
GLACI: Arbitrary Code Instrumentation Tool for OpenGL

Shotaro Tsuboi
Graduate School of Informatics,

Nagoya University
Nagoya, Japan

e-mail: s_tsuboi@ertl.jp

Yixiao Li
Graduate School of Informatics,

Nagoya University
Nagoya, Japan

e-mail: liyixiao@ertl.jp

Yutaka Matsubara
Graduate School of Informatics,

Nagoya University
Nagoya, Japan

e-mail: yutaka@ertl.jp

Hiroaki Takada
Graduate School of Informatics,

Nagoya University
Nagoya, Japan

e-mail: hiro@ertl.jp

Abstract—Modern embedded systems usually run multiple
graphics applications concurrently, making efficient Graphics
Processing Unit (GPU) resource management a critical challenge.
To address this need, we present Arbitrary Code Instrumentation
tool for OpenGL (GLACI), a flexible tool that enables transparent
interception of Open Graphics Library (OpenGL) Application
Programming Interface (API) calls to instrument arbitrary code
without modifying the application or the graphics stack. GLACI-
based module can cooperate with the GPU resource manager to
support advanced features such as real-time Frames Per Second
(FPS) monitoring, Quality of Service (QoS) based resource
limiting and on-demand tracing. A prototype is created and
evaluated on Intel and NVIDIA platforms to show the portability
and usefulness of GLACI. By offering a unified, hardware-
independent and lightweight solution, GLACI broadens the scope
of GPU resource control and provides a practical foundation for
both development and production environments.

Keywords-embedded systems; OpenGL; code instrumentation,
GPU resource management.

I. INTRODUCTION

In modern embedded systems, multiple graphics applica-
tions with varying reliability and requirements can share a sin-
gle Graphics Processing Unit (GPU). For example, in automo-
tive systems, the GPU is used for displaying the speedometer,
navigation In-Vehicle Infotainment (IVI) displays and other
third-party applications concurrently. Currently, Open Graph-
ics Library (OpenGL) [1] is the most commonly supported
and widely used graphics Application Programming Interface
(API) for such applications.

However, due to the lack of tracing and resource man-
agement techniques for production environment, it is difficult
to debug and develop such systems with necessary Quality
of Service (QoS) satisfied. For instance, if a third-party
application installed by the user consumes too much GPU
resource, it can cause interference with the critical services
(e.g., speedometer). A reliable system should be able to detect
such kind of performance issues, record useful traces for
analysis, and adjust the GPU resource allocation according
to the QoS settings while it is running.

Most of the previous studies about scheduling GPU-sharing
tasks focus on the scope of General-Purpose computing on

Graphics Processing Unit (GPGPU) applications rather than
the graphics applications [2]. These studies typically assume
that the source code of the GPGPU tasks is available and
can be modified to assist the GPU resource management.
Meanwhile, many graphics applications, especially the third-
party ones, are only available in binary executable files. The
programming models of GPGPU tasks (computation-intensive
functions offloading) and graphics tasks (complex rendering
pipeline) also have a significant difference. Therefore, it is dif-
ficult to reuse these techniques for GPGPU tasks on graphics
applications.

Some previous studies on improving the QoS of graphics
applications have been proposed, but these methods face many
challenges in terms of practicality. A common approach is
to override the default scheduler with a QoS-aware one by
modifying the kernel-space GPU driver [3][4], which has
poor portability and maintainability since it depends on a
specific GPU model and kernel version. It is also possible to
manage the GPU resource by extending the implementation
of OpenGL library [5][6] but many popular GPU vendors,
including NVIDIA, only provide unmodifiable proprietary
OpenGL libraries. Therefore, the usefulness of these studies
is highly restricted in real-world systems.

In this paper, we propose Arbitrary Code Instrumentation
tool for OpenGL (GLACI), an open-source tool which can
assist the system developer to overcome the above limitations.
With GLACI, hardware-independent modules for OpenGL
API instrumentation can be effortlessly implemented. It allows
us to dynamically trace and change the behavior of graphics
applications, by adding custom code around OpenGL API
calls, without acquiring and modifying any source code of the
application and OpenGL library. If an application is executed
with GLACI-based module loaded, the GPU resource manager
can attach to it for monitoring and controlling.

The main contributions are listed as follows.
• GLACI, a generic tool for implementing hardware-

independent OpenGL API instrumentation modules,
which can change the behavior of application and library
without modifying any source code, is proposed.

25Copyright (c) IARIA, 2025. ISBN: 978-1-68558-278-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2025 : The Twentieth International Conference on Systems

• A prototype including examples of GLACI-based mod-
ule and GPU resource manager is created to show the
usefulness of our method.

• Two representative platforms, based on Intel and
NVIDIA, are used to evaluate the functionality and
overhead.

• The source code of GLACI and the prototype is publicly
available for reproducing and extension [7].

The rest of the paper is organized as follows. Section II
discusses and compares previous studies with similar goals and
methods. The details of GLACI are explained in Section III.
Section IV uses a prototype of GLACI-based module and GPU
resource manager to show the usefulness. Section V assesses
our method by evaluating the prototype on Intel and NVIDIA
platforms. Finally, the research is concluded in Section VI.

II. RELATED WORK

A. GPU Resource Management

Previous studies have shown that it is possible to limit GPU
bandwidth or guarantee Frames Per Second (FPS) for each
application by inserting some processing into the graphics
stack.

In the FPS control methods using execution time prediction
[5][6], OpenGL API calls are monitored to obtain parameters
such as the number of vertices and fragments to predict
execution time which is used for GPU task scheduling. This
approach modifies the source code of OpenGL library to
acquire parameters, and the low-level GPU driver to apply
scheduling policies.

In the QoS-based controlling methods [3][4], graphics APIs
are modified to acquire QoS metrics. These methods also mod-
ify GPU drivers to apply scheduling policies. Some studies
replace the low-level GPU task scheduler with a custom one
by modifying the GPU driver [2][8].

These existing control methods lack generality for different
platforms and GPU drivers, and require re-implementations
for various environments. The modifications to the target
applications are also needed in some methods, which makes
them not feasible for third-party applications without source
code. Meanwhile, GLACI focuses on supporting the resource
management on the high-level hardware-independent OpenGL
API layer as possible, rather than modifying the source code
of existing graphics stack. If necessary, GLACI-based module
can also cooperate with the GPU driver for fine-grained
control.

B. OpenGL Tracing Tools

Several tracing tools for OpenGL API have been proposed
to support the analysis of various metrics of the rendering
commands and procedures. There are mainly two types of such
tools: vendor-independent tools, and vendor-specific tools.

RenderDoc [9] and Apitrace [10] are two representative
vendor-independent tools for debugging, tracing, and perfor-
mance analysis of multiple graphics APIs, including OpenGL.
These tools always hook every single OpenGL API call when
the application is running, in order to produce a detailed trace

Figure 1. The overview of common functions in a GLACI-based module.

file with all inputs, outputs and states recorded. Users can use
the trace file to replay the rendering process of a frame for
detailed behavior and performance analysis.

GPU vendors also provide tools to visualize rendering
processes on their GPUs, such as Intel GPA [11] and NVIDIA
Nsight Graphics [12]. These tools offer detailed views of
processing at the GPU core level and can be used for low-
level optimization. However, these vendor-specific tools only
work on specific platforms, and most of them are proprietary
software without source code provided, which makes it diffi-
cult to extend their functionality.

These existing tracing tools have fixed tracing scope and are
designed for the test environment. For example, the tracer can-
not be dynamically switched on and off when the application
is running. It is also not possible to specify what information
should be obtained to meet different requirements. Therefore,
using these tools for tracing all applications in the production
environment will cost a huge amount of resource. Further,
since the tracing results can not be accessed from the GPU
resource manager in real time, they are only useful for the
postmortem analysis.

GLACI is not only capable of implementing the fixed-
purpose tracing feature equivalent to the vendor-independent
tools, but can also expose interfaces to communicate with
the GPU resource manager to support advanced features like
live performance monitoring, on-demand tracing and resource
limiting. Therefore, unlike other tools, GLACI can be used in
both testing and production environments.

III. PROPOSED METHOD

A. Overview

GLACI is a hardware-independent tool that allows devel-
opers to effortlessly create modules capable of extending
the functionality of existing graphics stack by instrumenting
OpenGL API calls. Figure 1 shows an overview of how a
GLACI-based module typically works in the graphics stack.
The module can transparently intercept the OpenGL API
calls and communicate with GPU resource manager, without
modifying the source code of graphics application, OpenGL
library and GPU driver.

26Copyright (c) IARIA, 2025. ISBN: 978-1-68558-278-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2025 : The Twentieth International Conference on Systems

A graphics application must be able to run on different
versions of graphics stack without rebuilding the software,
because the GPU vendor frequently updates the OpenGL
library and GPU driver for optimization and bug fixing. Some
systems even require the same application to run on GPUs
from different vendors (e.g., the diversified GPU solutions
for Android devices). To meet this portability requirement,
OpenGL has introduced an advanced symbol resolution mech-
anism, instead of naively linking the application to some
specific libraries.

When a GLACI-based module is loaded, it will use the
symbol resolution mechanism to query the symbol addresses
of all OpenGL APIs at first, and then mimic and override that
mechanism to redirect the API calls to automatically generated
wrapper functions with custom code instrumented.

If a system runs multiple applications with different QoS
levels or priorities, there is usually a GPU resource manager
located between the OpenGL library and the GPU driver to
monitor and properly schedule the GPU usage of each appli-
cation. However, a GPU resource manager can only attach to
the applications with necessary interfaces for communication
included, which means most of the third-party and proprietary
applications are out of scope. A main benefit GLACI offers is
that it can insert such interfaces to any OpenGL application
to make it controllable from the GPU resource manager.

Figure 2 shows the flow of how GLACI will process a user-
defined module project to build a loadable module binary.
OpenGL is a very complex API specification with many
different versions (e.g., GL 1.0 to 4.6, ES 1.0 to 3.2, SC 1.0
to 2.0) and additional extensions (e.g., ARB, GLX). Further,
although OpenGL is a platform-independent specification in
general, vendors also have added some special features in their
proprietary library implementation. In the field of embedded
systems, target boards usually support some specific versions
of OpenGL (e.g., the popular Raspberry Pi 4 only runs GL
2.1 and ES 3.1). Therefore, it is impractical for us to assume
the system uses and only uses the latest OpenGL version and
vendor-independent features. Khronos Group has released the
official Extensible Markup Language (XML) definition files of
OpenGL API specification, including all versions and optional
features. To address the challenge above, GLACI can load
these XML files to build modules for a specific target system.

The user-defined module project consists of an instrumenta-
tion script in Python and some extra source files in C++. The
instrumentation script defines the rules to instrument OpenGL
API calls. The extra source files include the code with no need
to be dynamically generated (e.g., data structure definitions
and algorithm implementations). The GLACI core will follow
the instrumentation script to generate a single source file for
the module with OpenGL API wrapper functions and extra
source code included. Finally, a shared library binary of the
module will be built from the generated source file. We can
use the LD_PRELOAD environment variable to start graphics
application with the module loaded.

It should be noted that while the GLACI module is writ-
ten in C++, it does not impose restrictions related to the

Figure 2. The process flow of how GLACI builds a module project.

programming languages of target graphics applications. Since
the method operates at the binary interface level, applications
developed in any language capable of invoking OpenGL APIs
from the instrumented library can seamlessly benefit from
GLACI without additional adaptation efforts.

B. Transparent OpenGL API Interception

GLACI-based module is loaded with the LD_PRELOAD
feature, which allows us to override existing functions in the
standard shared libraries of the graphics stack. However, to
achieve portability and compatibility, OpenGL applications are
not directly linked with a specific graphics stack. Instead, an
advanced symbol resolution mechanism including the follow-
ing three methods is provided for the applications to find the
symbols at runtime.

• Runtime linker: In some systems, especially those using
Mesa 3D graphics stack, a part of OpenGL API symbols
(e.g., GLX extension for X11 window system) may be
implemented in a shared library with stable Application
Binary Interface (ABI). Therefore those shared libraries
are directly linked to the application, and their symbols
are resolved by the standard runtime linker.

• dlopen/dlsym dynamic loader: The graphics stack calls
dlopen function to load OpenGL libraries by explicitly
specifying the file names according to the actual running
platform. It will then call dlsym function to dynamically
search the symbol addresses of OpenGL API functions
in these loaded libraries.

• OpenGL *GetProc* functions: OpenGL
API specification also defines functions (e.g.,
glXGetProcAddress) to obtain symbol address
by API name. Unlike the above two methods are
provided by and dependent on the OS, this method is
platform-independent.

To intercept OpenGL API transparently on various plat-
forms and graphics stacks, GLACI must support all these
methods to completely override the original symbol resolution
mechanism.

To support the runtime linker method, GLACI will generate
wrapper functions with the same prototypes for all OpenGL
API functions, so the linker will always return the symbol
addresses in our module instead of the original ones. Figure 3
shows an example of the glXSwapBuffers API.

To properly invoke the original API implementation from
the generated wrapper function, GLACI shall initialize the

27Copyright (c) IARIA, 2025. ISBN: 978-1-68558-278-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2025 : The Twentieth International Conference on Systems

static typeof(glXSwapBuffers) *
original_glXSwapBuffers = NULL;

void glXSwapBuffers(Display *dpy, GLXDrawable
drawable) {

... /* instrumented code before glXSwapBuffers */
original_glXSwapBuffers(dpy, drawable);
... /* instrumented code after glXSwapBuffers */

}

Figure 3. Example of generated glXSwapBuffers wrapper function.

__attribute__((constructor))
void load_original_functions(){

...
original_glXSwapBuffers =

dlsym(RTLD_NEXT, "glXSwapBuffers");
...

}

Figure 4. Example of initializing original_glXSwapBuffers.

function pointers to correct symbol addresses before the ap-
plication starts to call any OpenGL API function as shown in
Figure 4.

To support the dlopen/dlsym dynamic loader method,
GLACI must solve the following issues.

• All the generated wrapper functions for OpenGL API are
ignored because the dlsym function will only search
symbols in the library file dynamically loaded by the
dlopen function.

• The method of initializing original function pointers at
startup does not work since the symbol addresses are
unknown until the graphics stack calls and obtain the
return value from the dlsym function.

GLACI addresses these issues by overriding the dlsym
function with a modified version as shown in Figure 5. It will
call the original dlsym function at first to get the symbol
address. If the symbol is not an OpenGL API function, it will
just return the address obtained. For OpenGL API symbols, the
obtained symbol address will be stored in the original function
pointer, and the address of corresponding wrapper function
will be returned.

It must be noted that we cannot use the name dlsym to call

void *dlsym(void *handle, const char *symbol) {
auto ptr = original_dlsym(handle, symbol);
... /* other OpenGL API functions */
if (strcmp("glDrawArrays", symbol)==0) {

/* initialize original function pointer */
original_glDrawArrays = ptr;
/* return GLACI wrapper function */
return glDrawArrays;

}
... /* other OpenGL API functions */
return ptr;

}

Figure 5. Example of resolving glDrawArrays with modified dlsym.

void *original_dlsym(
void *handle, const char *symbol)

{
static dlsym_func_t original_dlsym_ptr
= nullptr;

if (original_dlsym_ptr == nullptr)
{
auto lib_handle =

dlopen("libc.so.6", RTLD_LAZY);
original_dlsym_ptr

= dlvsym(lib_handle, "dlsym",
GLIBC_VERSION_STR);

}
return original_dlsym_ptr(handle, symbol);

}

Figure 6. The core logic of original_dlsym.

void *glXGetProcAddress(const char *procName)
{

auto procPtr = (*original_glXGetProcAddress)(
procName);

... /* other OpenGL API functions */
if (strcmp("glHint", procName) == 0)
{

/* initialize original function pointer */
original_glHint = procPtr;
/* return GLACI wrapper function */
return glHint;

}
... /* other OpenGL API functions */
return procPtr;

}

Figure 7. Example of resolving glHint with modified glXGetProcAddress.

the original version of dlsym function, since it has already
be overridden by our module. To avoid this circular reference,
GLACI implements original_dlsym function as shown in
Figure 6, which can search and call the original dlsym using
dlvsym (dlsym with versioning) function.

Similarly, to support the method using the OpenGL *Get-
Proc* functions, GLACI also implements modified versions
to override them. An example of glXGetProcAddress is
shown in Figure 7. Because the original function pointers
of *GetProc* functions can be obtained from the other two
methods, they are more easier to implement than the modified
dlsym function.

With these symbol resolution methods supported, the
GLACI-based module can fully intercept all OpenGL API calls
to execute the instrumented code.

C. Code Instrumentation Example

GLACI instruments the OpenGL API functions by follow-
ing the hooks defined in the instrumentation script of the
module project. Figure 8 is an example of a hook for printing
debug messages. A filter function is set to the is_target pa-
rameter so GLACI core will only apply this hook to OpenGL
API of draw commands. The before_run and after_run
parameters specify the code should be added before and after
calling the hooked function.

28Copyright (c) IARIA, 2025. ISBN: 978-1-68558-278-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2025 : The Twentieth International Conference on Systems

def _print_enter(f: func.Func) -> str:
return f’std::cerr << "{f.name} Enter" << std::

endl;’

def _print_leave(f: func.Func) -> str:
return f’std::cerr << "{f.name} Leave" << std::

endl;’

debug_hooks = func.Hooks(
header="#include <iostream>",
hook_funcs=[

lambda f: func.Hook(
is_target=lambda f: "glDraw" in f.name,
before_run=_print_enter(f),
after_run=_print_leave(f),

),
],

)

Figure 8. Example of hook in the instrumentation script.

extern "C" PUBLIC
void glDrawBuffer(GLenum buf) {

std::cerr << "glDrawBuffer Enter" << std::endl;
(*original_glDrawBuffer)(buf);
std::cerr << "glDrawBuffer Leave" << std::endl;

}

extern "C" PUBLIC
void glDrawBuffers(GLsizei n, const GLenum *bufs) {

std::cerr << "glDrawBuffers Enter" << std::endl;
(*original_glDrawBuffers)(n, bufs);
std::cerr << "glDrawBuffers Leave" << std::endl;

}

... // other instrumented *glDraw* functions

Figure 9. Example of generated wrapper functions.

After processing this hook, GLACI will generate the wrap-
per functions for OpenGL *glDraw* API as shown in Figure 9.

IV. GPU RESOURCE MANAGER PROTOTYPE

Although the GLACI-based module is also able to work
as a standalone tool, the key characteristic distinguishing our
method from existing tools is that it can communicate and
cooperate with the GPU resource manager to dynamically
monitor and control the running OpenGL applications. This
feature makes GLACI a useful tool in both the development

Figure 10. The overview of GPU resource manager prototype.

environment and the production environment. As a proof-of-
concept, we have created a prototype that includes a GLACI-
based module and a GPU resource manager. In this section, we
will use it to explain how GLACI can help in implementing
several real-world use cases.

Figure 10 shows the overview of our prototype. The
OpenGL applications are launched by the GPU resource
manager with QoS priority assigned and GLACI-based module
loaded. Userspace Static Defined Tracing (USDT) probes
[13], generated by the GLACI-based module, are used as
the communication channel between the application and the
GPU resource manager to achieve dynamic control. By de-
fault, these probes are just No Operation (NOP) instructions
with ignorable performance cost. The GPU resource manager
includes a BPF Compiler Collection (BCC) [14] script which
can dynamically generate and attach extended Berkeley Packet
Filter (eBPF) programs to obtain information from and send
control parameters to the running OpenGL applications. This
lightweight yet extendable communication mechanism allows
us to support the services of GPU resource manager with very
low overhead. We have implemented the several services to
demonstrate that GLACI can help to address real-world use
cases as follows.

FPS monitor and alarm. OpenGL applications, especially
those prebuilt ones, are usually designed to work at a specific
target FPS to achieve a predictable GPU resource usage. If
the actual FPS of an application differs significantly from the
target FPS, there is a high probability that some issue has
occurred during the execution. GLACI will insert the code
and USDT probe of a frame counter around the OpenGL
frame-swapping API to gather the FPS data. The GPU resource
manager will attach to the related probe of each application
to achieve a system-wide FPS monitoring in real time. If
any unexpected FPS value has been detected, it can further
generate an alarm to trigger necessary actions (e.g., start
tracing the related OpenGL application).

QoS-based resource control. To deliver a sufficient quality
of service, it is typically necessary to adjust the GPU resource
usage limit per application at runtime. For example, if an
application with normal QoS priority is the only running appli-
cation, it can be allocated with full GPU resource. However, if
applications with normal and high QoS priority are running at
the same time, we should limit the GPU usage of the normal
one to guarantee the FPS of application with high priority. The
GLACI-based module has implemented a simple FPS limiter
which is disabled by default. The limiter uses the control
parameter to calculate the minimum render time of a frame.
If the frame time of application is rendered faster than the
limit’s value, necessary delay duration will be inserted. When
the application of high QoS priority is executed or terminated,
the GPU resource manager will adjust and enable the FPS
limiter of the normal QoS ones by sending control parameter
to their related probes.

On-demand OpenGL API tracing. Although tracing the
API calls is very helpful to analyze the performance and
behavior of OpenGL applications, the usefulness of exist-

29Copyright (c) IARIA, 2025. ISBN: 978-1-68558-278-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2025 : The Twentieth International Conference on Systems

TABLE I. EVALUATION PLATFORMS

Intel NUC NVIDIA Jetson
CPU Core i5-1240P 6-core Arm Cortex-A78AE v8.2
GPU Intel Iris Xe 1024-core NVIDIA Tegra Orin
RAM 32GB 8GB
OS Ubuntu 22.04 Ubuntu 22.04

ing tools is severely restricted due to the lack of support
in the production environment. The scope of these tracing
tools cannot be dynamically changed while applications are
running, which leads to unavoidable high overhead of system-
wide continuous tracing and frequent restarts of applications.
GLACI can overcome this drawback by supporting the on-
demand tracing feature. It will insert USDT probes at the entry
and exit points of each OpenGL API function. The tracing
code of these probes can be attached or detached as needed
by the GPU resource manager without restarting the running
applications. This feature allows us to effortlessly create useful
tracing policies. For example, we can disable all tracers by
default to deliver the best overall system performance, and
automatically enable tracing for a specific application when a
performance issue is detected from that application.

Our experience in developing this prototype confirms that
the learning curve for implementors is modest in practice. The
GLACI-based module employs a simple instrumentation script
written in Python, which is accessible to developers with basic
scripting experience. Moreover, integrating GLACI modules
with the GPU resource manager via USDT probes and eBPF
programs does not require extensive prior knowledge, as
these technologies are widely adopted and have substantial
community support. Therefore, implementors can efficiently
leverage our proposed method with minimal initial effort.

V. EVALUATION

In this section, we evaluate the GPU resource manager pro-
totype on two mainstream platforms, Intel NUC and NVIDIA
Jetson, to examine the functionality and overhead of GLACI.
Intel platform provides an open source OpenGL library while
the NVIDIA one is proprietary. Although the OpenGL im-
plementations are vastly different, the high portability of
GLACI allows us to use the same source code to build the
prototype project without reimplementing for each platform.
The specifications of the evaluation platforms are shown in
Table I.

The benchmark programs from glmark2 [15] (version
2021.02) are chosen as the graphics applications to test our
prototype. glmark2 is a lightweight OpenGL benchmark
suite widely available on many platforms, with 17 representa-
tive scenes included to measure many aspects of the OpenGL
specification. Since our method does not require any source
code modification to the application and graphics stack, all
related software components are installed using the official
binary packages from Ubuntu. In this section, we always
set the rendering resolution of glmark2 to 1920x1080 for
evaluation.

(a) Default settings without GLACI

(b) Prototype of GPU resource manager and GLACI-based module

Figure 11. Example to demonstrate how our prototype can improve QoS.

To demonstrate the effectiveness of QoS-based resource
control, we run and measure an example using two glmark2
program: refract and terrain. refract can run at
around 333 FPS with full GPU resource allocated on the
NVIDIA platform while terrain can run at around 119
FPS under the same condition. We use refract as the
application with low QoS level and terrain with high QoS
level. In the experiment, refract starts at first and keeps
running, and terrain will start 5 seconds later and run
for 10 seconds, to simulate the scenario the user launches an
application with high QoS level while an application with low
QoS level is running. Figure 11 shows the FPS data measured
on the NVIDIA platform, and the Intel platform also has a
similar trend. Without GLACI, the application with high QoS
level failed to meet 60 FPS requirement (only 52 FPS on
average). With the GPU resource manager and GLACI-based
module, when application with high QoS level is running, the
application with low QoS level will be locked to 60 FPS to
deliver a desired performance for both applications.

We have measured the average FPS of terrain under
the following conditions on the two platforms to evaluate the
runtime overhead of our prototype.

• No GLACI Loaded: The application runs without
GLACI-based module loaded.

30Copyright (c) IARIA, 2025. ISBN: 978-1-68558-278-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2025 : The Twentieth International Conference on Systems

TABLE II. OVERHEAD OF THE PROTOTYPE

glmark2 (terrain) Average FPS
Intel NUC NVIDIA Jetson

No GLACI Loaded 222 119
FPS Monitor & Alarm 221 118
QoS-based FPS Limiter 220 118
API Tracing (NOP) 218 117
API Tracing (Logging) 212 116

• FPS Monitor & Alarm: GLACI-based module is loaded
and the GPU resource manager enables the function of
FPS monitoring and alarming.

• QoS-based FPS Limiter: Besides the FPS monitoring
and alarming, the QoS-based FPS limiter is also enabled.

• API Tracing (NOP): GLACI-based module is loaded and
the GPU resource manager enables API tracing. However,
all API probes are attached with an empty function.

• API Tracing (Logging): All API probes are attached
with a logging function sending related messages to the
trace buffer.

The measured results are shown in Table II. Compared to
the average FPS without GLACI loaded, the overhead is barely
perceptible to human eyes. It indicates that, the performance
cost of GLACI should be small enough to be used in the
production environment.

VI. CONCLUSION AND FUTURE WORK

This paper introduced GLACI as a generic, portable
and low-overhead framework for dynamically instrumenting
OpenGL API calls. By completely overriding the symbol
resolution mechanism of OpenGL, GLACI can overcome the
common and major limitation of existing methods that requires
source code modifications to the application, OpenGL library
or GPU driver.

We created a prototype to showcase how GLACI-based
module and GPU resource manager can communicate and
cooperate to support real-world use cases including perfor-
mance monitoring, dynamic resource allocation adjustments
and on-demand tracing. Two representative Intel and NVIDIA
systems are used to evaluate the portability and usefulness of
the prototype. The experimental results of overhead measure-
ment confirm that the proposed approach remains lightweight
enough for production scenarios.

Future work will focus on applying GLACI to further
improve the GPU resource management, particularly in areas
such as adaptive QoS management on metrics like utiliza-
tion, frame time and render latency. Since some vendors
have started to release open-source kernel-space GPU drivers
in recent years, expanding GLACI’s capabilities to support
hooks at the GPU driver level and enabling closer integration
with GPU driver control mechanisms are also key directions.
These vendors may also embrace our approach to create open
source debugging, tracing and management tools, since the
lightweight and non-intrusive design of GLACI can offer

enhanced instrumentation features with minimal efforts. Lever-
aging GPU driver abstraction layers, such as Gallium3D [16],
could facilitate these advancements and further enhance the
tool’s applicability. Taken together, these advances can mark
an important step toward a comprehensive, vendor-agnostic
framework for managing the complex GPU requirements of
modern embedded systems.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Suzuki
Motor Corporation for their valuable collaboration and support
throughout this research. Their expertise and contributions
have been essential to the success of this work.

REFERENCES

[1] Khronos, “Opengl - the industry standard for high performance
graphics,” 2021, [Online]. Available: https://www.opengl.org/
(visited on 04/13/2025).

[2] Y. Wang, C. Liu, D. Wong, and H. Kim, “GCAPS: GPU
Context-Aware Preemptive Priority-Based Scheduling for
Real-Time Tasks,” in 36th Euromicro Conference on Real-Time
Systems (ECRTS 2024), 2024.

[3] Q. Lu, J. Yao, H. Guan, and P. Gao, “Gqos: A qos-oriented gpu
virtualization with adaptive capacity sharing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 31, pp. 843–
855, 2020.

[4] M. Xue et al., “gScale: Scaling up GPU virtualization
with dynamic sharing of graphics memory space,” in 2016
USENIX Annual Technical Conference (USENIX ATC 16),
2016, pp. 579–590.

[5] S. Schnitzer, S. Gansel, F. Dürr, and K. Rothermel, “Concepts
for execution time prediction of 3d gpu rendering,” Proceed-
ings of the 9th IEEE International Symposium on Industrial
Embedded Systems (SIES 2014), pp. 160–169, 2014.

[6] S. Schnitzer, S. Gansel, F. Dürr, and K. Rothermel, “Real-time
scheduling for 3d gpu rendering,” in 11th IEEE Symposium on
Industrial Embedded Systems (SIES 2016), 2016, pp. 1–10.

[7] GLACI, “Source code,” 2025, [Online]. Available: https :
/ / github . com / ertlnagoya / glaci - icons - 2025 (visited on
04/13/2025).

[8] S. Kato, K. Lakshmanan, R. R. Rajkumar, and Y. Ishikawa,
“Timegraph: Gpu scheduling for real-time multi-tasking envi-
ronments,” in USENIX Annual Technical Conference, 2011.

[9] B. Karlsson, “Renderdoc,” 2025, [Online]. Available: https :
//renderdoc.org/ (visited on 04/13/2025).

[10] apitrace, “Source code,” 2025, [Online]. Available: https : / /
apitrace.github.io/ (visited on 04/13/2025).

[11] Intel, “Graphics performance analyzers,” 2025, [Online].
Available: https : / / intel . github . io / gpasdk - doc/ (visited on
04/13/2025).

[12] NVIDIA, “Nsight graphics,” 2025, [Online]. Available: https://
developer.nvidia.com/nsight-graphics (visited on 04/13/2025).

[13] B. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems,” in USENIX Annual
Technical Conference, General Track, 2004.

[14] iovisor, “Bpf compiler collection (bcc),” 2025, [Online]. Avail-
able: https://github.com/iovisor/bcc (visited on 04/13/2025).

[15] glmark2, “Source code,” 2025, [Online]. Available: https : / /
github.com/glmark2/glmark2 (visited on 04/13/2025).

[16] Mesa 3D, “Gallium documentation,” 2025, [Online]. Avail-
able: https://docs.mesa3d.org/gallium/index.html (visited on
04/13/2025).

31Copyright (c) IARIA, 2025. ISBN: 978-1-68558-278-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICONS 2025 : The Twentieth International Conference on Systems

https://www.opengl.org/
https://github.com/ertlnagoya/glaci-icons-2025
https://github.com/ertlnagoya/glaci-icons-2025
https://renderdoc.org/
https://renderdoc.org/
https://apitrace.github.io/
https://apitrace.github.io/
https://intel.github.io/gpasdk-doc/
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://github.com/iovisor/bcc
https://github.com/glmark2/glmark2
https://github.com/glmark2/glmark2
https://docs.mesa3d.org/gallium/index.html

	Introduction
	Related Work
	GPU Resource Management
	OpenGL Tracing Tools

	Proposed Method
	Overview
	Transparent OpenGL API Interception
	Code Instrumentation Example

	GPU Resource Manager Prototype
	Evaluation
	Conclusion and Future Work

