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Abstract—A new approach to simulate the parallelization of
a software function is presented in this paper. The paralleliza-
tion’s effects onto the system’s performance prior to a costly
realization of the parallelization are evaluated, leading to a
more gain-oriented performance optimization. The presented
approach defines a methodology to transform a single-threaded
software function into a multi-threaded simulation. CPU stubs,
simulating both, the performance and functional behavior, are
applied to simulate the expected time slices. The proposed
technique can estimate the expected performance gain for
the whole system. A proof of concept is used to evaluate
the proposed methodology and the simulation results are
compared to a known parallel implementation of the algorithm.
Initial results show our approach can be used to simulate
the performance behavior of a parallelized system with high
accuracy. In addition, the number of threads that result in the
highest performance gain of the system is determined.

Keywords-software performance optimization; performance
simulation; parallelization; dynamic performance stubs

I. INTRODUCTION

Dynamic performance stubs [1] can simulate various op-
timization levels of the component under study (CUS). CPU
stubs [2], replace a software function (CUS) in the system
under test (SUT) and model its CPU performance behavior.
CPU stubs consist of two functionalities, the simulated
software functionality (SSF), that recreates the functional
behavior of the bottleneck, and the performance simulation
functions (PSF) that simulate its performance behavior [3].
PSF are used to simulate different optimization levels and
show the optimization’s effect on the system’s performance.

This paper presents a novel approach to the analysis of
an identified bottleneck with respect to its parallelization
potential. The key contribution of this work is that it allows
for informed decision making to what degree the optimiza-
tion of the bottleneck using parallelization techniques would
impact on the overall performance of the system.

Section II shows the related work. The presented approach
(Section III) is based on a simulation of the bottleneck. It
is an efficient technique that can help to avoid wasted effort
and costs associated with the parallelization of the affected
system component. The described methodology is evaluated
by a proof of concept in Section IV. The simulation of a sys-
tem’s parallelization can be used to estimate the achievable
performance using parallelization techniques.

II. RELATED WORK

The concept of dynamic performance stubs was intro-
duced in [1]. In [3], the usage of CPU stubs to determine
the performance gain of a system’s optimization is shown.
Our approach, extends the dynamic performance stubs to
investigate if this performance gain can be achieved by
parallelization. According to Amdahl [4], not all instruc-
tions that are executed within a system can be performed
concurrently. Amdahl shows that the maximum speedup
of a parallelization is limited by the sequential part of an
algorithm for an infinite number of processors. Gustafson [5]
claims that the speedup that can be obtained by a parallel
execution is not only limited by the remaining sequential
part but increases linearly by the number of used processors.
Both, [4] and [5], determine an upper bound of the speedup
achievable with parallelization. In contrast, our approach
simulates the anticipated system-wide performance benefit.
In our case, the speedup described by Amdahl and Gustafson
can not be used to estimate the runtime of the parallel parts
of the algorithm without modification (see [6]).

The parallelization of a sequential algorithm requires
thread management that reduces the achievable speedup
[7]. Marinescu and Rice [8] introduced the concept of
relative speedup taking sequential and duplicated work,
communication and control and blocking into account. This
paper’s approach also considers the overhead created by
parallelization. By simulating the parallelization, system
influences such as the number of available processors and
the current system load are included.

In [9], an approach to model the influences of the number
of threads and processors on a system’s performance using
Solaris containers is introduced. In contrast, the presented
approach simulates the parallelized software within the real
system in order to get accurate performance measurements.
To the best of our knowledge, no studies have evaluated the
overall performance gain that can be achieved within the
system using parallelization techniques.

III. SIMULATING PARALLELIZATION

This section presents an approach to simulate the par-
allelization of the system in order to obtain measurements
on which decisions to use parallelization as an optimization

233

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



technique can be well-founded. Based on the results the
degree of parallelization can be determined.
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Figure 1. “Performance Simulation of a System’s Parallelization” (PSSP)
- Extension of the CPU Stubs’ Methodology

Figure 1 depicts our approach. The performance sim-
ulation of a system’s parallelization (PSSP) extends the
methodology of CPU Stubs [2]. CPU Stubs determine the
optimization potential of a system that is affected by per-
formance issues. A potential bottleneck (component under
study, CUS) is identified within the system under test (SUT).
The CUS is replaced by a CPU Stub simulating the func-
tional and the performance behavior of the CUS. By varying
the stub’s performance behavior, the optimization potential
for this component is determined. The approach presented
in this section extends the known methodology by the
simulation of the system’s parallelization to decide whether
the parallelization potential within the CUS is sufficient
to reach the performance optimization goals. Hence, the
presented approach helps to transform the measured overall
optimization potential into a gain-oriented realization of the
performance optimization.

A. Objectives

Depending on the accuracy of the known and measured
original performance data, the simulation of the paralleliza-
tion pursues the following objectives:

• Performance potential: Investigate if it is possible to
gain performance within the system when parallelizing
the CUS.

• Determine the expectable performance gain: Deter-
mine the performance gain that can be achieved by par-
allelizing the CUS. The system load and the available
hardware resources limit the possible performance of
the system. Decide whether the performance targets can
be reached by a parallelization.

• Determine the maximum overhead: Parallelizing a
sequential algorithm results in additional effort for
thread management. The overhead needed to manage
the parallelization reduces the achievable speedup.

• Determine the optimal number of threads: The
number of used threads influences the overhead needed
to manage the parallelization. The optimal number of
threads that entails a short thread runtime in combina-
tion with a small amount of overhead is determined by
test series.

B. Approach

The presented approach is based on the simulation of a
concurrent implementation of the system component con-
taining the bottleneck (CUS). It uses a simple fork and
join mechanism to give a first estimation if parallelization
is a valuable way to optimize the CUS. The introduced
method applies the parallelization of the system using do-
main decomposition. Several threads are created within the
simulation using the same thread runtime.
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Figure 2. Steps Towards the Parallel Simulation

In Figure 2, the sequential time is broken down and
replaced by a time estimation of the parallel computation.

Initial Situation A sequential implementation of the CUS
is assumed. Its runtime torig is determined by measurements,
e.g., using real time counters (see [10]).

Step 1: Algorithm Parallelization Potential The original
runtime (torig) is split into a sequential part (ts) and a
parallel part (tp) (see [4]), by carrying out data and control
flow analysis (see [11], [12]).

In the next steps, the parts of the bottleneck that can
be parallelized (tp) as well as the sequential part (ts) are
prepared for multi-threaded execution. For that, the distri-
bution of the sequential part, the threads’ runtime (tx) and
the additional work that is needed to manage the threads (to)
are determined.

Step 2: Sequential Part The control flow analysis,
applied in the first step of this approach, can be used
to determine the distribution of the sequential part to the
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beginning and the end of the simulation. The total sequential
time remains constant at ts = ts1 + ts2 .

Step 3: Threads’ Runtime The parallel time (tp) is
converted into the threads’ runtime (tx) considering that:

• each thread has to execute a subset of the original in-
structions. Therefore, the determined parallel execution
time (tp) will also be split to the various threads. This
has to be captured by the parallel simulation of the
algorithm. The threads’ runtime (tx) is a function of
the number of threads: tx(n) where 0 ≤ n ≤ nth.

• the algorithm in the bottleneck rarely has linear time
complexity. The problem size remains constant for
the test case and is equally split in the nth threads.
However, the threads’ runtime does not change in a
linear way for algorithms with non-linear time com-
plexity when changing the problem size. Due to that,
the threads’ runtime not only depends on the number
of created threads (nth), but also on the parallelized
algorithm’s complexity.

There are two approaches to determine the threads’ run-
time. A complexity analysis of the CUS and the measure-
ment of the algorithm’s time behavior for various problem
sizes can be performed:

Complexity Analysis: A complexity analysis of the
CUS’s algorithm is applied to determine the time complexity
of the algorithm using Big-O-Notation (see [13]). Using
the complexity, the threads’ runtime tx can be calculated
depending on the number of threads. The following example
assumes that an algorithm with a time complexity of O(n2)
is used and that nth = 2 threads are created within the
simulation.

tp ≤ c ∗ n2 (1)

Equation 1 shows the formula for the parallel execution
time (tp). The time complexity given in the Big-O-Notation
defines an upper bound for the time. Therefore, the parallel
execution time is less or equal to a constant time (c)
multiplied by the given complexity.

This paper’s approach uses domain decomposition to
simulate the system’s parallelization. This is realized by a
divide-and-conquer strategy (see [13]). Thus, the presented
approach uses the same algorithm but with an reduced
problem size per thread to simulate the parallelization. As
shown in Equation 2, the reduced problem size is used to
calculate the execution time.

tx ≤ c ∗ (
n

nth
)2 ≤ c ∗ (n

2
)2 (2)

The combination of Equations 1 and 2 shows that in this
example the threads’ runtime (tx) only depends on the
parallel runtime (tp). The upper bound tp = c ∗ n2 of the
parallel runtime is used as a pessimistic estimate to calculate
the threads’ runtime in Equation 3.

tx
tp
≤
c ∗ (n2

2)

tp
≤ c ∗ n2

4 ∗ tp
≤ tp

4 ∗ tp
≤ 1

4
(3)

The upper bound of the calculated thread runtime is tx =
tp
4 .

Measured Time Behavior: Another approach to de-
termine the threads’ runtime is the measurement of the
algorithm’s time behavior. The CUS’s algorithm is available
and can be executed with different problem sizes capturing
the various time behaviors of the algorithm. This data is used
to determine the threads’ runtime for a given problem size.
The measurements’ results strongly depend on the used input
data, as best- or worst-case scenarios of the algorithms can
be triggered. To get the expected timing data, the input data
has to be chosen specifically corresponding to the original
data.

Step 4: Parallelization’s Overhead In addition to the
threads’ runtime (tx) the time used to fork and join the
threads as well as to split and combine the result of
the problem has to be considered within the simulation
as overhead to = to1 + to2 . The overhead is split into
two sections: creation (to1 ) and synchronization (to2 ) of
the multi-threaded part (Figure 2). The overhead depends
on the concrete implementation. Two options need to be
considered:

1) An idea about the implementation of the paralleliza-
tion is available. Hence, the effort that is needed for
the thread management can be estimated depending
on the number of created threads.

2) Otherwise, it is possible to simulate the parallelization
without an overhead. In this case, only the maximum
overhead that can be introduced by the parallelization
in order to gain performance can be determined. This
reduces the problem to a thread-management and task
distribution problem that can be solved more easily.

Depending on these considerations, the evaluation of the
results focuses on different objectives (see Step 6).

Step 5: Simulation of the Parallelization The deter-
mined values of ts, to and tx are used to simulate the
performance of a possible parallelization (Figure 2). Each of
these elements has to be rebuild as a system influencing PSF
[2]. To build the multi-threaded behavior of the simulation,
a method to generate the multi-threaded PSF from a textual
description is introduced in [3]. In combination with the
SSF [3], it is possible to simulate the expected performance
behavior of a parallelization. The expected parallel execution
time is tg = ts + to + tx. This theoretical value does not
consider any scheduling or runtime influences. The time
tsimg , measured within the simulation under real conditions
describes the real value of tg . Consequently, the simulation
takes system bottlenecks, as the number of available proces-
sors or other processes running on the system, into account.

Step 6: Evaluation of the Results Depending on the
overhead estimation (Step 4) two results of the simulation
can be evaluated:

• The performance gain by parallelization of the bottle-
neck is defined as tgain = torig− tsimg . The simulation
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is executed with a varying number of threads (nth) to
determine the optimal gain, leading to adjusted values
for tx and to. This is used to determine the optimal
number of threads (noptth ).

• If the threads’ administration overhead cannot be esti-
mated (Step 4.2) the determination of maximum over-
head is another objective. In this case the simulation
rebuilds the sequential and parallel execution times,
ts and tx and estimates the maximum overhead by
tmax
o = torig − tsimg . If the parallelization and syn-

chronization of the bottleneck can be performed in less
than tmax

o , the optimization will result in a performance
improvement for the bottleneck.

These results are used to decide whether parallelization
can be applied as an optimization technique to achieve the
performance targets.

IV. PROOF OF CONCEPT

This section evaluates the proposed methodology using a
proof of concept. The threads’ runtime is determined as de-
scribed in Step 3. The measurements are used to simulate the
parallelization for various numbers of threads. Finally, the
simulation’s results are compared to the performance data of
the algorithm’s parallel implementation. All measurements
were performed on a FSC Amilo Si3655 Notebook with an
Intel Core(TM)2 Duo P8400 CPU (Intel 64 architecture). As
operating system Arch Linux, kernel version 2.6.34, is used.
Binaries were build using GCC (version 4.5.1).

A. Overview

The example simulates the parallel execution of a sequen-
tial bubble sort algorithm (see [14]). A parallel implemen-
tation of this algorithm is used to validate the results of the
simulation and uses the same implementation extended by
a merge-sort to combine sorted sublists.

setup list 

for sorting

bubble 

sort

print 

sorted list

ts1

tp

ts2

torig

sequential

setup list 

for sorting

bs

print 

sorted list

tparallel

parallel

bs

merge

...

Figure 3. Sequential and Parallel Bubble Sort Algorithms

Figure 3 shows the timings of the bubble sort algorithms.
Both algorithms have the same set up. The sequential algo-
rithm processes the whole list, whereas in the parallel case,

the list is split into nth parts that are sorted independently in
different threads. The parallel execution additionally merges
the sorted partial lists. Finally, both algorithms print the
whole sorted list. To guarantee reproducibility of the test
results, the used list is initialized with 4096 random integer
numbers once and used for each test run.

B. Algorithm Parallelization Potential (Step 1)
The original runtime (torig) of the sequential algorithm

was determined using the time stamp counters. Additionally,
the runtime of the parallel part (tp) and the sequential parts
of the algorithm ts = ts1 + ts2 were measured as described
in Step 1.

avg[ms] max[ms] min[ms] sqdcoeff of var
torig 103,66 103,87 103,48 4,06E-07
tp 103,49 103,70 103,31 4,04E-07
ts1 0,152 0,155 0,150 9,87E-05
ts2 0,0177 0,0177 0,0175 1,63E-05

Table I
RUNTIME VALUES OF THE SEQUENTIAL BUBBLE SORT

Table I shows the measurements’ average, maximum and
minimum time of 20 samples taken in milliseconds. The
squared coefficient of variation (see [15]) is applied to
evaluate the deterministic behavior of the measured data.

C. Sequential Part (Step 2)
The sequential time ts was measured (Section IV-B).

Thus, ts1 and ts2 are known and can be simulated.

D. Threads’ Runtime tx (Step 3)
In the next step, the measured parallelizable time of

the sequential algorithm (tp) has to be converted into the
threads’ runtime (tx). As described in Step 3 of Section
III-B, there are two possibilities to estimate tx, complexity
analysis and measurement. To evaluate that both approaches
can be used to determine the threads’ runtime, their results
are compared in this step. The complexity of the bubble
sort algorithm is known as O(n2) [14]. In Section III-B, the
calculation of the estimated thread runtime is shown by an
example. To measure the time behavior of the used bubble
sort algorithm, it is executed with different problem sizes.

Figure 4 presents the comparison of the determined
parallel threads’ runtime tx. As described in Step 3 of
Section III-B, the calculation of the thread’s runtime using
a complexity analysis (crosses) and its determination by
measurements (circles) are drawn. The x-axis shows the
number of threads, whereas, the y-axis depicts the time in
milliseconds. In order to depict the differences of the two
graphs, the y-axis is drawn logarithmically. As can be seen,
both alternatives nearly provide the same results and can
be used to give an estimation about the threads’ runtime. As
described in Step 3 of Section III-B, the complexity analysis
provides an upper bound for the thread’s runtime.
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Figure 4. Determination of the Threads’ Runtime

E. Parallelization’s Overhead (Step 4)

The overhead that is needed for thread management has
to be determined in this step. In this example, the parallel
implementation of the algorithm is known. Due to that, the
overhead values to1 and to2 can be estimated. The overhead
to split the initialized list to the single threads is measured
and set to to1 = 5, 2µs, as the additional work that has to be
done here is almost constant. The single bubble sort threads
are just executed with sublists.

The work needed to synchronize the intermediate results
influences the expected performance gain. As described in
Section IV-A, a merge algorithm with a complexity of
O(nth ∗ n) is used to combine the results. In this example
the overall problem size (n) remains constant. Thus, the
time to merge the sublists only depends on the number of
created threads. This overhead increases linearly and can
be determined using the same methods as described for the
calculation of the threads’ runtime in Step 3 of Section III-B.
In this proof of concept, it was determined to an average of
to2 = 28µs ∗ nth.

F. Simulation and Evaluation (Steps 5 & 6)

After all values have been determined, the simulation
was executed. All measurements were performed with the
number of threads increasing from 2 to 128.

ts1
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tpar
sim

to2
ts2
tg
sim
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Figure 5. Simulation of the System’s Parallelization

Figure 5 presents the simulation’s results. The x-axis
shows the number of created threads and the y-axis depicts
the used time in milliseconds. The graph includes all the
values introduced in Section III-B; the sequential parts ts1
and ts2, the threads’ overhead to1 and to2, as well as the
time needed to run all the created threads tsimpar . Additionally,
the overall simulation time (tsimg ) is presented. The small
variations included in the graph occur due to measuring
inaccuracies.

The evaluation of the simulation resulted in a calculated
performance gain of tgain = 100.48ms for the parallel
execution with the optimal number of threads noptth = 35.
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Figure 6. Comparison of Simulation and Parallel Implementation

Figure 6 presents a comparison of the overall simulation
time tsimg and the total execution time tparallel of the parallel
implementation. The y-axis plots the time in milliseconds
against the number of used threads (x-axis). There are only
small differences, probably caused by operating system in-
terruptions. Clearly, the simulation of the parallelization has
given an accurate estimation of the parallelization’s results.
Based on these initial results we are confident that the
proposed methodology can be used to estimate the expected
performance of a system’s parallelization. The application of
the presented approach provides a well founded estimation
of the ideal number of threads without a realization of the
parallel algorithm.

V. CONCLUSION AND FUTURE WORK

We presented a novel approach to simulate the effects of
parallelization on the system’s performance, by obtaining
measurements on which decisions to use parallelization as
an optimization technique can be based. This leads to a more
gain-oriented performance optimization.

The presented approach converts a single-threaded bottle-
neck into a simulation of its parallel execution. Therefore,
the expected bottleneck is split into several parts in order to
simulate the parallel execution of the bottleneck. Especially,
the part that can be parallelized is particularly investigated
to determine the threads’ runtime and the additional over-
head that occurs when synchronizing the threads’ results.
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Complexity analysis and measurements are used to estimate
the timing behavior of the parallel part. The identified time
slices are rebuild by performance simulation functions, and,
thus, enable the performance simulation of the system’s
parallelization. The parallelization’s expected performance
benefit is determined by simulating varying parallelization
degrees.

The described simulation provides more accurate knowl-
edge on the achievable performance gain by parallelizing a
component before spending the effort of a costly realization
of the parallelization. And such, it enables a more gain-
oriented performance optimization than a simple guess of
the parallelization’s effects. The approach is validated by
a proof of concept using a bubble sort algorithm. The
simulation’s results estimate the expected performance of the
parallel implementation with high accuracy. Additionally,
the optimum number of threads that have to be created
in order to achieve the maximum performance benefit is
determined by the simulation. Please note that in a real
environment a comparison of the expected performance
gain and the parallel runtime behavior, as shown in the
presented case study, is not possible until the realization of
the parallelization.

In future work the introduced approach also has to be
validated for other algorithms and in industrial case studies.
Additionally, the CPU load will be taken into account as a
further performance aspect. Upper bounds of CPU loads can
be defined and help to decide whether parallelization of a
system’s component is a viable approach for the system’s
performance optimization.

The presented approach simulates a parallelization of the
regarded bottleneck using domain decomposition. Functional
decomposition as a parallelization technique will also be
investigated, considering the simulation of threads with
differing values of runtime and systems having several
synchronization points of the threads during their execution.
This has to be integrated with the presented approach.

A new methodology regarding the application of the
performance simulation of a system’s parallelization will be
developed and evaluated by case studies. This enables the
simulation of parallelization as a performance optimization
technique. Thus, it reduces the optimization’s effort and
leads to a more gain-oriented performance optimization of
the system.
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