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Abstract—This paper describes four algorithms implemented
to solve the problem of converting general quantum circuits to a
Linear Nearest Neighbor (LNN) architecture. All the implemented
algorithms are based on the HIRATA II algorithm and consider
two improvements: (i) the use of parallel computing, and (ii)
branch & bound technique. The proposed parallel algorithms
are tested with the largest test circuit presented in the work
of Hirata et al., this circuit correspond to Shor’s factorization
algorithm (named as Shor10 circuit). Experimental results show
a speedup of an order of magnitude from hours to seconds,
improving slightly the quality of the converted circuit, measured
as the number of inserted swap gates.

Keywords— LNN architecture; Quantum Circuits; Parallel Com-
puting.

I. INTRODUCTION

The design of a general quantum circuit allows the interac-
tion of non-adjacent qubits; however, the current technology
may not allow the interaction between non-adjacent qubits
[13]. Therefore, quantum circuits require an architecture that
facilitates implementation. Linear Nearest Neighbor (LNN)
architecture [16] facilitates the implementation of quantum
circuits. The conversion of a general quantum circuit to an
LNN architecture is a hard task for conventional heuristics.

Among several alternatives, HIRATA II algorithm [11]
provides a general conversion scheme applicable to non-
trivial quantum circuits. Therefore, this paper proposes several
parallel versions of HIRATA II algorithm. Proposed parallel
versions implement a branch and bound scheme [19] to
improve algorithm performance.

The algorithms implemented in this work are tested with
the largest circuit considered in the work of Hirata et al. [11]
to prove the advantage of the proposed alternatives.

Parallel computing seems an interesting alternative for this
work given the size of computation, and availability of multi-
core processors in today servers. This way, the studied problem
may be solved considerable faster with a cluster of computers
or even a multi-core Central Processor Unit (CPU) as far as the
problem can be efficiently partitioned in smaller subproblems.

This work is organized as follows: Section II presents
the general conversion problem while Section III describes
HIRATA II algorithm. Then, the implemented algorithms
are presented in Section IV while experimental results are
presented in Section V. Finally, conclusions are left for
Section VI, where future works are also presented.

II. CONVERSION OF GENERAL QUANTUM CIRCUITS TO AN
LNN ARCHITECTURE

There are already known methods to convert a quantum
circuit to an LNN architecture. Fowler et al. [5] describe a
construction scheme of quantum circuits in LNN architecture.
On the other hand, Hirata et al. [11] present a general
conversion scheme applicable to any quantum circuit that is
considered in this work for parallelization.

The process of converting a quantum circuit to LNN archi-
tecture involves the insertion of SWAP gates to the original
circuit to change the order of the qubits in such a way that
needed gates only opperate on neighboring qubits.

The conversion of a general quantum circuit to the LNN
architecture is defined by Hirata et al. [11] as:

• Input: a general quantum circuit, composed of N qubits
and K gates.

• Output: an equivalent LNN quantum circuit.
• Objective: to minimize the total SWAP gates added.
• Restriction: the equivalent circuit output should have all

qubits in the same original order.
Quantum gates are in LNN architecture if the qubits neces-

sary to operate a gate are adjacent. A quantum circuit is in a
LNN architecture when all its gates are LNN.

Circuit in Figure 1 represents a quantum circuit that is not
in an LNN architecture. The circuits in Figures 2 and 3 are
in LNN architecture and they are equivalent to the circuit in
Figure 1. Moreover, the circuit in Figure 3 represents the best
solution of the two alternatives because it adds fewer SWAP
gates to the original circuit. In fact, the number of inserted
SWAP gates needed to convert a general quantum circuit to
an LNN architecture is here considered as the main quality
indicator of the convertion process.

Figure 1. A quantum circuit not LNN
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Figure 2. A quantum circuit equivalent to the one presented in 1 in an LNN
architecture

Figure 3. LNN quantum circuit equivalent to circuit of 1 with fewer SWAP
gates

III. HIRATA II ALGORITHM

Hirata et al. [11] presented the HIRATA II algorithm to
reduce the number of candidates to be evaluated in the
convertion of a general quantum circuit to on LNN architecture
with respect to classic heuristics as greedy algorithms.

As explained in detail in [11], HIRATA II algorithm defines
an objective function f to be minimized wich can be evaluated
for each candidate solution. The objective function to evaluate
candidates is given by:

f(ni,j) = f1(ni,j) + f2(ni,j) + f3(ni,j) (1)

with:
f1 = local searchw(ni,j , w),

f2 = calc swaps(c order, ni,j) and

f3 =
ck

k − i+ 1
calc swaps(ni,j l order)

where ni,j represents the current candidate j for the cur-
rent gate i; c order is a list that represents the current
order of the qubits while l order is a list representing
the initial order of the qubits. local searchw(nij) repre-
sents the lowest cost of converting the following w gates
if j is chosen. calc swaps(c order, nij) is the number
of SWAP gates necessary to obtain nij from c order.

ck
k−i+1calc swaps(nij l order) represents an estimation of
the cost necessary to re-order the final order to the original
order (see restriction in Section I). This term receives more
preponderance in the conversion when the process progresses
and it gets closer tho the end. The ck constant is chosen a
priori.

IV. IMPLEMENTED ALGORITHMS

In this paper, three algorithms are proposed based on the
original HIRATA II algorithm. The H2-S version is a sequen-
tial algorithm that implements a branch and bound technique

Figure 4. Hirata II sequential algorithm

in the evaluation of f1 needed for the calculation of objective
function (2).

All parallel algorithms implement a branch and bound
technique. Figure 7 shows an example of the number of nodes
evaluated by the original algorithm. Figure 8 shows a decrease
in the number of evaluated nodes when implementing a branch
and bound technique.

Algorithm H2-P is a parallel version based on the scheme
of task division. A task is an evaluation of a candidate, i.e.
the calculation of the term f1 of the objective function given
by (2).

H2-X algorithm is a hybrid parallel version scheme based
on task division and problem partitioning. This algorithm first
divides the problem into X parts. Then, the algorithm is
applied in parallel to each part of the problem. In what follows,
two values of X are used: X = 2 and X = 5.

Following Frutos suggestion [6], objective function is mod-
ified to use different weights as follows:

f(ni,j) = P1 ∗ f1(ni,j) + P2 ∗ f2(ni,j) + P3 ∗ f3(ni,j) (2)

where P1, P2 and P3 are weights satisfying the relation P1 +
P2 + P3 = 1. This paper only considers the special cases
presented in Table I.

56Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies



Figure 5. First proposed parallel algorithm H2-P

Figure 6. Second parallel algorithm proposed H2-X

TABLE I. COMBINATION OF P1, P2 Y P3 USED IN THE REPORTED TESTS

P1 P2 P3 Comments
1 0 0 only f1() is use
0 1 0 only f2() is use
0 0 1 only f3() is use

1/3 1/3 1/3 HIRATA II
0.5 0.25 0.25 f1() is more important

0.25 0.5 0.25 f2() is more important
0.25 0.25 0.5 f3() is more important

Figure 7. Nodes evaluated with the original local search function

Figure 8. Nodes evaluated with the local search function and branch and
bound technique

Clearly, combination of weights where P1 = P2 = P3 = 1
3

corresponds to the original optimization function proposed in
[11].

The nature of the parallel algorithm conversion requires
the development of a communication protocol as OpenMPI
[7] used in this work. The communication protocol has an
Initiator, a Router and Worker processes:

• Initiator: the Initiator process determines the extent of
the problem;

• Router: the Router process manages the pool of worker
processes;

• Worker: worker processes run tasks, and even the Initia-
tor process is also a worker process.

This protocol avoids the scheme ”master / slave” imple-
menting a scheme of pool of workers.

Table II summarizes the implemented algorithms and tech-
niques used for each algorithm.

TABLE II. COMPARISON ALL IMPLEMENT ALGORITHM

Algorithm
Branch
and
Bound

Parallelization
of calculation
of objective
function

Circuit
partitioning Comments

Hirata
II No No No Hirata et al. [11]

H2-S Yes No No
[11] with branch and bound: Algo-
rithm (1)

H2-P Yes Yes No
Objective function calculated in
parallel

H2-X Yes Yes Yes Algorithm (2)
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TABLE III. RESULTS OBSERVED FOR SPECIAL WEIGHTS IN THE SHOR10
CIRCUIT

Weight Alg.
w=10 w=12 w=14

swaps /
σ (swaps)

tseg /
σ (tseg)

swaps /
σ (swaps)

tseg /
σ (tseg)

swaps /
σ (swaps)

tseg /
σ (tseg)

1/
3;

1/
3

;1
/3

H2-S 163615,4
/ 2552,19

136,851 /
2,80

150355,8
/ 1050,52

558,765 /
2,28

148364,1
/ 982,27

2656,19 /
2,32

H2-P 153674,2
/ 1954,26

43,694 /
1,93

140800,8
/ 779,10

177,602 /
3,91

141167,4
/ 761,14

745,632 /
40,03

H2-X2 154718,8
/ 2134,27

22,073 /
0,87

142723,4
/ 902,84

88,617 /
4,25

141018,2
/ 823,06

365,461 /
28,01

H2-X5 152410,6
/ 1709,77

10,448 /
1,21

145624,6
/ 1583,82

41,144 /
2,35

145109,2
/ 1498,90

147,06 /
8,44

0.
5

;0
.2

5;
0.

25

H2-S 145609 /
749,12

98,886 /
1,21

139809,2
/ 633,56

388,584 /
1,63

140433,6
/ 513,01

3186,251
/ 4,08

H2-P 154321,8
/ 1612,67

44,781 /
1,28

140918,8
/ 799,92

175,399 /
5,54

140989,6
/ 580,96

744,693 /
56,84

H2-X2 154944,6
/ 1650,27

22,191 /
0,65

142394,6
/ 1284,04

88,942 /
3,99

141539,6
/ 466,87

359,981 /
21,28

H2-X5 152727,8
/ 937,09

9,453 /
0,43

144842,4
/ 1704,23

38,127 /
1,46

144829 /
1072,02

140,265 /
14,25

0.
25

;0
.5

;0
.2

5

H2-S 171704,6
/ 625,71

146,504 /
2,25

171464,4
/ 617,81

570,564 /
1,96

165006,2
/ 1344,39

2039,95 /
3,02

H2-P 154272,6
/ 2316,71

43,648 /
2,07

140634,4
/ 458,33

178,132 /
4,24

141376,8
/ 416,88

768,926 /
78,55

H2-X2 154401,6
/ 1717,95

22,29 /
0,95

142341,4
/ 639,11

92,126 /
3,39

141263,6
/ 389,22

366,553 /
19,26

H2-X5 153910,7
/ 1978,02

9,881 /
0,74

143864,7
/ 931,65

39,732 /
2,36

145080,2
/ 1535,01

137,357 /
15,53

0.
25

;0
.2

5
;0

.5

H2-S 162204,9
/ 1729,59

118,83 /
1,36

153733,5
/ 1042,29

685,323 /
1,79

157097,5
/ 464,64

3097,569
/ 2,31

H2-P 153339,6
/ 1755,63

43,842 /
2,36

140970 /
810,46

178,819 /
3,85

141207,2
/ 757,31

718,053 /
56,23

H2-X2 155090,2
/ 1216,85

21,899 /
0,83

142839,2
/ 652,68

90,129 /
3,60

141261 /
715,41

357,025 /
29,05

H2-X5 153845,9
/ 1507,76

9,774 /
0,58

145869,5
/ 1366,39

45,245 /
1,98

144738,2
/ 1066,47

148,415 /
15,39

1
;0

;0

H2-S 141604,1
/ 327,71

101,027 /
0,98

136209,1
/ 699,13

379,494 /
2,56

136456,7
/ 396,55

3515,705
/ 3,51

H2-P 153671,4
/ 1582,54

44,062 /
2,50

140613,4
/ 567,89

176,709 /
4,68

141174 /
688,45

730,881 /
30,94

H2-X2 154514,4
/ 1738,62

21,916 /
0,94

142319,8
/ 706,41

91,789 /
3,41

140975,6
/ 548,79

361,095 /
29,26

H2-X5 153853,9
/ 1720,86

9,758 /
0,59

144962,9
/ 1528,26

42,392 /
2,88

144832,2
/ 1110,51

146,448 /
15,09

0
;1

;0

H2-S 256266,7
/ 1113,46

454,973 /
1,94

258657,4
/ 661,86

1851,703
/ 2,12

259102,6
/ 539,50

5851,167
/ 5,14

H2-P 272585,9
/ 2034,55

189,944 /
13,12

274059,9
/ 1370,88

700,717 /
19,88

282117,3
/ 918,42

2442,572
/ 72,16

H2-X2 270386,3
/ 3346,48

93,088 /
5,22

278743,7
/ 1706,26

351,268 /
18,94

281370,6
/ 2738,40

1454,563
/ 132,50

H2-X5 270821,2
/ 1947,30

43,842 /
3,70

276104,8
/ 1870,61

183,48 /
8,10

282341,2
/ 3062,77

632,463 /
10,58

0
;0

;1

H2-S 252368,7
/ 930,42

408,199 /
1,38

257750 /
625,07

2216,577
/ 3,39

257017,4
/ 289,33

5996,26 /
2,80

H2-P 274425 /
1725,57

195,747 /
7,80

277003,2
/ 3693,99

721,374 /
9,74

281502,6
/ 2514,29

2518,742
/ 38,91

H2-X2 271276,2
/ 1927,95

91,79 /
2,09

277446,3
/ 1016,30

355 /
15,92

283420,9
/ 2629,49

1.457 /
120,07

H2-X5 271754,1
/ 3659,20

41,78 /
3,27

276948,9
/ 1597,44

186,845 /
1,44

283434,3
/ 1688,50

625 /
12,03

V. EXPERIMENTAL RESULTS

The largest circuit presented in [11] is used in this work,
this circuit correspond to Shor’s factorization algorithm [14]. It
is composed of 24 qubits and 132,204 quantum gates (named
as Shor10 circuit). Given that the algorithms are probabilistic
when there is a tie, experiments are run 10 times for each
algorithm implemented considering three values of w, giving
a total of 10x7x4x3 = 840 experimental runs.

Algorithm H2-S was run in a computer with Intel processor
I7 Quadcore 2.3 GHz and 16 GB of Random Access Memory
(RAM). On the other hand, parallel algorithms were executed
on a cluster of computers with Intel processor I5 Quadcore
2.3 GHz and 4 GB of RAM. It is important to note that the
equipment used for the execution of H2-S is clearly better
than the one used for the parallel implementations.

TABLE IV. SPEEDUP AND QUALITY MEASURE COMPARISON

Weight Algorithm
w=10 w=12 w=14

Q Sp Q Sp Q Sp

1/
3;

1/
3;

1/
3 H2-S 1,00 1,00 1,00 1,00 1,00 1,00

H2-P 0,94 3,13 0,94 3,15 0,95 3,56

H2-X2 0,95 6,20 0,95 6,31 0,95 7,27

H2-X5 0,93 13,10 0,97 13,58 0,98 18,06

0.
5;

0.
25

;0
.2

5 H2-S 1,00 1,00 1,00 1,00 1,00 1,00

H2-P 1,06 2,21 1,01 2,22 1,00 4,28

H2-X2 1,06 4,46 1,02 4,37 1,01 8,85

H2-X5 1,05 10,46 1,04 10,19 1,03 22,72

0.
25

;0
.5

;0
.2

5 H2-S 1,00 1,00 1,00 1,00 1,00 1,00

H2-P 0,90 3,36 0,82 3,20 0,86 2,65

H2-X2 0,90 6,57 0,83 6,19 0,86 5,57

H2-X5 0,90 14,83 0,84 14,36 0,88 14,85

0.
25

;0
.2

5;
0.

5 H2-S 1,00 1,00 1,00 1,00 1,00 1,00

H2-P 0,95 2,71 0,92 3,83 0,90 4,31

H2-X2 0,96 5,43 0,93 7,60 0,90 8,68

H2-X5 0,95 6,60 0,95 15,15 0,92 20,87

1;
0;

0

H2-S 1,00 1,00 1,00 1,00 1,00 1,00

H2-P 1,09 2,29 1,03 2,15 1,03 4,81

H2-X2 1,09 4,61 1,04 4,13 1,03 9,74

H2-X5 1,09 10,35 1,06 8,95 1,06 24,01

0;
1;

0
H2-S 1,00 1,00 1,00 1,00 1,00 1,00

H2-P 1,06 2,40 1,06 2,64 1,09 2,40

H2-X2 1,06 4,89 1,08 5,27 1,09 4,02

H2-X5 1,06 10,38 1,07 10,09 1,09 9,25

0;
0;

1

H2-S 1,00 1,00 1,00 1,00 1,00 1,00

H2-P 1,09 2,09 1,07 3,07 1,10 2,38

H2-X2 1,07 4,45 1,08 6,24 1,10 4,12

H2-X5 1,08 9,77 1,07 11,86 1,10 9,59

Table III describes the mean values and standard deviations
observed for different weight combinations. In particular,
Table III shows that H2-X5 is strictly better in running time
and number of SWAP gates than the sequential version of
HIRATA II algorithm (found when all weights are equal 1

3 ).
Even more, H2-X5 has a shorter running time than any other
implemented algorithm, proving its effectiveness. At the same
time, all implemented parallel algorithms proved to be quite
competitive with respect to the sequential algorithm H2-S.

The standard deviation observed in Table III is small in
general, showing that no peaks are seen neither in the running
time nor in the necessary amount of quantum gates.

Table IV shows the SpeedUp (Sp) [12] and quality
(Q) calculated for each parallel algorithm with respect to
algorithm H2-S. Clearly, parallel algorithms have the highest
acceleration and H2-X5 is the best parallel alternative.
Finally, it can be noticed in Table III that the worst results
were obtained when P1 = 0, confirming same conclusion
reported in [6].
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VI. CONCLUSION AND FUTURE WORKS

Experimental results show a speedup of an order of mag-
nitude with respect to the resolution times (from hours to
seconds), even improving slightly the quality of the converted
circuit, measured by the number of inserted swap gates.

Experiments corroborate the importance of the term f1 in
(1) and (2) for the quality of results. Combinations where P1 =
0 obtained the worst experimental results, confirming Frutos
conclusion [6].

The communication protocol designed and implemented in
this work using Open MPI seems very efficient and it can be
used in building other non-trivial parallel algorithms.

For future work, the authors are working on the following
improvements: (i) apply meta-heuristic techniques, possibly
based on a strategy of task division, using the communication
protocol designed and implemented in this work; (ii) modify
HIRATA II algorithm to avoid the randomness in the selection
of candidates in tie situations and (iii) apply further partitio-
ning to solve a give partition to increase the potential of using
parallelism in new multi-core cluster of cumputers.
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