size was relatively little in the set of projects 
that we analysed. Additional research is needed to explore 
this point. 

Finally, Path per Functional Process appears also as an 
argument in models featuring three independent variables. 
So, the complexity density (i.e., Paths divided by a size 
measure) appears in all the models. 

When considering models obtained via OLS regression 
(i.e., without log-log transformation) we find again an 
elaboration density measure (Path per CFP), this time in 
combination with a size measure (CFP or Functional 
Processes). 

IV. RELATED WORK 

A few attempts to account for data elaboration in FSM 
have been done.  

3D Function Points [22] consider three dimensions of the 
application to be measured: Data, Function, and Control. The 
Function measurement considers the complexity of 
algorithms; and the Control portion measures the number of 
major state transitions within the application. 

Bernárdez et al. [2] measured the cyclomatic complexity 
of a use case in order to validate the use case definition, 
while Levesque [17] measured the conditions of inputs in a 

sequential diagram in order to add the concept of complexity 
to the COSMIC method. 

Bashir and Thomson [1] used traditional regression 
analysis to derive two types of parametric models: a single 
variable model based on product complexity and a 
multivariable model based on product complexity and 
requirements severity. Generally, the models performed well 
according to a number of accuracy tests. In particular, 
product complexity explained more than 80% of variation in 
estimating effort. They concluded that product complexity as 
an indicator for project size is the dominant parameter in 
estimating design effort. 

Our results are in agreement with those by Bashir and 
Thomson, in fact several of our models explain 80% (or just 
slightly less) of the variation of effort. 

Hastings and Sajeev [11] proposed a Vector Size 
Measure (VSM) that incorporates both functionality and 
problem complexity in a balanced and orthogonal manner. 
VSM is used as the input to a Vector Prediction Model 
(VPM) which can be used to estimate development effort 
early in the software life cycle. The results indicate that the 
proposed technique allows for estimating the development 
effort early in the software life cycle with errors not greater 
than 20% across a range of application types. 

Our results are in accordance with the consideration 
expressed by Morasca on the definition of measures [19] as it 
appears that the notion of complexity may be represented by 
taking into account several basic indicators (size, control 
flow, data, ...) that can be used individually (i.e., without the 
need to build a derived measure defined as a weighted sum) 
in estimation models. 

Finally, Gencel and Demirors [10] point out that we still 
need a new Base Functional Component (BFC) Types for 
the boolean operations of Functional User Requirements, 
which are often not considered to be algorithmic operations, 
but which are related to complexity. This point of view 
highlights the necessity of considering the complexity of 
elaboration required in FSM, and they suggested 
introducing as a new BFC type which differs from authors’ 
proposal.  

V. CONCLUSIONS 

The work reported here moves from the consideration 
that development effort depends (also) on the complexity or 
the amount of computation required, but no suitable measure 
has emerged as a reliable way for capturing such complexity. 
In fact, very popular methods like COCOMO II [3][7] still 
use just an ordinal scale measure for complexity, based on 
the subjective evaluation performed by the user. 

We approached the problem of measuring the required 
functional complexity by considering (a subset of) the 
approaches presented in the literature, and testing them on a 
set of projects that were measured according to the COSMIC 
FSM. 

The results of our analysis do not allow us to draw 
definite conclusions about the best set of measures to use for 
effort estimation. However, we observed that all the most 
significant models obtained were based on a notion of 
computation density, which is based on the measure of Paths 
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[21], i.e., the number of computation flows in functional 
processes. 

Since Paths are quite easy to measure [15] and appear as 
good effort predictors, we suggest that future research on 
COSMIC based effort estimation takes into consideration the 
possibility of involving a Path based measure of functional 
complexity. 

We plan to continue experimenting with measures of 
functional complexity. Since in this type of experimentations 
a critical point is the difficulty to get measures, we kindly 
invite all interested readers that are involved in effort 
estimations to perform functional complexity measurement 
and share the data with us and the research community.  
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