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Abstract — This work presents a new approach for clustering 
domain data and application functionality, based on the Latent 
Dirichlet Allocation. The methodology, developed here, 
performs an optimal clustering by identifying input values that 
lead to the best possible clustering output. The optimal 
solutions are identified through the use of the Silhouette 
technique. A validation of the work is performed based on the 
TPC-W benchmark. The new approach is flexible enough to be 
applied to any object-oriented application where identifying 
meaningful clusters of its domain data and functionality is 
desired. 

Keywords-clustering; Latent Dirichlet Allocation; stochastic 
model; Silhouette. 

I.  INTRODUCTION 

The problem of clustering has been considered and 
analysed in many different disciplines' contexts, illustrating 
its relevance and usefulness in a variety of circumstances.  

Clustering corresponds to an unsupervised classification 
of patterns (data, observations, etc) into sets or groups 
(clusters). Clustering algorithms organize pattern aggregates 
based on similarity criteria according to which these may be 
classified.  

A pertinent situation requiring clustering would be in the 
context of large-scale object-oriented applications (e.g 
dynamic content web applications). There, it can be 
interesting to identify meaningful subsets of application 
functionality that display high affinity with regards to the 
domain data that is manipulated within their scope. If such 
information is available, then it may be feasible to carry out 
techniques such as load balancing or partial data replication 
to improve the application performance and scalability. 

Based on what can be seen from recent research, there 
has been some effort spent in this area, but the great majority 
of these approaches display only partial automation in their 
mode of operation. Many approaches require user 
intervention at one, if not more, points of the analysis 
procedure, making the approaches more prone to errors and 
leading to non-optimal results, due to the subjectivity 
induced by the user interaction in the decision making 
process.  

In contrast to these supervised approaches, we believe 
that a wholly automatic approach would lead to better 
results, by avoiding the problems identified above. This 

paper describes the development and validation of a fully 
automated system capable of identifying the domain data 
manipulated during the execution of the target system's 
functionality and, based on that information, of performing 
optimal partitioning of the application's methods/services 
according to the domain data used within their runtime 
scopes. The partitioning of the application's functionality 
(represented by its services and/or methods) is performed by 
employing the Latent Dirichlet Allocation [1]. The 
optimality of the solutions is guaranteed through the use of 
the Silhouette technique, [2].  

The article has the following structure. The related works 
are discussed in Section II. The description of the system is 
covered in Section III. The results and evaluation of the 
system are given in Section IV. The concluding remarks are 
presented in Section V. 

II. RELATED WORK 

Based on the nature of the work presented here, it is 
possible to identify two related research areas. The first one 
covers the development and analysis of clustering 
algorithms, whilst the second one encompasses works 
seeking to develop performance improvement techniques in 
the context of dynamic content web applications. 

It was not possible to find any work that takes an at least 
comparable approach for the problem at hand. As such, the 
discussion of works strictly related to clustering algorithms 
will be restricted to the relevant references that are present in 
the system description. 

It is important to discuss some of what has been done in 
the context of dynamic content web applications [3-8], so as 
to better appreciate the contribution of the current work. A 
rather thorough study and comparison of load balancing and 
scheduling strategies, for the type of applications identified 
above, can be seen in the work of Amza et al. [9] . 

The work of Elnikety et al. [7] introduced a memory-
aware load balancing method for dispatching transactions to 
replicas in systems employing replicated databases. The 
algorithm uses information about the data manipulated in 
transactional contexts with the goal of assigning transactions 
to replicas so as to guarantee that all necessary data for their 
execution is in memory, thereby reducing disk I/O. For 
guiding the load balancing technique, the authors developed 
an auxiliary approach for estimating the volume and type of 
data manipulated during transactions. An additional 
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contribution of their work is an optimization designated 
update filtering for decreasing the overheads due to the 
propagation of updates between replicas. 

The work of Amza et al. [5] presents a novel lazy 
replication technique, intended for scaling database back-
ends of dynamic content site applications operating on top of 
computer clusters. The approach developed by Amza et al. is 
referred to as conflict-aware scheduling and provides 
throughput scaling and one-copy serializability. This 
technique exploits the fact that, in the context of database 
clusters, there is a scheduler responsible for processing all 
incoming requests. By making use of information regarding 
the domain data accessed within transactions, Amza et al. [3] 
developed a conflict-aware scheduler that provides one-copy 
serializability, as well as reducing the rate at which conflicts 
occur. This is achieved by guiding incoming requests to 
nodes based on the data access patterns that are expected to 
be performed during the execution of the associated 
transactions.  

Gao et al. [6] developed an edge service replication 
architecture for e-commerce applications using application 
specific distributed objects. The authors exploit application 
specific behaviour to manage subsets of shared domain data 
through distributed objects. Higher system availability and 
efficiency is achieved by tolerating lower consistency among 
distributed objects. 

Shen et al. [4] performed an analysis over the clustering 
of replicated services with high ratios of write operations. 
With their work, the authors developed an infrastructural 
middleware called Neptune, which allows the agglomeration 
and replication of a system's service modules. The 
middleware supports multiple alternative persistence 
mechanisms and is capable of maintaining consistency 
dynamically, independently of the location and availability 
of a particular replica. 

Zuikeviciute and Pedone present in [8] a hybrid approach 
for conflict-aware load balancing for systems with database 
replication. The authors analyzed the effects of the often 
opposing requirements (from an engineering point of view) 
of maximizing transaction parallelism and minimizing 
conflict ratios. The work led to the development of a load 
balancing technique that finds a good compromise between 
parallelism and conflict minimization, accomplishing better 
results than approaches concentrating solely on one of the 
above requirements. 

As can be seen from the above works, there are indeed 
very promising results for improving the performance and 
scalability of large scale applications, through the use of load 
balancing, replication techniques, adaptive scheduling, and 
other related approaches. Yet, there is still significant room 
for improving the full automation of existing solutions, both 
at the level of analyzing the behavior of target applications, 
as well as in the identification of meaningful functionality 
and domain data subsets on which the approaches are to be 
applied. 

Thus, we believe that a system capable of performing a 
completely automated analysis of a target application’s 
behavior (with regard to domain data manipulations 
performed in runtime), and of performing an optimal 

clustering of the application’s functionality and domain data 
(through the use of the current state-of-the-art multivariate 
clustering algorithm), would constitute an important 
contribution within this research area. 

III. SYSTEM DESCRIPTION 

The system developed with this work is composed of two 
parts: a data acquisition and analysis module and an 
optimizing clustering module. The first module is 
responsible for capturing the target application behaviour, for 
analysing it, and for generating predictions about what are 
the most likely domain data types to be needed by the 
application when it is in a specific execution context (e.g., 
method, service, etc). The full description of the 
implementation, functionality, and properties of this module 
has already been presented and discussed in detail in [10-12]. 
The prediction functionality is of no relevance for the work 
presented here. The key aspects of this module are that it 
provides the input necessary for the optimal clustering 
module, and that the data collection task performed is done 
with relatively low overheads (an average of 5-8% overheads 
in comparison with the original version of the target 
application performance), in an online fashion. Moreover, all 
modifications necessary for the acquisition of the 
behavioural data are performed in a completely automated 
manner by the system presented here.  

The second module is responsible for identifying the 
optimal clustering of the target application's functionality 
and domain data, based on the data access pattern behaviour 
observed in runtime. For the clustering itself, we use the 
Latent Dirichlet Allocation algorithm, while the optimal 
clustering solution is guaranteed through the use of the 
Silhouette technique. Both of them shall be discussed in 
detail in the following subsections. 

A. Latent Dirichlet Allocation 

The data acquisition module is responsible for supplying 
the clustering module with the observed target application 
conduct. This corresponds to the application's domain data 
access behaviour, and is expressed in terms of the 
frequencies of the domain object manipulation operations 
observed when executing application functionality. For 
simplicity, the abstraction capturing this functionality shall 
be referred to as the methods of the application, but any other 
appropriate concept can be used instead (e.g., functions, 
services, etc).  

When supplied with this input, the clustering module 
employs the Latent Dirichlet Allocation (LDA) algorithm, 
generating a probabilistic description of the contents of the 
clusters.  

The decision of using LDA as the clustering algorithm 
was based on several factors. The first of these is the fact that 
LDA corresponds to the current state of the art in terms of 
clustering algorithms. Additionally, LDA consists in a three-
level hierarchical Bayesian model. This shall be discussed in 
greater detail further on, but suffice it to say that LDA 
provides semantically richer results than other alternative 
methods, making it thus more useful for the purpose of the 
work presented here. 
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For this work, the contents of the clusters correspond to 
application methods that are strongly correlated in terms of 
the domain data manipulated within their runtime scopes. As 
such, the LDA will seek to populate the clusters in such a 
way as to maximize the intra-cluster similarity and minimize 
the inter-cluster similarity. This similarity is, once again, 
expressed in terms of the domain data used in the methods 
being clustered. It should be noted that the LDA, being a 
multivariate clustering model, provides a secondary result. 
This secondary result consists of a clustering of the 
application domain data. The cluster identities are the same 
as the ones for the application methods, with the difference 
that they are characterized by a stochastic description built-in 
function of the predominant domain data present in them.  

The LDA does not estimate the optimal number of 
clusters that are to be found in the set of methods composing 
the target application. The number of clusters is supplied as 
input to the algorithm. The procedure for identifying the 
optimal value for the number of clusters shall be discussed at 
length in section III.B. In the remaining of this section, the 
theoretic bases of the LDA shall be considered. 

Latent Dirichlet Allocation was developed and first 
presented by Blei et al. [1]. LDA can be generally described 
as a generative probabilistic model for collections of discrete 
data. In the probability analysis, a generative model 
corresponds to a model that can generate randomly 
observable data, based on some hidden parameters. The 
generative model specifies a joint probability distribution 
over observation and label sequences. Keeping this into 
account, LDA is a three-level hierarchical Bayesian model. 
The hierarchical Bayesian model corresponds to an elaborate 
model in modern Bayesian Analysis and allows the 
modelling of complex situations in a better way than simpler 
models.  

Given data x  and parameters  , a simple Bayesian 
analysis starts with a prior probability (prior)  p   and 

likelihood  |p x   to compute a posterior probability: 

      | |p x p x p    

The prior on   depends, in turn, on other parameters   
that are not mentioned in the likelihood. So, the prior  p   

must be replaced by a prior  |p   , and a prior  p   on 

the newly introduced parameters   is required, resulting in a 
posterior probability:  

        , | | |p x p x p p       

This procedure may be performed repeatedly, if any of 
the parameters employed up until now depends on additional 
parameters, requiring its own priors. The process terminates 
when priors that do not depend on any further unmentioned 
parameters have been reached. 

The latent multinomial variables shall be referred to as 
clusters. The latent multinomial variables can be associated 
without any issue to different concepts.  

In the LDA model, each collection item (e.g., method) is 
modelled as a finite random mixture over an underlying set 
of clusters. The clusters are modelled as an infinite mixture 
over a set of underlying cluster probabilities and are 
characterized by a distribution over domain data types. From 
the point of view of domain modelling, the cluster 
probabilities consist in an explicit representation of a 
method. The approximation inference techniques employed 
for LDA are based on variational methods and an estimation 
maximization algorithm for empirical Bayes parameter 
estimation. 

LDA assumes the following generative process for each 
method m  in an application A : 

1. Choose  N Poisson ξ . 

2. Choose  θ Dir α . 

3. For each of the N data types nm : 

 (a) Choose a cluster  nz Multinomial θ . 

 (b) Choose a data type nm  from  | ,n np m z  , a 

multinomial probability conditioned on the cluster nz . 
There are a few simplifying assumptions made in this 

model, among which is that the dimensionality k  of the 
Dirichlet distribution (and the dimensionality of the cluster 
variable z ) is assumed known and fixed. The Poisson 
assumption is not crucial for any part of the model and other 
more appropriate method length distribution may be 
employed if deemed necessary.  

A k -dimensional Dirichlet random variable   can take 
values in the  1k  -simplex (a k -vector   lies in the 

 1k  -simplex if 
1

0, 1
k

i ii
 


  ), and has the following 

probability density on this simplex: 

  
 

 
1

1 11
1

1

| ... k

k

ii

kk

ii

p 


   


 











 

where the parameter   is a k -vector with components 
0i  , and where  x  is the Gamma function. The 

Dirichlet distribution, as a distribution on the simplex, has 
several useful properties that make it easier to develop 
algorithms for inferring and estimating parameters for the 
LDA. The Dirichlet distribution belongs to the exponential 
family; it has finite sufficient dimensional statistics and is 
conjugate to the multinomial distribution.  

Given the parameters   and  , the joint distribution of 
a cluster mixture  , a set of N  clusters z , and a set of N  
data types m  is given by: 

        
1

, , | , | | | ,
N

n n n
n

p z m p p z p m z      


   

where  |np z   is simply i  for the unique i  such that 

1i
nz  . By integrating over   and summing over z , the 

marginal distribution of a method is obtained: 
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        
1

| , | | | ,
n

N

n n n
n z

p m p p z p m z d      


 
   

 
 

Finally, taking the product of the marginal probabilities 
of single methods, the probability of the set of application 
methods is obtained: 

        
1 1

| , | | | ,
d

dn

NM

d dn d dn dn d
d n z

p D p p z p m z d      
 

 
   

 
  

A graphical representation of the probabilistic model of 
LDA can be observed in Fig. 1. As can be seen, the LDA 
representation has three levels. The parameters   and   are 
application-level parameters and are sampled once in the 
process of generating an application. The variables d  
correspond to method-level variables, which are sampled 
once per method. Lastly, the variables dnz  and dnm  are 
variables at the domain data-level. These are sampled once 
for each domain datum per method. 

With regards to the actual implementation employed for 
the work presented here, it is a Java port of the original LDA 
implementation presented by Blei et al. [1], with no 
modifications or extensions performed over the model itself 
here. The contribution of this work, regarding the use of 
LDA, resides in the new semantic interpretation given to the 
model and its associated concepts. This made possible the 
use of the LDA algorithm, for the first time, to the best of 
our knowledge, to perform clustering of an object-oriented 
application's functionality, based on the domain data 
manipulated within its scope. 

 

B. Optimal Clustering Solution 

As indicated in the LDA model description, the algorithm 
does take some additional input parameters, apart from the 
occurrence frequencies of the data being modelled. These 
parameters are the number of clusters among which the data 
is to be split and the  coefficient value, which is also 
known as the Dirichlet parameter. The Dirichlet parameter 
controls the shape of the Dirichlet distribution and, 
subsequently, the likelihood of a given cluster being selected 
during the algorithm execution. In practice, high alpha values 
(close to 1) lead to many clusters being associated to each 
method, whereas a low value makes it so that few clusters 
are associated to each method. 

As has been previously stated, what we intend with this 
work is an optimal clustering solution. This makes it 
necessary to find the additional input parameters' values that 
lead to the best clustering solutions. To evaluate the effects 
of the parameter values, we resorted to a well-known and 
recognized clustering model comparison technique. The 
technique is known as Silhouette, as reported by Rousseeuw 
[2]. Intuitively, good clusters have the property that cluster 
elements are close to each other and far from the elements of 
other clusters. The Silhouette technique captures this notion 
and provides an indicator value of how good a particular 
clustering is.  

The Silhouette approach functions as follows. For each 
data element i , let ( )a i  be the average dissimilarity between 
i  and all other elements belonging to the same cluster. The 
approach is independent of the dissimilarity criteria, allowing 
any appropriate measure to be employed. The value of ( )a i  
can be considered as a measure of how well the element i  is 
matched to the cluster. The smaller the value of ( )a i , the 
better the matching is.  

Afterwards, for every cluster where i does not belong, an 
average measure of dissimilarity is calculated, between the 
data elements of the cluster and i . The minimum of these 
dissimilarity measures is denoted by ( )b i . The cluster to 
which ( )b i  is associated with is called the "neighbouring 
cluster" of i , because it is the second best cluster where i  
could be placed, from among all available clusters. Based on 
this, ( )s i  can be defined as: 


 

( ) ( )
( )

max ( ), ( )

b i a i
s i

a i b i


  

where 1 ( ) 1s i - . When ( )s i  is close to 1, this means that 
the datum i  is properly clustered. When ( )s i  is close to -1, 
the interpretation is that i  would have been better placed in 
its neighbour, instead of the cluster where it is currently 
placed. If ( )s i  is close to 0, then it means that the datum is 

 
Figure 1. Graphical model representation of LDA 

 
Figure 2. Silhouette coefficient values 
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placed somewhere "in between" the two clusters.  
The average ( )s i  of all the data placed in a cluster is an 

indicator of how tightly grouped all cluster data is. The 
average ( )s i  for all clusters is a measure of how properly the 
data has been clustered. 

To find the optimal values of the input parameters for the 
LDA, our system calculates the average ( )s i  from several 
executions of the LDA algorithm for every combination of 
input parameters, within their valid range of values. Once the 

( )s i  coefficients are available for all the evaluated scenarios, 
the pair of input values which produced the closest to 1 ( )s i  
corresponds to the optimal input scenario that leads to the 
best possible clustering. 

Regarding the similarity measure employed to calculate 
the ( )s i , it is based on the gamma values generated by the 
LDA itself. The gamma values indicate the affinity between 
the data and the clusters where the data is placed. These 
affinity coefficients are normalized so that the sum of their 
values equals 1 for a given method. The dissimilarity 
measure ( )a i  of a given application method is set to 1 minus 
the normalized gamma value for the associated best cluster, 
whereas the ( )b i  is set to 1 minus the normalized gamma of 
the second best cluster.  

IV. RESULTS AND EVALUATION OF THE SYSTEM 

The TPC-W benchmark was selected to serve as a test-
case for the demonstration of the new approach presented in 
this paper. The TPC-W benchmark was introduced by Smith 
[13]. This benchmark specifies an e-commerce workload that 
simulates the activities of a retail store website, where 
emulated users can browse and order products from the 
website. This particular benchmark was chosen for two main 
reasons. First of all, it has a reasonably rich application 
domain model and functionality. Secondly, due to the fact 
that the benchmark fits well with the type of applications that 
are most likely to benefit from optimizations that employ the 
results generated by the system developed with the current 
work. As previously stated, such optimizations would 

include dynamic load balancing schemes, conflict-aware 
approaches for partial or full data replication approaches, 
among others. 

The Silhouette coefficients achieved for the evaluated 
range of values for the input parameters of the LDA 
algorithm, when applied to the methods and domain data 
accessed within them, for the TPC-W benchmark, can be 
seen in Fig. 2. 

The z axis represents Silhouette coefficients, where the 
valid range of values is [-1,1]. Every point of the surface 
plotted in Fig. 1 corresponds to an average calculated from 
20 independent LDA executions with the same combination 
of input values. This was done in order to have 
representative results of the non-deterministic behaviour of 
the LDA model. 

As can be seen from Fig. 2, the input parameter 
controlling the number of clusters has been varied from 2 to 
7, whilst the alpha parameter was varied from 0.01 to 1. 
Even though there are 59 benchmark methods within which 
domain data accesses take place, the number of clusters has 
been varied only up to 7 because, even though the LDA 
algorithm takes as input the maximum number of clusters 
among which the methods are to be partitioned, the 
algorithm decides by itself what is the optimal solution, 
within the possibilities given by its actual input parameters. 
Consequently, it is possible for the effective clustering result 
to consists in a solution where only a portion of the 
maximum number of clusters have been allocated any 
elements. This is an increasingly frequent occurrence as the 
maximum number of clusters increases, and, to a smaller 
degree, for the lower possible limit of clusters as well.  

By analysing the results depicted in Fig. 2, we may 
conclude that, with regards to the maximum number of 
clusters, the best Silhouette coefficients (closest to 1) are 
those associated to 2 and 3 clusters. Regarding the optimal 
alpha values, even though they do not seem to exert a 
significant influence over the Silhouette coefficients, the best 
results are achieved when alpha is in the range of ]0.4, 0.5[. 
The sensitivity analysis study performed by Park in [14] 
reached the same conclusion, with regards to the effect of the 
optimized alpha value on the general quality of the clustering 
results.  
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Figure 3. Distribution of average number of methods per cluster 

 
Figure 4. Effective clustering 
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The most commonly observed number of methods per 
cluster can be seen in Fig. 3. Each histogram bar was 
calculated as the average of 20 independent LDA executions, 
for the same total number of clusters. The x axis represents 
the number of methods present in a given cluster, while the y 
axis indicates the total number of clusters among which the 
data has been partitioned. These results show that, as the 
total number of clusters increases, the "new" clusters tend to 
be very small. This is an indicator that a lower total number 
of clusters is more appropriate, where the number of 
methods per cluster is more balanced. 

A summary of the effective ratio of non-empty clusters 
can be seen in Fig. 4. The chart represents a 2D projection of 
the tri-dimensional surface describing the dependency 
between effective cluster number ratio and the LDA control 
parameters. The ratio has been calculated as the number of 
non-empty clusters divided by the maximum number of 
clusters supplied as input. The highest clustering ratios are 
achieved for 3 to 4 clusters and alpha values in the range of 
]0.4, 0.5[. 

Combining the results of Silhouette coefficients with the 
effective cluster number ratio, we can deduce that the input 
parameter values that most consistently lead to the best 
clustering results are alpha in the ]0.4, 0.5[ range and a total 
of 3 clusters. 

V. CONCLUSIONS 

This work presented an innovative approach for 
clustering domain data and application functionality. The 
algorithm employed is the current state of the art multivariate 
Latent Dirichlet Allocation. The methodology performs an 
optimal clustering by fitting input control parameters so as to 
achieve the best possible clustering result. The optimal 
solutions are identified through the use of the Silhouette 
technique. A demonstration of system's capabilities is done 
based on the TPC-W benchmark. The approach is flexible 
enough to be applied to any object-oriented application 
where identifying meaningful clusters of its domain data and 
functionality is desired. 
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