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Abstract—Visual representation is essential to share ideas, 
interpret previous achievements or formulate new algorithms 
quickly and intuitively, however most representations of 
multy-qubit systems either conceal the properties of individual 
qubits or fail to visualize entanglement. This study discusses a 
representation that overcomes these problems through the 
methodology of fractals. The proposed method visualizes 
individual qubits as constants of the fractal that corresponds to 
the whole system. The statistical self similarity allows the total 
number of qubits to be flexible, making it easy to study 
subsystems. Generalization of this method through labeled 
signed binary trees is also presented which makes it possible to 
create other representations with similar properties. 
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I.  INTRODUCTION 

Quantum informatics and communications already 
promises applications that outperform classical solutions, 
e.g. Shor’s prime factorization [1], the unconditional security 
of quantum cryptography [2], or practical realization of 
quantum communication [3]. It is also likely that this 
discipline will become even more important during the up-
coming years.  However, quantum mechanics is well-known 
for its counterintuitive nature that is hard to visualize thus 
making it problematic to quickly share ideas, interpret 
previous achievements, or formulate new algorithms quickly 
and intuitively. 

In order to be able to solve these issues, a visual 
representation could be useful. The Bloch-sphere sufficiently 
represents one qubit [4] [5], or more qubits that are 
separable, but entanglement – one of the most important 
phenomena in quantum informatics – eludes this type of 
visualization. 

Another possible approach is to use objects that have 
enough degree of freedom to represent the whole system. 
However this method usually conceals the inner structure, 
and does not give us an idea of what happens if we measure 
the state of few qubits instead of the whole system (a method 
used in many algorithms and protocols). This approach does 
not handle well those cases where the addition of more 
qubits is decided or when dividing the system into smaller 
parts. 

There are also methods to generalize the Bloch-sphere 
through the mathematical structure called Hopf-Fibrations 
[6], but the arising geometrical structures are vastly complex 

and hard to read, thus making the method useless as a 
visualization technique. 

An ideal visualization scheme would preserve the 
mathematical structure of a multi-qubit system in a way that 
is easy to interpret by the naked eye using compact and two 
dimensional images. The ideal solution should also give at 
least some insight to the states of single qubits, would work 
for any finite number of qubits, as well as it should work 
show entanglement. This study aims to give an example of 
such a scheme based on fractals and a generalization rule to 
construct other schemes alike. 

This paper is organized as follows: Section I introduces 
visualization of quantum states. Section II presents the new 
proposed approach using fractals. Section III generalizes this 
approach through labeled signed binary trees. Finally, 
Section IV concludes the paper. 

II. FRACTAL-BASED REPRESENTATION 

For the sake of clarity, the cases of single and multiple 
qubits should be presented separately. 

 
Figure 1.  Representation of a single qubit (without phase). The 
respective lengths A2 and B2 of the black and white sides of the bar 

correspond to the probability of a measurement on the qubit yielding the bit 
value 0 or 1. 

A. Single qubits 

Let us write the probability amplitudes in an exponential 
form: 

 ( ) ( ) 1exp0exp ⋅⋅⋅+⋅⋅⋅=ϕ βiBαiA , (1) 
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Figure 2.  Representing the phase of a single qubit. (a) The vertical 
position  of the lines on each part of the bar represents the phase. (b) An 
enlarged version of the bar’s left side shows the phase. The bottom of the 

bar corresponds to 0 and the top to 2π. 

 
Figure 3.  A few simple example of single qubits. 

 
Let us draw a horizontal bar and then using a vertical 

gray line divide it into a black and a white side with 
respective lengths of A2 and B2 where the total length of the 
stripe is considered 1. This should give the probabilities of a 
measurement on the qubit producing the value 0 or 1. To 
avoid ambiguity, the black part of the bar corresponding to 
the measurement yielding 0 should always be placed first, 
and the white part corresponding to the measurement value 1 
should placed second, thus representing them in ascending 
order. 

 
A gray frame should also be added to the bar so that the 

white part can be easily seen in front of a white background. 

To visualize the phase let’s draw horizontal lines on the 
black and white parts of the bar, each with the opposite color 
(black on white and white on black), in a way, that the 
vertical position of the line represents α and β (the bottom of 
each stripe should correspond to 0 and the top to 2π). 

 

B. Multiple qubits 

To visualize multiple qubits statistically self-similar 
fractals should be constructed using the bars described in the 
previous section. It is well known that the complexity of a 
quantum system grows quickly as function of the number of 
qubits, but the complexity of a fractal can match this growth: 
every newly added qubit means a further iteration step in 
constructing the fractal representing our quantum system. 

Therefore, at first, the qubits should be numbered in the 
order they will be measured at the end of our protocol. Multi 
qubit systems whose qubits are separable and whose are not 
should also be distinguished. 

For separable qubits the representation of the whole 
system can be done, by simply copying the scaled down 
version of the bar corresponding to the subsequent qubit, 
under each parts of the previous bars. 

 

 
Figure 4.  Fractal representation of a multi-qubit system and the 

separable qubits that serve as it’s building blocks. Note that although the 
fractal displays stochastic attributes this is due to the varying building 
blocks that are not influenced by the construction process (which is 

deterministic). 

In terms of the Lindenmayer system the representation of 
separable qubits can be formulated as follows: 

Let the nth qubit be:  

1)exp(0)exp( ⋅⋅⋅+⋅⋅⋅=ϕ nnnnn βiBαiA . (3) 

Let us denote the bar representing this qubit by Cn(w) 
where w stands for the total width of the bar. Let the 
constants of the fractals be the Cn(w) bars as described 
above, except for the bottom part of the gray frame on each 
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(black and white) sides. Let the variables be the bottom parts 

of the gray frame denoted by j
nD  with respective lengths of 

j
nL  where the index j runs from 1 to 2n (odd indexes 

corresponding to the bottom parts of black and even indexes 
to the white sides of each bars). 

Let the initiator be a straight horizontal gray line 0
0D , 

with the length of 1=0
0L , and the production rule be 

( )( )j
nn

j
n LCD 1+→  for all j. 

Sticking to the convention that the black side is followed 
by the white on each bar, the widths on the resulting figure 
from left to right will give us the probabilities of measuring a 
bit string in ascending order. 

 
Figure 5.  Iterational steps of the fractal representation. The width of 
the lowermost part of the bars represents the probability of a measurement 

yielding the value represented by the colors of the parts above it. (Read 
from top to bottom black means 0, white means 1.) To identify the 

individual qubits, compare with Figure 4. 

However, there is another way of representing the phase. 
Sometimes, it is more useful to draw figures with all the 

phase information in the bars of the last iteration. This kind 
of representation will be equivalent to the description of the 
whole system using bracket formalism. If the state of the 
multi-qubit system is: 
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then the representation with this inherited phase can be 
drawn as follows. Let the black and white parts of the bar 
read from top to bottom indicate bit values in a certain ith 
term of the sum (i being a binary number). Let the width of 
these parts (or to be more precise the width of the undermost 
part) be Ai

2, where the total width of all the bars is 
considered 1. Let the phase in this undermost part be 
represented by the height of a horizontal line of opposite 
color as described in part A. 

 
Figure 6.  Representation using the collapsed phase. This is equivalent 
to the bracket description of the whole system. Note that some of the color 

combinations are missing from the graphs, meaning their width (and 
detection probability) is zero. One such combination is white, white, white, 
black (read from top to bottom), meaning the measurement will never yield 

1110. 

Converting the previous, recursively defined version of 
the representation to the non-inherited phases can be done by 
adding all the phases above each other and drawing a 
horizontal line on the lowermost bar in the height of the sum 
(where the bar is considered a torus due to 2π periodicity). 

This kind of inherited phase can be useful because all the 
phase information is at the lowermost bars, and not separable 
states cannot be represented otherwise. 

While the inherited phase version is equivalent to the 
bracket description in a sum form, the non-inherited phase 
form of separable qubits is equivalent to a tensor product 
form, and of course many transitional ‘mixed’ stages are 
possible between the two. 

0th iteration

1st iteration with: ( ) 2101 +=ϕ

2nd  iteration with: ( ) 2102 −=ϕ

3rd  iteration with: 151054i3 +−=ϕ
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These mixed representations can be constructed with the 
same iterative process as the non-inherited phase variants, 
but they use the inherited phase representation as building 
blocks instead of the bars representing single qubits. (Of 
course, if a single qubit is separable from the whole system 
than its inherited phase, non-inherited phase and single bar 
representation are the same.) 

 
Figure 7.  Possible representations of the same multi-qubit system. (a) 
In the inherited phase version it is easy to read the phase of the total qubit 
triplets, making this useful in case when a phase-sensitive measurement or 

operation is performed on the whole system. (b) The partially inherited 
phase representation is useful when the first qubit is treated separately from 
the other two. Note that the inherited phase representation can only be used 

in case of separable qubits, thus the last two qubits that are entangled, 
cannot be represented that way, making this mixed representation a 

‘maximally non-inherited’ one. 

III.  GENERALIZATION THROUGH BINARY TREES 

The previously described representation is only one of 
many possibilities. 

To construct another one, first we need to choose a 
building block that can represent a complex number. It is 
best to choose the blocks to have one more degree of 
freedom that can symbolize a binary value. Two blocks are 
needed to represent a single qubit, although the two can be 
handled as one object. For example in case of the 
representation described in Section II, the blocks 
symbolizing complex numbers are the sides of the bars, the 
additional degree of freedom is their color, and two of these 
(with opposite color) are handled as a single bar. Instead of 
these bars the two complex numbers could be represented 
using the Bloch-sphere although it is not the best choice 
since two dimensional representations are easier to interpret, 
and squared shapes are easier to pack compactly. 

To represent multiple qubits a rule is needed that makes 
it possible to connect two of the building blocks representing 
complex numbers to each previous block. The resulting 
structure will be equivalent to a signed, labeled binary tree, 
where the labels are complex numbers. The signs will 
correspond to the bit values, although if the blocks 
representing complex numbers have an additional degree of 
freedom, it does not have to be visualized through the 
connection rule. 

 
Figure 8.  Other representations can be constructed, which are 
equivalent to a signed labeled binary tree whose labels are complex 

numbers. 

The labels can be calculated either in a fashion when they 
inherit some of the properties of their ancestors, or in a way 
when they do not. The later can only be done for separable 
qubits but can be used to illustrate individual states of single 
qubits. In this case the nth level of the tree will correspond to 

the nth qubit, and the label j
nC  will correspond to the 

probability amplitude of qubit value 0 if j is odd, and 1 if 
even (where j runs from 1 to 2n). In the inheriting case the 

label j
nC  will correspond to the complex number that can be 

calculated as the product of the probability amplitude 
described in the non-inheriting case and every other 
probability amplitude corresponding to the ancestors of that 
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particular node. This method is useful for representing the 
system as a whole, and compresses most of the information 
in the labels of the leaf nodes. 

Mixed representations are also possible, as described in 
Section II. Note that in the first representation the width (and 
thus the detection probability) is always inherited while the 
phase can be inherited, not inherited or mixed, making 
different attributes of the same complex number behave 
differently. 

It is also worth noting, that the complex number 
associated with the root should have an absolute value of 1. 
Although the root can represent the global phase, it is not 
necessary to describe a multi-qubit system, and as such it 
was not used in the first representation. 

IV. CONCLUSION 

As discussed, fractals self-similarity and complexity 
make them ideal candidates for representing multi-qubit 
systems. In the present paper the properties of an ideal 
visualization were described, giving an example of such a 
representation in detail. This representation was generalized 
through labeled signed binary trees. Even though the two 
approaches might seem different, these binary trees can be 
constructed recursively using the methodology of fractals. 
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