
Optimal Functionality and Domain Data Clustering
based on Latent Dirichlet Allocation

Stoyan Garbatov and João Cachopo
Software Engineering Group

Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento, INESC-id
Lisbon, Portugal

stoyangarbatov@gmail.com and joao.cachopo@ist.utl.pt

Abstract — This work presents a new approach for clustering
domain data and application functionality, based on the Latent
Dirichlet Allocation. The methodology, developed here,
performs an optimal clustering by identifying input values that
lead to the best possible clustering output. The optimal
solutions are identified through the use of the Silhouette
technique. A validation of the work is performed based on the
TPC-W benchmark. The new approach is flexible enough to be
applied to any object-oriented application where identifying
meaningful clusters of its domain data and functionality is
desired.

Keywords-clustering; Latent Dirichlet Allocation; stochastic
model; Silhouette.

I. INTRODUCTION

The problem of clustering has been considered and
analysed in many different disciplines' contexts, illustrating
its relevance and usefulness in a variety of circumstances.

Clustering corresponds to an unsupervised classification
of patterns (data, observations, etc) into sets or groups
(clusters). Clustering algorithms organize pattern aggregates
based on similarity criteria according to which these may be
classified.

A pertinent situation requiring clustering would be in the
context of large-scale object-oriented applications (e.g
dynamic content web applications). There, it can be
interesting to identify meaningful subsets of application
functionality that display high affinity with regards to the
domain data that is manipulated within their scope. If such
information is available, then it may be feasible to carry out
techniques such as load balancing or partial data replication
to improve the application performance and scalability.

Based on what can be seen from recent research, there
has been some effort spent in this area, but the great majority
of these approaches display only partial automation in their
mode of operation. Many approaches require user
intervention at one, if not more, points of the analysis
procedure, making the approaches more prone to errors and
leading to non-optimal results, due to the subjectivity
induced by the user interaction in the decision making
process.

In contrast to these supervised approaches, we believe
that a wholly automatic approach would lead to better
results, by avoiding the problems identified above. This

paper describes the development and validation of a fully
automated system capable of identifying the domain data
manipulated during the execution of the target system's
functionality and, based on that information, of performing
optimal partitioning of the application's methods/services
according to the domain data used within their runtime
scopes. The partitioning of the application's functionality
(represented by its services and/or methods) is performed by
employing the Latent Dirichlet Allocation [1]. The
optimality of the solutions is guaranteed through the use of
the Silhouette technique, [2].

The article has the following structure. The related works
are discussed in Section II. The description of the system is
covered in Section III. The results and evaluation of the
system are given in Section IV. The concluding remarks are
presented in Section V.

II. RELATED WORK

Based on the nature of the work presented here, it is
possible to identify two related research areas. The first one
covers the development and analysis of clustering
algorithms, whilst the second one encompasses works
seeking to develop performance improvement techniques in
the context of dynamic content web applications.

It was not possible to find any work that takes an at least
comparable approach for the problem at hand. As such, the
discussion of works strictly related to clustering algorithms
will be restricted to the relevant references that are present in
the system description.

It is important to discuss some of what has been done in
the context of dynamic content web applications [3-8], so as
to better appreciate the contribution of the current work. A
rather thorough study and comparison of load balancing and
scheduling strategies, for the type of applications identified
above, can be seen in the work of Amza et al. [9] .

The work of Elnikety et al. [7] introduced a memory-
aware load balancing method for dispatching transactions to
replicas in systems employing replicated databases. The
algorithm uses information about the data manipulated in
transactional contexts with the goal of assigning transactions
to replicas so as to guarantee that all necessary data for their
execution is in memory, thereby reducing disk I/O. For
guiding the load balancing technique, the authors developed
an auxiliary approach for estimating the volume and type of
data manipulated during transactions. An additional

245

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

contribution of their work is an optimization designated
update filtering for decreasing the overheads due to the
propagation of updates between replicas.

The work of Amza et al. [5] presents a novel lazy
replication technique, intended for scaling database back-
ends of dynamic content site applications operating on top of
computer clusters. The approach developed by Amza et al. is
referred to as conflict-aware scheduling and provides
throughput scaling and one-copy serializability. This
technique exploits the fact that, in the context of database
clusters, there is a scheduler responsible for processing all
incoming requests. By making use of information regarding
the domain data accessed within transactions, Amza et al. [3]
developed a conflict-aware scheduler that provides one-copy
serializability, as well as reducing the rate at which conflicts
occur. This is achieved by guiding incoming requests to
nodes based on the data access patterns that are expected to
be performed during the execution of the associated
transactions.

Gao et al. [6] developed an edge service replication
architecture for e-commerce applications using application
specific distributed objects. The authors exploit application
specific behaviour to manage subsets of shared domain data
through distributed objects. Higher system availability and
efficiency is achieved by tolerating lower consistency among
distributed objects.

Shen et al. [4] performed an analysis over the clustering
of replicated services with high ratios of write operations.
With their work, the authors developed an infrastructural
middleware called Neptune, which allows the agglomeration
and replication of a system's service modules. The
middleware supports multiple alternative persistence
mechanisms and is capable of maintaining consistency
dynamically, independently of the location and availability
of a particular replica.

Zuikeviciute and Pedone present in [8] a hybrid approach
for conflict-aware load balancing for systems with database
replication. The authors analyzed the effects of the often
opposing requirements (from an engineering point of view)
of maximizing transaction parallelism and minimizing
conflict ratios. The work led to the development of a load
balancing technique that finds a good compromise between
parallelism and conflict minimization, accomplishing better
results than approaches concentrating solely on one of the
above requirements.

As can be seen from the above works, there are indeed
very promising results for improving the performance and
scalability of large scale applications, through the use of load
balancing, replication techniques, adaptive scheduling, and
other related approaches. Yet, there is still significant room
for improving the full automation of existing solutions, both
at the level of analyzing the behavior of target applications,
as well as in the identification of meaningful functionality
and domain data subsets on which the approaches are to be
applied.

Thus, we believe that a system capable of performing a
completely automated analysis of a target application’s
behavior (with regard to domain data manipulations
performed in runtime), and of performing an optimal

clustering of the application’s functionality and domain data
(through the use of the current state-of-the-art multivariate
clustering algorithm), would constitute an important
contribution within this research area.

III. SYSTEM DESCRIPTION

The system developed with this work is composed of two
parts: a data acquisition and analysis module and an
optimizing clustering module. The first module is
responsible for capturing the target application behaviour, for
analysing it, and for generating predictions about what are
the most likely domain data types to be needed by the
application when it is in a specific execution context (e.g.,
method, service, etc). The full description of the
implementation, functionality, and properties of this module
has already been presented and discussed in detail in [10-12].
The prediction functionality is of no relevance for the work
presented here. The key aspects of this module are that it
provides the input necessary for the optimal clustering
module, and that the data collection task performed is done
with relatively low overheads (an average of 5-8% overheads
in comparison with the original version of the target
application performance), in an online fashion. Moreover, all
modifications necessary for the acquisition of the
behavioural data are performed in a completely automated
manner by the system presented here.

The second module is responsible for identifying the
optimal clustering of the target application's functionality
and domain data, based on the data access pattern behaviour
observed in runtime. For the clustering itself, we use the
Latent Dirichlet Allocation algorithm, while the optimal
clustering solution is guaranteed through the use of the
Silhouette technique. Both of them shall be discussed in
detail in the following subsections.

A. Latent Dirichlet Allocation

The data acquisition module is responsible for supplying
the clustering module with the observed target application
conduct. This corresponds to the application's domain data
access behaviour, and is expressed in terms of the
frequencies of the domain object manipulation operations
observed when executing application functionality. For
simplicity, the abstraction capturing this functionality shall
be referred to as the methods of the application, but any other
appropriate concept can be used instead (e.g., functions,
services, etc).

When supplied with this input, the clustering module
employs the Latent Dirichlet Allocation (LDA) algorithm,
generating a probabilistic description of the contents of the
clusters.

The decision of using LDA as the clustering algorithm
was based on several factors. The first of these is the fact that
LDA corresponds to the current state of the art in terms of
clustering algorithms. Additionally, LDA consists in a three-
level hierarchical Bayesian model. This shall be discussed in
greater detail further on, but suffice it to say that LDA
provides semantically richer results than other alternative
methods, making it thus more useful for the purpose of the
work presented here.

246

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

For this work, the contents of the clusters correspond to
application methods that are strongly correlated in terms of
the domain data manipulated within their runtime scopes. As
such, the LDA will seek to populate the clusters in such a
way as to maximize the intra-cluster similarity and minimize
the inter-cluster similarity. This similarity is, once again,
expressed in terms of the domain data used in the methods
being clustered. It should be noted that the LDA, being a
multivariate clustering model, provides a secondary result.
This secondary result consists of a clustering of the
application domain data. The cluster identities are the same
as the ones for the application methods, with the difference
that they are characterized by a stochastic description built-in
function of the predominant domain data present in them.

The LDA does not estimate the optimal number of
clusters that are to be found in the set of methods composing
the target application. The number of clusters is supplied as
input to the algorithm. The procedure for identifying the
optimal value for the number of clusters shall be discussed at
length in section III.B. In the remaining of this section, the
theoretic bases of the LDA shall be considered.

Latent Dirichlet Allocation was developed and first
presented by Blei et al. [1]. LDA can be generally described
as a generative probabilistic model for collections of discrete
data. In the probability analysis, a generative model
corresponds to a model that can generate randomly
observable data, based on some hidden parameters. The
generative model specifies a joint probability distribution
over observation and label sequences. Keeping this into
account, LDA is a three-level hierarchical Bayesian model.
The hierarchical Bayesian model corresponds to an elaborate
model in modern Bayesian Analysis and allows the
modelling of complex situations in a better way than simpler
models.

Given data x and parameters , a simple Bayesian
analysis starts with a prior probability (prior) p and

likelihood |p x to compute a posterior probability:

 | |p x p x p

The prior on depends, in turn, on other parameters
that are not mentioned in the likelihood. So, the prior p

must be replaced by a prior |p , and a prior p on

the newly introduced parameters is required, resulting in a
posterior probability:

 , | | |p x p x p p

This procedure may be performed repeatedly, if any of
the parameters employed up until now depends on additional
parameters, requiring its own priors. The process terminates
when priors that do not depend on any further unmentioned
parameters have been reached.

The latent multinomial variables shall be referred to as
clusters. The latent multinomial variables can be associated
without any issue to different concepts.

In the LDA model, each collection item (e.g., method) is
modelled as a finite random mixture over an underlying set
of clusters. The clusters are modelled as an infinite mixture
over a set of underlying cluster probabilities and are
characterized by a distribution over domain data types. From
the point of view of domain modelling, the cluster
probabilities consist in an explicit representation of a
method. The approximation inference techniques employed
for LDA are based on variational methods and an estimation
maximization algorithm for empirical Bayes parameter
estimation.

LDA assumes the following generative process for each
method m in an application A :

1. Choose N Poisson ξ .

2. Choose θ Dir α .

3. For each of the N data types nm :

 (a) Choose a cluster nz Multinomial θ .

 (b) Choose a data type nm from | ,n np m z , a

multinomial probability conditioned on the cluster nz .
There are a few simplifying assumptions made in this

model, among which is that the dimensionality k of the
Dirichlet distribution (and the dimensionality of the cluster
variable z) is assumed known and fixed. The Poisson
assumption is not crucial for any part of the model and other
more appropriate method length distribution may be
employed if deemed necessary.

A k -dimensional Dirichlet random variable can take
values in the 1k -simplex (a k -vector lies in the

 1k -simplex if
1

0, 1
k

i ii

), and has the following

probability density on this simplex:

1

1 11
1

1

| ... k

k

ii

kk

ii

p

where the parameter is a k -vector with components
0i , and where x is the Gamma function. The

Dirichlet distribution, as a distribution on the simplex, has
several useful properties that make it easier to develop
algorithms for inferring and estimating parameters for the
LDA. The Dirichlet distribution belongs to the exponential
family; it has finite sufficient dimensional statistics and is
conjugate to the multinomial distribution.

Given the parameters and , the joint distribution of
a cluster mixture , a set of N clusters z , and a set of N
data types m is given by:

1

, , | , | | | ,
N

n n n
n

p z m p p z p m z

where |np z is simply i for the unique i such that

1i
nz . By integrating over and summing over z , the

marginal distribution of a method is obtained:

247

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

1

| , | | | ,
n

N

n n n
n z

p m p p z p m z d

Finally, taking the product of the marginal probabilities
of single methods, the probability of the set of application
methods is obtained:

1 1

| , | | | ,
d

dn

NM

d dn d dn dn d
d n z

p D p p z p m z d

A graphical representation of the probabilistic model of
LDA can be observed in Fig. 1. As can be seen, the LDA
representation has three levels. The parameters and are
application-level parameters and are sampled once in the
process of generating an application. The variables d
correspond to method-level variables, which are sampled
once per method. Lastly, the variables dnz and dnm are
variables at the domain data-level. These are sampled once
for each domain datum per method.

With regards to the actual implementation employed for
the work presented here, it is a Java port of the original LDA
implementation presented by Blei et al. [1], with no
modifications or extensions performed over the model itself
here. The contribution of this work, regarding the use of
LDA, resides in the new semantic interpretation given to the
model and its associated concepts. This made possible the
use of the LDA algorithm, for the first time, to the best of
our knowledge, to perform clustering of an object-oriented
application's functionality, based on the domain data
manipulated within its scope.

B. Optimal Clustering Solution

As indicated in the LDA model description, the algorithm
does take some additional input parameters, apart from the
occurrence frequencies of the data being modelled. These
parameters are the number of clusters among which the data
is to be split and the coefficient value, which is also
known as the Dirichlet parameter. The Dirichlet parameter
controls the shape of the Dirichlet distribution and,
subsequently, the likelihood of a given cluster being selected
during the algorithm execution. In practice, high alpha values
(close to 1) lead to many clusters being associated to each
method, whereas a low value makes it so that few clusters
are associated to each method.

As has been previously stated, what we intend with this
work is an optimal clustering solution. This makes it
necessary to find the additional input parameters' values that
lead to the best clustering solutions. To evaluate the effects
of the parameter values, we resorted to a well-known and
recognized clustering model comparison technique. The
technique is known as Silhouette, as reported by Rousseeuw
[2]. Intuitively, good clusters have the property that cluster
elements are close to each other and far from the elements of
other clusters. The Silhouette technique captures this notion
and provides an indicator value of how good a particular
clustering is.

The Silhouette approach functions as follows. For each
data element i , let ()a i be the average dissimilarity between
i and all other elements belonging to the same cluster. The
approach is independent of the dissimilarity criteria, allowing
any appropriate measure to be employed. The value of ()a i
can be considered as a measure of how well the element i is
matched to the cluster. The smaller the value of ()a i , the
better the matching is.

Afterwards, for every cluster where i does not belong, an
average measure of dissimilarity is calculated, between the
data elements of the cluster and i . The minimum of these
dissimilarity measures is denoted by ()b i . The cluster to
which ()b i is associated with is called the "neighbouring
cluster" of i , because it is the second best cluster where i
could be placed, from among all available clusters. Based on
this, ()s i can be defined as:

() ()
()

max (), ()

b i a i
s i

a i b i

where 1 () 1s i - . When ()s i is close to 1, this means that
the datum i is properly clustered. When ()s i is close to -1,
the interpretation is that i would have been better placed in
its neighbour, instead of the cluster where it is currently
placed. If ()s i is close to 0, then it means that the datum is

Figure 1. Graphical model representation of LDA

Figure 2. Silhouette coefficient values

248

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

placed somewhere "in between" the two clusters.
The average ()s i of all the data placed in a cluster is an

indicator of how tightly grouped all cluster data is. The
average ()s i for all clusters is a measure of how properly the
data has been clustered.

To find the optimal values of the input parameters for the
LDA, our system calculates the average ()s i from several
executions of the LDA algorithm for every combination of
input parameters, within their valid range of values. Once the

()s i coefficients are available for all the evaluated scenarios,
the pair of input values which produced the closest to 1 ()s i
corresponds to the optimal input scenario that leads to the
best possible clustering.

Regarding the similarity measure employed to calculate
the ()s i , it is based on the gamma values generated by the
LDA itself. The gamma values indicate the affinity between
the data and the clusters where the data is placed. These
affinity coefficients are normalized so that the sum of their
values equals 1 for a given method. The dissimilarity
measure ()a i of a given application method is set to 1 minus
the normalized gamma value for the associated best cluster,
whereas the ()b i is set to 1 minus the normalized gamma of
the second best cluster.

IV. RESULTS AND EVALUATION OF THE SYSTEM

The TPC-W benchmark was selected to serve as a test-
case for the demonstration of the new approach presented in
this paper. The TPC-W benchmark was introduced by Smith
[13]. This benchmark specifies an e-commerce workload that
simulates the activities of a retail store website, where
emulated users can browse and order products from the
website. This particular benchmark was chosen for two main
reasons. First of all, it has a reasonably rich application
domain model and functionality. Secondly, due to the fact
that the benchmark fits well with the type of applications that
are most likely to benefit from optimizations that employ the
results generated by the system developed with the current
work. As previously stated, such optimizations would

include dynamic load balancing schemes, conflict-aware
approaches for partial or full data replication approaches,
among others.

The Silhouette coefficients achieved for the evaluated
range of values for the input parameters of the LDA
algorithm, when applied to the methods and domain data
accessed within them, for the TPC-W benchmark, can be
seen in Fig. 2.

The z axis represents Silhouette coefficients, where the
valid range of values is [-1,1]. Every point of the surface
plotted in Fig. 1 corresponds to an average calculated from
20 independent LDA executions with the same combination
of input values. This was done in order to have
representative results of the non-deterministic behaviour of
the LDA model.

As can be seen from Fig. 2, the input parameter
controlling the number of clusters has been varied from 2 to
7, whilst the alpha parameter was varied from 0.01 to 1.
Even though there are 59 benchmark methods within which
domain data accesses take place, the number of clusters has
been varied only up to 7 because, even though the LDA
algorithm takes as input the maximum number of clusters
among which the methods are to be partitioned, the
algorithm decides by itself what is the optimal solution,
within the possibilities given by its actual input parameters.
Consequently, it is possible for the effective clustering result
to consists in a solution where only a portion of the
maximum number of clusters have been allocated any
elements. This is an increasingly frequent occurrence as the
maximum number of clusters increases, and, to a smaller
degree, for the lower possible limit of clusters as well.

By analysing the results depicted in Fig. 2, we may
conclude that, with regards to the maximum number of
clusters, the best Silhouette coefficients (closest to 1) are
those associated to 2 and 3 clusters. Regarding the optimal
alpha values, even though they do not seem to exert a
significant influence over the Silhouette coefficients, the best
results are achieved when alpha is in the range of]0.4, 0.5[.
The sensitivity analysis study performed by Park in [14]
reached the same conclusion, with regards to the effect of the
optimized alpha value on the general quality of the clustering
results.

0 10 20 30 40 50 60

2

3

4

5

6

7

N
um

be
r

of
 C

lu
st

er
s

Number of Methods

Figure 3. Distribution of average number of methods per cluster

Figure 4. Effective clustering

249

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The most commonly observed number of methods per
cluster can be seen in Fig. 3. Each histogram bar was
calculated as the average of 20 independent LDA executions,
for the same total number of clusters. The x axis represents
the number of methods present in a given cluster, while the y
axis indicates the total number of clusters among which the
data has been partitioned. These results show that, as the
total number of clusters increases, the "new" clusters tend to
be very small. This is an indicator that a lower total number
of clusters is more appropriate, where the number of
methods per cluster is more balanced.

A summary of the effective ratio of non-empty clusters
can be seen in Fig. 4. The chart represents a 2D projection of
the tri-dimensional surface describing the dependency
between effective cluster number ratio and the LDA control
parameters. The ratio has been calculated as the number of
non-empty clusters divided by the maximum number of
clusters supplied as input. The highest clustering ratios are
achieved for 3 to 4 clusters and alpha values in the range of
]0.4, 0.5[.

Combining the results of Silhouette coefficients with the
effective cluster number ratio, we can deduce that the input
parameter values that most consistently lead to the best
clustering results are alpha in the]0.4, 0.5[range and a total
of 3 clusters.

V. CONCLUSIONS

This work presented an innovative approach for
clustering domain data and application functionality. The
algorithm employed is the current state of the art multivariate
Latent Dirichlet Allocation. The methodology performs an
optimal clustering by fitting input control parameters so as to
achieve the best possible clustering result. The optimal
solutions are identified through the use of the Silhouette
technique. A demonstration of system's capabilities is done
based on the TPC-W benchmark. The approach is flexible
enough to be applied to any object-oriented application
where identifying meaningful clusters of its domain data and
functionality is desired.

ACKNOWLEDGMENT

This work was partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds
and by the Specific Targeted Research Project (STReP)
Cloud-TM, which is co-financed by the European
Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT (Fundação

para a Ciência e a Tecnologia) under contract
SFRH/BD/64379/2009.

REFERENCES
[1] Blei, D. M., Ng, A. Y. and Jordan, M. I., 2003, Latent

dirichlet allocation, Journal of Machine Learning Research, 3,
pp. 993-1022.

[2] Rousseeuw, P. J., 1987, Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis, Journal of
computational and applied mathematics, 20, pp. 53-65.

[3] Challenger, J., Iyengar, A., Witting, K., Ferstat, C. and Reed,
P., 2000, A publishing system for efficiently creating dynamic
web content, IEEE, Vol. 2, pp. 844-853 vol. 842.

[4] Shen, K., Yang, T., Chu, L., Holliday, J. A. L., Kuschner, D.
A. and Zhu, H., 2001, Neptune: Scalable replication
management and programming support for cluster-based
network services, USENIX Association, pp. 17-29.

[5] Amza, C., Cox, A. L. and Zwaenepoel, W., 2003, Conflict-
aware scheduling for dynamic content applications, USENIX
Association, pp. 6-20.

[6] Gao, L., Dahlin, M., Nayate, A., Zheng, J. and Iyengar, A.,
2003, Application specific data replication for edge services,
ACM, pp. 449-460.

[7] Elnikety, S., Dropsho, S. and Zwaenepoel, W., 2007,
Tashkent+: Memory-aware load balancing and update
filtering in replicated databases, ACM SIGOPS Operating
Systems Review, 41, (3), pp. 399-412.

[8] Zuikeviciute, V. and Pedone, F., 2008, Conflict-aware load-
balancing techniques for database replication, ACM, pp.
2169-2173.

[9] Amza, C., Cox, A. L. and Zwaenepoel, W., 2005, A
comparative evaluation of transparent scaling techniques for
dynamic content servers, IEEE, pp. 230-241.

[10] Garbatov, S., Cachopo, J. and Pereira, J., 2009, Data Access
Pattern Analysis based on Bayesian Updating, Proceedings of
the First Symposium of Informatics (INForum 2009), Lisbon,
Paper 23.

[11] Garbatov, S. and Cachopo, J., 2010, Importance Analysis for
Predicting Data Access Behaviour in Object-Oriented
Applications, Computer Science and Technologies, 1, pp. 37-
43.

[12] Garbatov, S. and Cachopo, J., 2010, Predicting Data Access
Patterns in Object-Oriented Applications Based on Markov
Chains, Proceedings of the Fifth International Conference on
Software Engineering Advances (ICSEA 2010), Nice, France,
pp. 465-470.

[13] Smith, W. TPC-W: Benchmarking An Ecommerce Solution.
Intel Corporation, 2000.

[14] Park, L. and Ramamohanarao, K., 2009, The sensitivity of
latent dirichlet allocation for information retrieval, Machine
Learning and Knowledge Discovery in Databases, pp. 176-
188.

250

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

