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Abstract—We investigate the combinatorial structures of
multipartite quantum systems based on algebraic varieties.
In particular, we study the relations between resolution of
conifold, toric varieties, separable states, and quantum entan-
gled states. We show that the resolved or deformed conifold
is equivalent with the space of a pure entangled two-qubit
state. We also generalize this result into multi-qubit states.
The results give new insight about multipartite systems and
also a new way of representing quantum entangled multipartite
systems and quantum operations with potential applications in
quantum computing.
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I. INTRODUCTION

Pure quantum states are usually defined on complex
Hilbert spaces which are very complicated to visualize. The
simplest case, namely, the space of a single qubit state can
be visualized with Bloch or Riemann sphere. Beyond that
there have been little progresses to visualize quantum state.
Recently, we have established a relation between quantum
states and toric varieties. Based on such a construction or
mapping it is possible to visualize the complex Hilbert space
by lattice polytop.

In algebraic geometry [1], a conifold is a generalization
of the notion of a manifold. But, a conifold can contain
conical singularities, e.g., points whose neighborhood look
like a cone with a certain base. The base is usually a
five-dimensional manifold. However, the base of a complex
conifold is a product of one dimensional complex projective
space. Conifold are interesting space in string theory, e.g.,
in the process of compactification of Calabi-Yau manifolds.
A Calabi-Yau manifold is a compact Kähler manifold with a
vanishing first Chern class. A Calabi-Yau manifold can also
be defined as a compact Ricci-flat Kähler manifold.

During recent decade toric varieties have been constructed
in different contexts in mathematics [2], [3], [4]. A toric
variety X is a complex variety that contains an algebraic
torus T = (C∗)n as a dense open set and with action of T
on X whose restriction to T ⊂ X is the usual multiplication
on T .

In this paper, we establish relations between toric varieties
and space of entangled states of bipartite and multipartite
quantum systems. In particular, we discuss resolving the

singularity and deformation of conifold and toric variety
of the conifold. We show that by removing the singularity
of conifold we get a space which is not anymore toric
variety but it is the space of an entangled two-qubit state.
We also investigate the combinatorial structure of multi-
qubit systems based on deformation of each faces of cube
(hypercube) which is equivalent to deformation of conifold.
In particular, in section II we give a short introduction
to conifold. In section III we review the construction of
toric variety.In section IV and V we investigate conifold
and resolution of toric singularity for two-qubits and three
qubits states. Finally, in section VI we generalize our results
to multi-qubits states. Through this paper we will use the
following notation

|Ψ〉 =

1∑
xm=0

1∑
xm−1=0

· · ·
1∑

x1=0

αxmxm−1···x1 |xmxm−1 · · ·x1〉,

(1)
with |xmxm−1 · · ·x1〉 = |xm〉⊗|xm−1〉⊗· · ·⊗|x1〉 ∈ HQ =
HQ1

⊗HQ2
⊗· · ·⊗HQm

for a pure multi-qubit state, where
HQj is the Hilbert space of jth subsystem. Our reviewer also
has pointed out that there are other ways of visualization of
entangled states, especially, recently proposed visualization
with the aid of classical random fields [5], [6].

II. CONIFOLD

In this section we will give a short review of conifold.
Let C be a complex algebraic field. Then, an affine n-space
over C denoted Cn is the set of all n-tuples of elements
of C. An element P ∈ Cn is called a point of Cn and
if P = (a1, a2, . . . , an) with aj ∈ C, then aj is called the
coordinates of P . A complex projective space PnC is defined
to be the set of lines through the origin in Cn+1, that is,

PnC =
Cn+1 − {0}

(x0, . . . , xn) ∼ (y0, . . . , yn)
, λ ∈ C− 0, yi = λxi

(2)
for all 0 ≤ i ≤ n. An example of real (complex) affine
variety is conifold which is defined by

VC(z) = {(z1, z2, z3, z4) ∈ C4 :

4∑
i=1

z2
i = 0}. (3)
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Figure 1. Complex cone over CP1 ×CP1.

Conifold as a real affine variety is define by

VR(f1, f2) = {(x1, . . . , x4, y1, . . . , y4) ∈ R8 :

4∑
i=1

x2
i =

=

4∑
j=1

y2
j ,

4∑
i=1

xiyi = 0}. (4)

where f1 =
∑4
i=1(x2

i − y2
i ) and f2 =

∑4
i=1 xiyi. This can

be seen by defining z = x + iy and identifying imaginary
and real part of equation

∑4
i=1 z

2
i = 0. As a real space, the

conifold is cone in R8 with top the origin and base space
the compact manifold S2 × S3. One can reformulate this
relation in term of a theorem. The conifold VC(

∑4
i=1 z

2
i ) is

the complex cone over the Segre variety CP1 ×CP1 −→
CP3. To see this let us make a complex linear change of
coordinate(

α
′

00 α
′

01

α
′

10 α
′

11

)
−→

(
z1 + iz2 −z4 + iz3

z4 + iz3 z1 − iz2

)
. (5)

Thus after this linear coordinate transformation we have

VC(α
′

00α
′

11 − α
′

01α
′

10) = VC(

4∑
i=1

z2
i ) ⊂ C4. (6)

Thus we can think of conifold as a complex cone over
CP1 × CP1 see Figure 1. We will comeback to this
result in section IV where we establish a relation between
these varieties, two-qubit state, resolution of singulary, and
deformation theory.

III. TORIC VARIETIES

The construction of toric varieties usually are based on
two different branches of mathematics, namely, combinato-
rial geometry and algebraic geometry. Here, we will review
the basic notations and structures of toric varieties [2], [3],
[4].

A general toric variety is an irreducible variety X that
satisfies the following conditions. First of all (C∗)n is a
Zariski open subset of X and the action of (C∗)n on itself
can extend to an action of (C∗)n on the variety X. As an
example we will show that the complex projective space
Pn is a toric variety. If z0, z1, . . . , zn are homogeneous

Figure 2. Example of a cone σ a) and its dual σ∧ b).

coordinate of Pn. Then, the map (C∗)n −→ Pn is defined
by (t1, t2, . . . , tn) 7→ (1, t1, . . . , tn) and we have

(t1, t2, . . . , tn) · (a0, a1, . . . , an) = (a0, t1a1, . . . , tnan)
(7)

which proof our claim that Pn is a toric variety. We can also
define toric varieties with combinatorial information such as
polytope and fan (which we will define next). But first we
will give a short introduction to the basic of combinatorial
geometry which is important in definition of toric varieties.
Let S ⊂ Rn be finite subset, then a convex polyhedral cone
is defined by

σ = Cone(S) =

{∑
v∈S

λvv|λv ≥ 0

}
. (8)

In this case σ is generated by S. In a similar way we define
a polytope by

P = Conv(S) =

{∑
v∈S

λvv|λv ≥ 0,
∑
v∈S

λv = 1

}
. (9)

We also could say that P is convex hull of S. A convex
polyhedral cone is called simplicial if it is generated by
linearly independent set. Now, let σ ⊂ Rn be a convex
polyhedral cone and 〈u, v〉 be a natural pairing between
u ∈ Rn and v ∈ Rn. Then, the dual cone of the σ is
define by

σ∧ = {u ∈ Rn∗|〈u, v〉 ≥ 0 ∀ v ∈ σ} , , (10)

where Rn∗ is dual of Rn. We also define the polar of σ as

σ◦ = {u ∈ Rn∗|〈u, v〉 ≥ −1 ∀ v ∈ σ} . (11)

As an example we consider the cone σ = Cone(e1 +
e2, e2) ⊂ R2. In this case the cone σ ant its dual are
illustrated in Figure 1. We call a convex polyhedral cone
strongly convex if σ ∩ (−σ) = {0}.

Next we will define rational polyhedral cones. A free
Abelian group of finite rank is called a lattice, e.g., N ' Zn.
The dual of a lattice N is defined by M = HomZ(N,Z)
which has rank n. We also define a vector space and its dual
by NR = N ⊗Z R ' Rn and MR = M ⊗Z R ' Rn∗

respectively. Moreover, if σ = Cone(S) for some finite
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set S ⊂ N , then σ ⊂ NR is a rational polyhedral cone.
Furthermore, if σ ⊂ NR is a rational polyhedral cone, then
Sσ = σ∧ ∩M is a semigroup under addition with 0 ∈ Sσ
as additive identity which is finitely generated by Gordan’s
lemma [2].

Here we will define a fan which is important in the
construction of toric varieties. Let Σ ⊂ NR be a finite non-
empty set of strongly convex rational polyhedral cones. Then
Σ is called a fan if each face of a cone in Σ belongs to Σ
and the intersection of any two cones in Σ is a face of each.

Now, we can obtain the coordinate ring of a variety
by associating to the semigroup S a finitely generated
commutative C-algebra without nilpotent as follows. We
associate to an arbitrary additive semigroup its semigroup
algebra C[S] which as a vector space has the set S as basis.
The elements of C[S] are linear combinations

∑
u∈S auχ

u

and the product in C[S] is determined by the addition in S
using χuχu

′

= χu+u
′

which is called the exponential rule.
Moreover, a set of semigroup generators {ui : i ∈ I} for S
gives algebra generators {χui : i ∈ I} for C[S].

Now, let σ ⊂ NR be a strongly convex rational polyhedral
cone and Aσ = C[Sσ] be an algebra which is a normal
domain. Then,

Xσ = Spec(C[Sσ]) = Spec(Aσ) (12)

is called a affine toric variety. Next we need to define Laurent
polynomials and monomial algebras. But first we observe
that the dual cone σ∨ of the zero cone {0} ⊂ NR is
all of MR and the associated semigroup Sσ is the group
M ' Zn. Moreover, let (e1, e2, . . . , en) be a basis of N and
(e∗1, e

∗
2, . . . , e

∗
n) be its dual basis for M . Then, the elements

±e∗1,±e∗2, . . . ,±e∗n generate M as semigroup. The algebra
of Laurent polynomials is defined by

C[z, z−1] = C[z1, z
−1
1 , . . . , zn, z

−1
n ], (13)

where zi = χe
∗
i . The terms of the form λ · zβ =

λzβ1

1 zβ2

2 · · · zβn
n for β = (β1, β2, . . . , βn) ∈ Z and λ ∈ C∗

are called Laurent monomials. A ring R of Laurent poly-
nomials is called a monomial algebra if it is a C-algebra
generated by Laurent monomials. Moreover, for a lattice
cone σ, the ring Rσ = {f ∈ C[z, z−1] : supp(f) ⊂ σ}
is a finitely generated monomial algebra, where the sup-
port of a Laurent polynomial f =

∑
λiz

i is defined by
supp(f) = {i ∈ Zn : λi 6= 0}. Now, for a lattice cone
σ we can define an affine toric variety to be the maximal
spectrum Xσ = SpecRσ . A toric variety XΣ associated to a
fan Σ is the result of gluing affine varieties Xσ = SpecRσ
for all σ ∈ Σ by identifying Xσ with the corresponding
Zariski open subset in Xσ′ if σ is a face of σ

′
. That is,

first we take the disjoint union of all affine toric varieties
Xσ corresponding to the cones of Σ. Then by gluing all
these affine toric varieties together we get XΣ. A affine toric
variety Xσ is non-singular if and only if the normal polytope
has a unit volume.

IV. CONIFOLD AND RESOLUTION OF TORIC
SINGULARITY FOR TWO-QUBITS

In this section we study the simplicial decomposition
of affine toric variety. For two qubits this simplicial de-
composition coincides with desingularizing a conifold [8].
We also show that resolved conifold is space of an en-
tangles two-qubit state. For a pairs of qubits |Ψ〉 =∑1
x2=0

∑1
x1=0 αx2x1

|x2x1〉 we can also construct follow-
ing simplex. For this two qubit state the separable state
is given by the Segre embedding of CP1 × CP1 =
{((α1

0, α
1
1), (α2

0, α
2
1)) : (α1

0, α
1
1) 6= 0, (α2

0, α
2
1) 6= 0}. Let

z1 = α1
1(α1

0)−1 and z2 = α2
1(α2

0)−1. Then we can cover
CP1 ×CP1 by four charts

X∆̌1
= {(z1, z2)}, X∆̌2

= {(z−1
1 , z2)}, (14)

X∆̌3
= {(z1, z

−1
2 )}, X∆̌4

= {(z−1
1 , z−1

2 )}, (15)

The fan Σ for CP1 × CP1 has edges spanned by
(1, 0), (0, 1), (−1, 0), (0,−1). Next we observe that the
space CP1 × CP1 and the conifold have the same toric
variety. If we split the conifold into a fan which has two
cones as shown in Figure 3. Then this process converts
the conifold into a resolved conifold. The cones are three
dimensional and the dual cones are two copies of C3. The
procedure of replacing an isolated singularity by a holo-
morphic cycle is called a resolution of the singularity. We
can also remove the singularity by deformation. The process
of deformation modifies the complex structure manifolds or
algebraic varieties. Based on our discussion of conifold we
know that this space is defined by α00α11 − α01α10. Now,
if we rewrite this equation in the following form

α00α11 − Γα01α10 + Λα10 = 0, (16)

then the constant Γ and Λ can be absorbed in new definition
of α10 such as α

′

10 = Γα10 − Λ. Next let Tn be the group
of translations. Then an affine variety over complex field of
dimension n can be transformed using the following action
GL(n,C) × Tn. For a generic polynomial of degree two
we have 15 possible parameters, but most of them can be
removed with the action of GL(4,C) × T4. However, we
cannot remove the constant term with such transformation
and we end up with the following variety

α00α11 − α01α10 = Ω. (17)

which is called deformed conifold. This space is now non-
singular, but it is not a toric variety since the deformation
break one action of torus. Thus we also could proposed that
the deformed conifold is the space of an entangled pure
two-qubit state. Moreover, if we take the absolute value of
this equation that is |Ω|, then this value is proportional to
concurrence which is a measure of entanglement for a pure
two-qubit state, that is

|α00α11 − α01α10| = |Ω| = C(Ψ)/2. (18)
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Figure 3. Two-qubit system. a) toric polytope of a two-qubit systems. b)
and c) two ways of removing the singularity of conifold.

In general let X be an algebraic variety, then the space of
all complex deformations of X is called the complex moduli
space of X .

V. THREE-QUBIT STATES

Next, we will discuss a three-qubit state |Ψ〉 =∑1
x3,x2,x1=0 αx3x2x1

|x3x2x1〉. For this state the separable
state is given by the Segre embedding of CP1 × CP1 ×
CP1 = {((α1

0, α
1
1), (α2

0, α
2
1), (α3

0, α
3
1))) : (α1

0, α
1
1) 6=

0, (α2
0, α

2
1) 6= 0, (α3

0, α
3
1) 6= 0}. Now, for example, let

z1 = α1
1/α

1
0, z2 = α2

1/α
2
0, and z3 = α3

1/α
3
0. Then we can

cover CP1 ×CP1 ×CP1 by eight charts

X∆̌1
= {(z1, z2, z3)}, X∆̌2

= {(z−1
1 , z2, z3)},

X∆̌3
= {(z1, z

−1
2 , z3)}, X∆̌4

= {(z1, z2, z
−1
3 )},

X∆̌5
= {(z−1

1 , z−1
2 , z3)}, X∆̌6

= {(z−1
1 , z2, z

−1
3 )},

X∆̌7
= {(z1, z

−1
2 , z−1

3 )}, X∆̌8
= {(z−1

1 , z−1
2 , z−1

3 )},

The fan Σ for CP1 ×CP1 ×CP1 has edges spanned by
(±1,±1,±1). Now, let S = Z3 and consider the polytope
∆ centered at the origin with vertices (±1,±1,±1). This
gives the toric variety X∆ = SpecC[S∆]. To describe the
fan of X∆, we observe that the polar ∆◦ is the octahedron
with vertices ±e1,±e2,±e3. Thus the normal fan is formed
from the faces of the octahedron which gives a fan Σ whose
3-dimensional cones are octants of R3. Thus this shows that
the toric variety XΣ = CP1 ×CP1 ×CP1.

In this case we split the faces of 3-cube E2,3 =

23−2 3(3−1)
2 = 6 into two cones see Figure 4. Then, this

process converts the 3-cube into a nonsingular space which
is not anymore toric variety. Following the same procedure,
we can also remove all singularities of toric variety of three-
qubits by deformation. Based on our discussion of conifold
we can write six equations describing the faces of 3-cube.
Here we will analyze one face of this 3-cube, namely

α000α011 − α001α010 = α0 ⊗ (α00α11 − α01α10)

Now, if we rewrite these equations e.g., in the following
form

α0(α00α11 − Γα01α10 + Λα10) = 0, (19)

then the constant Γ and Λ can be absorbed in new definition
of α10 such as α

′

10 = Γα10 − Λ. At the end e.g., we have
the following variety

α000α011 − α001α010 = Ω (20)

Figure 4. Three-qubit systems. a) toric polytope of a separable three-qubit
systems. b) resolved space of entangled state, where each diagonal line is
equivalent to the resolution of singularity of a conifold.

which is equivalent to the deformed conifold. If we do
this procedure for all faces of the 3-cube, then the whole
space becomes non-singular, but it is not a toric variety
anymore. Thus we also could proposed that the deformed
conifold is the space of an entangled pure three-qubit state.
There are other relations between toric variety and measures
of quantum entanglement that can be seen from the toric
structures of multipartite systems. For example three-tangle
or 3-hyperdeterminant can be constructed from the toric
variety.

VI. MULTI-QUBIT STATES

Next, we will discuss a multi-qubit state |Ψ〉 defined
by equation (1). For this state the separable state is
given by the Segre embedding of CP1 × CP1 × · · · ×
CP1 = {((α1

0, α
1
1), (α2

0, α
2
1), . . . , (αm0 , α

m
1 ))) : (α1

0, α
1
1) 6=

0, (α2
0, α

2
1) 6= 0, . . . , , (αm0 , α

m
1 ) 6= 0}. Now, for example,

let z1 = α1
1/α

1
0, z2 = α2

1/α
2
0, . . . , zm = αm1 /α

m
0 . Then we

can cover CP1 ×CP1 × · · · ×CP1 by 2m charts

X∆̌1
= {(z1, z2, . . . , zm)},

X∆̌2
= {(z−1

1 , z2, . . . , zm)},
...

X∆̌2m−1
= {(z1, z

−1
2 , . . . , z−1

m )},
X∆̌2m

= {(z−1
1 , z−1

2 , . . . , z−1
m )}

The fan Σ for CP1 × CP1 × · · · × CP1 has edges

spanned by (

m︷ ︸︸ ︷
±1,±1, . . . ,±1). Now, let S = Zm and

consider the polytope ∆ centered at the origin with
vertices (±1,±1, . . . ,±1). This gives the toric variety
X∆ = SpecC[S∆]. To describe the fan of X∆, we ob-
serve that the polar ∆◦ is the octahedron with vertices
±e1,±e2, . . . ,±em. Thus this shows that the toric variety
XΣ = CP1 ×CP1 × · · · ×CP1. In this case we split the
faces of m-cube

E2,m = 2m−2m(m− 1)

2
(21)

into two cones. Then this process converts the m-cube into
a nonsingular space which is not anymore toric variety.
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Following the same procedure, we can also remove all
singularities of toric variety of a multi-qubit state by defor-
mation. Based on our discussion of conifold we can write
six equations describing the faces of m-cube. For example
for one face (2-cube) of this m-cube, we ahve

α00···0α0···011 − α0···01α0···010 = Ω (22)

which is equivalent to the deformed conifold, since e.g.,
we could have |Ψ〉 = 1√

2
(|00 · · · 000〉 + |00 · · · 011〉) =

1√
2
|00 · · · 0〉 ⊗ (|00〉 + |11〉). If we do this procedure for

all faces of the m-cube, then the whole space becomes non-
singular, but it is not a toric variety anymore. Thus we also
could proposed that this space is the space of an entangled
pure multi-qubit state.

VII. CONCLUSION

In this paper we have investigated the geometrical and
combinatorial structures of entangled multipartite systems.
We have shown that by removing singularity of conifold
or by deforming the conifold we obtain the space of a
pure entangled two-qubit state. We have also generalized
our construction into multipartite entangled systems. The
space of multipartite systems are difficult to visualize but
the transformation from complex spaces to the combinatorial
one makes this task much easier to realize. Hence our
results give new insight about multipartite systems and also
a new way of representing quantum entangled bipartite and
multipartite systems with many possible applications in the
field quantum computing. For example we could visualize
action of holonomic quantum gates entangler on multi-qubit
states based on these combinatorial structures. However,
these issues need further investigations.
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