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Abstract— In this paper, a method to determine the 

configurational structure of a chain of atoms, based in the 

application of an electric field is proposed. This method gives 

the possibility to detect the existence and localization of 

dislocations and the presence of impurities inside the particle. 

This is a simple example of the so-called inverse problems, 

which consist in specifying the configuration of a system from 

the knowledge of the spectrum. On the other hand, in the so-

called direct problems, which are studied much more 

frequently in the literature, one must obtain the spectrum from 

the knowledge of the characteristics of the system. 
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I. INTRODUCTION  

The study of the electronic properties of materials that 

do not have translational symmetry has been a very active 

field in the last years. Among the important properties of 

these structures are: the Anderson localization, the fractal 

properties of the spectrum of the quasi crystals, etc. In 

particular, the discovery of the Anderson localization 

phenomenon of quantum mechanics [1] gave origin to one 

of the most important subjects in condensed matter physics. 

On the other hand, the systems whose structural order is 

described by means of deterministic sequences like those of 

Fibonacci [2], Thue-Morse [3], Godreche-Luck [4], etc. can 

be seen as an intermediate case between periodic and 

disordered 1-D systems. It has been observed that the 

electronic spectra of some of these systems are self-similar, 

and the energy bands divide into several sub-bands, each of 

which further subdivides into more sub-bands and so on [5-

7].  

Most of these studies have been direct problems in the 

sense that they begin with a given system, and then the 

eigenvalues and eigenfunctions are obtained. Here, we 

consider a particular case of an inverse problem [8]. We 

follow here the same path at the beginning, but then, we 

return to the characteristics of the systems and we establish 

a correlation between the configuration of the system and 

the characteristics of the spectrum. We show that the 

configuration of the systems considered here can be 

deduced from the knowledge of the spectra. The main idea 

is to employ the capability of the electric field to produce 

well-separated eigenvalues. In particular, if the systems are 

periodic, the electric field produces the well-known 

Wannier-Stark Ladders (WSL), which consists of a series of 

equally spaced energy levels appearing in the spectrum [9]. 

The distance between the neighboring energies is 

proportional to the field intensity. This property of the 

electric field allows the prediction of the approximate 

configuration of the imperfect crystal, in spite of the chaotic 

appearance of the spectrum at first view. 

The article is organized as follows: In Section II the 

model for a deformed crystal is described. The properties of 

the calculated spectra are discussed in Section III. Section 

IV is devoted to explain the main conclusions derived from 

this work.  

II. MODEL FOR THE DEFORMED CRYSTAL  

In order to show how an electric field can be used for the 

aforementioned objectives, we consider a one-dimensional 

crystal that has suffered a deformation under control.  Then, 

the structure of the spectrum is analyzed and a correlation 

between the structure of the particle and the spectrum is 

established. The electrified imperfect crystal is modeled as 

follows. Let us suppose that the potential for one electron in 

a 1-D system can be described by means of the following 

expression (see Fig. 1). 
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with  i Nx 0,x , i 0,...,N.  The values of the potential at 

the ends of the interval  N0,x  are equal to infinite, in order 

to confine the movement of the electron inside this interval. 

Here,  ix x   and  ix x   are the Dirac delta function 

and the Heaviside step function, respectively [10]. The 

length of the interval  1 i 1x ,x 
will be denoted as 

il . We 

note that when the lengths 
il and the intensities 

i of the 

delta potentials are set equal to constants 
0l  and 

1 i, respectively, the potential (1) can be seen as the 

superposition of a periodic potential, plus a linear term f x  

due to a uniform applied electric field of intensity f . The 

relation between the parameters 
ih  and the intensity of the 

electric field is  i i i 1 ih l f x x f .    

The specific form of the potential  V x will be a 

superposition of blocks of type 
iA  and blocks of type 

iB .  

The block 
iA is a flat interval of height 

i

i mm 1
V h


  and 

length 
Al  independent of i.  The block 

iB  is a delta potential 

of intensity 
i . When f 0,  we have 

iV 0  i,  and all 

the blocks 
iA  are equal to a given block A.  In this case, we 

can obtain periodic structures, if we take, for example, all 

the blocks 
iB  equal to a given block B  and we take the 

configuration AB AB AB AB AB . 

We will study the evolution of the electronic spectrum 

when the potential (1) becomes disordered by changing the 

distribution of the blocks. We will start from perfect 

periodic structures and then we will gradually perturb them 

to obtain a quasi-periodic structure. Here, we will only 

consider the Fibonacci sequences [2] 
8S .  However, the use 

of this sequence is not restrictive and one can use the 

electric field to analyze any other type of imperfect crystals. 

For the case f 0,  we built these sequences using the 

blocks A  and B  defined above and using the Fibonacci 

rule   j 1 j j 1S S ,S   [2], with the initial conditions 

1S A  and 2S AB,  being j  the generation number. 

The eighth generation is 

 

S =ABAABABAABAABABAABABAABAABABAABAAB8 .

      (2) 

 

 

 
 

Figure 1. Potential  V x  given by (1). 

                 

III. PROPERTIES OF THE SPECTRUM 

Briefly, in the following, we use the phrase "periodic 

system" or "locally periodic system" to denote a section of a 

periodic system inside the potential well of Fig. 1. For 

future reference, we start by discussing the well-known 

effect of an electric field on the spectrum of a periodic 

system. By means of the transfer matrix method, we have 

calculated the energies and the results which are shown in 

Fig. 2. The figure shows the evolution of the energy levels 

as a function of the electric field intensity f . Each line 

corresponds with an energy level. The characteristics of a 

similar spectrum were discussed many years ago in [11]. On 

the left of these figures, we see that all the levels are 

grouped in bands, as must be for f 0,  since in this case, 

the system is periodic. Each band in Fig. 2 has 8 levels, 

because the potential considered in the figure has exactly 8 

cells. 

It is easy to prove that the upper limit of the n th band 

of a finite periodic sequence is equal to the upper limit nE  

of the n th band of the infinite Kronig-Penney model 

[12]. Furthermore, it is also equal to the n th level of an 

infinite well of length p,  which is given by 

2 2 2

nE n 2 p . 
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Figure 2. First and second bands of the electronic spectrum of a finite 
periodic structure with 8 cells (see inset) as functions of the electric field 

intensity. 

 

For the lower level of the n th band, there is not a 

closed expression, but it can be proved [13] that it is very 

close to the lower limit ne  of the n th band of the infinite 

Kronig-Penney model, which satisfies the following 

expression [12] 

 

    
 sin

cos
n

n

n

2e p
2e p 1.

2e
    (3) 

 

We have verified that 1E , 2E , 1e and 2e  obtained from 

these formulas are in agreement with the plotted values on 

the left sides of Fig. 2, where we have used p 2.  On the 

right of this figure (corresponding with the value 

f 0.55 ), the levels appear separated due to the presence 

of the electric field. We clearly see that all the levels coming 

from the first band appear equally spaced (except the two 

levels of the extremes that are a little more separated). This 

structure is precisely the WSL predicted by Wannier [6]. 

According to Wannier, the nearest-neighbor energy level 

spacing E  is equal to pf . However, due to our systems 

being finite, the WSL are not perfect. So, the levels of the 

ladders are not exactly equally spaced. This is frequently 

more evident with the extreme levels of the ladders, as 

occurs with the first ladder of Fig. 2 at f 0.55.  If one 

neglects these two levels, the rest of the levels have a quite 

reasonable behavior. 

A superficial analysis of Fig. 2 could yield to the 

conclusion that the second WSL comes from the second 

band. However, this is not true. Indeed, a detailed analysis 

of the lines shows that the fifth level of the first band is 

bending at f 0.44,  giving rise to the first level of the 

second ladder, etc. However, because a fast view of the lines 

induce to consider that the n th ladder is generated by the 

n th band, and in order to make the discussion of figures 

easier, we are taking this consideration valid. 

On the other hand, it is well known [12] that, for the 

case f 0,  the level density in each band is not uniform. 

In contrast, when f  is large enough and the WSL are well 

established, the level density is uniform for all values of f  

greater than a certain minimum value. As a consequence, 

the trajectories that the eigenvalues follow, as f  increases, 

are slightly curved lines in the region of small values of f ,  

as can be verified with a detailed analysis of each trajectory. 

In the following, we analyze the effects of disorder. We 

show in the insets of Fig. 3 six configurations of potentials 

for the case f 0.  The inset of Fig. 3a shows a finite 

periodic potential with 8 wide cells and 8 thin cells 

distributed as 

 

w t w t w t w t w t w t w t w tC C C C C C C C C C C C C C C C  (4) 

 

where wC  represents a wide cell of length wl  and tC ,  a 

thin cell of length tl .  We are taking wl 2,  tl 1.  

Therefore, the period p  is equal to 3 and the number of 

periods is equal to 8. The above sequence of cells can be 

constructed by assigning the sequence of blocks AAB  with 

the cells wC  and the sequence AB  with the cells tC .  So, 

the block sequence 

 

AABAB AABAB AABAB AABAB AABAB     

AABAB AABAB AABAB     (5) 

 

is equivalent to the sequence of cells (4). 

We now transform step by step the above periodic 

system into the system 8S ,  given by expression (2). In the 

inset of Fig. 3b, we have moved the eight thin cells to the 

right. For brevity, the corresponding configurations of cells 

and blocks are not written here. 

In the inset of Fig. 3c, we have dropped three thin cells 

and in the inset (d), we have moved one of the thin cells to 

the place that it must have in a Fibonacci sequence of 

blocks. In the inset (e), we have moved a second thin cell to 

the place that it had in a Fibonacci sequence. At the end of 

this process, we obtain the inset of Fig. 3f, which 

corresponds with the configuration of blocks given by the 

sequence 8S  of expression (2). 

The spectra associated with the insets of Fig. 3 are 

shown in the whole figures, respectively. The set of points 

at the left ends of the lines (at f 0 ) form the electronic 

46Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-303-2

ICQNM 2013 : The Seventh International Conference on Quantum, Nano and Micro Technologies



spectra associated with the potentials of the insets. The other 

points of the lines show, as before, the evolution of the 

energy levels as a function of f . 

On the left of Fig. 3a, we see at least two groups of 

levels which evolve into a complex structure when the 

intensity f , is increased. Since the system has a total 

amount of 16 cells, each band must have 16 levels. 

However, because each period has an internal structure 

consisting of the two cells 
wC  and 

tC , each band must 

have an internal structure consisting of two sub-bands, each 

of them having 8 levels. The 8 levels of lower energy shown 

in Fig. 3a are just the levels of the first sub-band of the first 

band 
1B . The other 8 levels forming the second sub-band 

of 
1B  are in the same zone as the first sub-band of the 

second band. The second sub-band of  
2B  is not shown in 

the figure. The first sub-band must be associated with the 

wide cells, and the second sub-band with the thin cells. The 

first sub-band of 
1B  generates the WSL shown by means of 

gross points on the right of the figure. 

As mentioned, at f 0,  the second sub-band of 
1B  

overlaps with the first sub-band of 
2B .  In particular, one 

obtains that the upper level 
w

2E  of the second band of a 

periodic system formed uniquely of wide cells is equal to 

the upper level 
t

1E  of the first band of a periodic system 

formed uniquely of thin cells. Their value is 
t w

1 2E E 4.934,   as can be seen on the left of Fig. 3a. 

However, the 16 levels of this group evolve to form two 

different Stark ladders. One of them is due to the thin cells 

and the other to the wide cells. We have attached crosses at 

the right ends of the levels forming one of these Stark 

ladders, and arrows to the levels forming the other WSL. 

We observe that each level associated with a cross is always 

beside a level associated with an arrow. So, we have a 

composed ladder in which each of its rungs are indeed 

coupled closely together. The most important point here, 

according with the objectives of this work, is to observe that 

this distribution of levels is similar to the distribution of the 

cells, that is, a wide cell is always beside a thin cell. 

This last effect is shown more clearly in Fig. 3b, where 

we have put the 8 wide cells together and the 8 thin cells 

together, as depicted in the inset. On the right of this figure, 

we see a first WSL generated by the first band of the wide 

cells, with a nearest-neighbour level spacing of the order of 

1.1 at f 0.55.  However, for higher energies, we observe 

a more complicated structure. It consists in two WSL 

separated at distance S  and each of them having 8 levels 

and 7 spaces. One can understand this characteristic if one 

observes that now the local period associated with the wide 

cells is equal to 2, and therefore, the levels associated with 

these cells must be separated a distance of the order of 1.1 at 

f 0.55.  Similarly, the local period associated with the 

thin cells is equal to 1, and therefore, their levels must be 

separated a distance of the order of .55 at f 0.55.  These 

two WSL ladders are separated one from each other because 

the cells are also distributed in that way. 

When one continues moving the other thin cells to the 

place that they have in the final sequence 8S ,  one gets the 

corresponding spectrum shown in Fig. 3f.  This figure 

shows a rather complex structure, which appears as chaotic. 

However, by using the reasoning above discussed, it is easy 

to deduce the configuration of the cells produced by these 

spectra. 

IV. CONCLUSION 

We have shown that an external electric field can be 

used as a tool to establish a close correlation between the 

spectrum of a small one-dimensional disordered quantum 

system and its geometric configuration. We have taken 

advantage of the capability of the electric field to produce 

sets of equally spaced levels in the spectrum of a periodic 

system, that is, the WSL. This property allows us to analyze 

the evolution of the energy levels as the system becomes 

gradually disordered. In this way, we were able to explain 

why the levels acquire the observed arrangement in the 

disordered systems. The use of Fibonacci sequences, as a 

particular case of non-periodic structure, was not crucial and 

one can analyze any other type of disordered sequences, 

provided the amount of disorder is large enough. Since the 

WSL have been observed in three dimensional systems [14], 

the use of an electric field to analyze the effect of disorder 

in real three dimensional systems could be a real possibility. 
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Figure 3. Effect of disorder on the electronic spectra of finite structures as functions of the electric field intensity. The structures are schematically shown in 
the insets. 
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