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Abstract— Systems engineering, especially in requirements
engineering, has become a more complex process because of
the diversification in both application and infrastructure
aspects. The needs of application users are diversifying
industry by industry and are not easy to formulate in a
conventional mass-optimization way. Infrastructure
technologies are also evolving endlessly. Mitigating these
complicated and changing gaps between the requirements and
infrastructures should be crucial for the business process
optimization in digital transformation. This contribution
provides the machine learning assisted transformation of
ambiguous user intents to network service specifications
conforming to underlying network infrastructures. The
proposed system utilizes ensemble learning with several
decision-tree based algorithms stacked. The vertical-industry
classification process is also implemented as a feature space
reduction methodology to exploit each category’s knowledge of
domain experts. The preliminary evaluation of the prediction
performance achieves an accuracy of around 80%.
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I. INTRODUCTION

Digital Transformation as refinement in any business
procedure context has become relevant for every industry:
Industry 4.0 in manufacturing, autonomous cars in
transportation, remote diagnosis, operations in medical care,
etc.

Networking as an enabler for these systems
advancements can not be a “one-size-fits-all” type solution,
however. In other words, just the cloud-smartphone
infrastructure is not sufficient for the wide range of
requirements spectrum from various vertical industries.
Manufacturing industries demand low-latency and high-
availability, while some medical care facilities necessitate
higher bandwidth for high-definition diagnostic image
transfer, for example.

Since such diversification of networking requirements
causes the customized networking-capability provisioning
for each network service user, accurate comprehension of an
individual’s network service requirements must be essential.
An accurate understanding of network service requirements,
however, can not be straightforward because of the
multifaceted business situations of users, as well as the
diversification of technologies and available services in
networking or cloud infrastructure.

Additionally, network service users may not be experts in
networking technologies and just aim at their business
operation efficiency. Usually, their requirements are
expressed as various “intent” levels, namely, business-,
service-, or resource-related ones [5]. Moreover, since each
user’s business situation will be changing dynamically, the
intents themselves will also change swiftly.

Network service provisioning should be adapting to these
circumstances, preferably in an autonomous manners, where
Machine Learning technologies will come in.

Applying machine learning technologies to
communication networks has been mainstream in research
communities. However, almost all the efforts are focusing on
network resource efficiencies [1]. Further, there has been
hard to find case studies with communication networks
composed of multiple technology- or administrative-domains
infrastructures. Only several vision articles mentioned
machine learning and artificial intelligence aspects on the
network service provisioning, such as vertical industries or
service orchestration related themes [2][3][4].

Our main contributions are:
 Presenting the overall procedure of network-service

requirements engineering and provisioning for
vertical industries.

 Introducing the machine learning architecture for
network service requirements engineering, which
transforms the user’s ambiguous intents into a
dedicated network service specification conforming
to underlying network infrastructures.
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 Initial experimental evaluation of the proposed
architecture, combining with various industries’
expert knowledge.

The rest of this paper is organized as follows. Section II
describes conventional network provisioning procedures and
problems related to the current diversified situations of
application usage and infrastructure technologies. In Section
III, a detailed description of the proposed system architecture
with an ensemble learning approach is presented. Section IV
provides the evaluation results of the proposed architecture
for various vertical industries, including transportation,
medical care, and e-commerce. Section V concludes the
article with our considerations for future enhancements.

II. NETWORK SERVICE PROVISIONING

Usually, requirements engineering for network service
provisioning has been relying on the knowledge of experts of
each industry domain. The experienced domain experts
interact with each user to derive the network service
specifications from the user’s intents, mainly business and
service level ones. Although some rule-based approaches
might be possible in the past business environments, the
more advanced and expeditious ways must be necessary for
the digital transformation era depicted above.

There will be more diversified network infrastructures,
including mobile accesses (4G/5G/6G, WiFi6 and beyond,
local- and private-cellular, CBRS, LPWA, etc.), metro
accesses, core transport lease lines. There will also be more
sophisticated cloud-based networking services, such as SD-
WAN and intra-/inter-cloud networking gateway services.
Cloud services are also expanding their capabilities,
including edge and serverless computing.

Regarding these advancements in both technologies and
services, the conventional network service provisioning with
human experts might become impossible or inefficient at
least. Without accommodating such networking
environmental changes, network service users may lose their
business opportunities.

However, the necessary procedure for domain experts
should remain. Domain experts extract the generic
networking requirements from the user’s intents expressed
by the user, although having said ambiguously. They could
use their expert knowledge relating to the domain and the
user’s business situation. They also classify the requirements
into functional and non-functional ones.

The extracted and inferred generic networking
requirements are translated into network service
specifications alining to the underlying network
infrastructures. There might be many choices for selecting
the underlying network services in the multiple domains for
end-to-end network system configuration. The domain
experts also utilize the cost or reliability performance
knowledge for such selection.

Figure 1. Proposed system workflow.

III. NETWORK REQUIREMENTS ENGINEERING AND

MACHINE LEARNING

A. System Architecture

The proposed system workflow is depicted in Figure 1.
The extractor accepts the corresponding user’s intents via a
graphical user interface (GUI). It also validates and
preprocesses the input data into the appropriate network
service requirements. The preprocessing procedure includes
not only conventional operation, such as regularization but
also pre-classification of the input feature space based on the
industry-specific class structure relevant to the user
concerned [6].

The analyzer then classifies the network service
requirements with several types of machine learning
methodology. It derives the candidates of the network
configuration with machine learning performance indicators
for each classified model.

B. Model-based engineering

The most critical part of the system is how to mitigate the
gap between the user’s intents and network service
requirements sufficient to the configuration of the workable
end-to-end network service composed by the various
underlying network infrastructures.

The extractor functional capabilities are shown as a
model-based engineering GUI. Figure 2 depicts a case of a
smart-meter distribution network system.

The GUI provides two types of interface: a system model
input part (left) and a topology input part (right). The former
part accepts the system model, including the information
related to network scalability, social impacts of failure
(measured by some metric, such as resulted economic loss
and affected population). The latter part obtains the
parameters, such as the service category (a relevant vertical
industry), types of the end system, and the connecting
topology between the end systems. The extractor deduces the
generic network service requirements, both functional, such
as required bandwidth and non-functional, such as resiliency
and availability.
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Figure 2. Model-based engineering GUI.

Currently, this extrapolation of network service
requirements from the input intents is almost rule-based,
with the conversion table for the relevant industry
classification, which is expert-knowledge based.

C. Classifier

The generic network requirements transformed from the
user’s intents by the extractor are fed to the analyzer; its
functional configuration is shown in Figure 3.

The analyzer predicts the appropriate network
configuration for the user concerned utilizing the learned
data accumulated through related industry cases’ design and
operation.

The diversification of business intents and technologies,
however, makes the prediction difficult. The classifier
optimization might not be straight forward like the usual
machine learning process. We adopt a sort of ensemble
learning approach and human intervention inside the
prediction and selection pipeline to alleviate this issue.

D. Ensemble Learning and Confidence

Table I shows the consideration of classifier selection,
comparing the techniques, such as Cosine Similarity,
Support Vector Machine, and Random Forest, from the
viewpoints of computation and accuracy. Considering the
current problem space depicted in Figure 2, Random Forest
can be concluded as a fundamental approach to the present
purpose of classification from the comparison.

Furthermore, several tree-based techniques are stacked to
achieve a broader range of application of this approach.
Other than Random Forest, we apply Gradient Boosting
Decision Tree (GBDT) and Light Gradient Boosting
Machine (LightGBM). These classifiers are stacked and
independently predict the optimized network configurations
using the same learned data. The performance of the
predictions is figured up as confidence of each classifier’s
prediction.

If the particular classifier’s confidence exceeds the
threshold set, the analyzer recommends the classifier’s
prediction. In case that none of the prediction confidence
passes the threshold, the analyzer requests human
interventions, and takes the human decisions as learning
data. Even if the prediction exceeds the threshold, the
analyzer provides each classifier’s confidence to human
considerations to enhance the learning process.

Figure 3. Architecture.

TABLE I. CLASSIFIERS COMPARISON

ML Method
Computational

Complexity
Accuracy

Cosine Similarity Low Low
Support Vector

Machine
High Medium to high

Radom Forest Medium Medium to high
Stacking Acceptable High

E. Networking Components and Configuration Model

The derived generic network configuration should be
translated to network service specifications for underlying
infrastructures. Such an arrangement can be modelled by
networking components and their setup as a system. Figure 4
depicts an example of the network model as a type of client-
server system, which is the prevalent cloud system
architecture. Figure 4 also includes the public networking
apparatus, such as access and core.

Figure 4. Network model.
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The analyzer’s output for the translation based on the
network model is expressed as a parameter set up on a
network template. The network template includes the
network components to achieve the networking
connectivities between the end systems and servers. An
example of the template is depicted in Figure 5, including
concentrators aggregating the signals from IoT devices
(smart meters), middleboxes for security, load balancers at
the server-side.

It also defines the access lines and WANs. Each
networking components can have various capabilities
depending on the networking service requirements. The
capability ranges and examples of the networking
components are also shown respectively in Figure 5.

F. Data representations and constraint

Appropriate networking configurations for various
industry categories have been generated by each vertical
industry’s domain experts and validated through machine
learning processes. These learned configurations are
associated with the network templates as a network menu.
An example of the network menu is shown in Figure 6.

The network menu also contains the restrictions for the
combination of network components and configuration. For
example, a smart factory network configuration requires real-
time, low-latency, and availability. Connected cars
necessitate edge computing capabilities in addition to that.
High-definition image transfer should be essential for remote
medical cares. These category-specific requirements can be
accomplished through specific network configurations, and
no versatile layout should be existing.

Figure 7 depicts the examples of the output of the
network configuration for the smart-meter networking case.

Figure 5. Network template example.

Figure 6. Network menu example.

Figure 7. Examples of the outputs.

Two candidates for such a system are selected by the
analyzer, one for LTE-based and another using Sigfox. The
analyzer recommends the optimized one considering the
various possibilities, including the cost related viewpoints.

IV. PERFORMANCE EVALUATION

Even though usual data-shortage problems for this
investigation exist, the initial preliminary performance
evaluation has been carried out. A base data set is generated
to bootstrap the machine learning system through the
procedure as follows.

Table II lists several reference sites of the actual use
cases incorporated into the evaluation. 52 IoT related system
configurations are picked up as basic patterns from the
examples in these sites.

Furthermore, a data augmentation approach is deployed
to generate more training data from the samples mentioned
above. Some parameters, such as the number of end-devices
or branches, can be varied in a reasonable range for each use
case. It is to be noted that the parameters are not independent
of each other but correlated, as depicted in Figure 8.
Additionally, the correlation strength should differ parameter
by parameters.

According to the industry categories, the generated data
is pre-classified, such as transportation, medical care, and e-
commerce.

An example result of the process with hold-out validation
is shown in Table III. The accuracies of the classification for
the categories are about 80%.

TABLE II. USE-CASE REFERENCE

Source URL

MIC
Japan

http://www.soumu.go.jp/main_sosiki/joho_tsusin/top/
local_support/ict/index.html

Hitachi
Lumada

https://www.hitachi.co.jp/products/it/lumada/usecase/index.html

KDDI https://iot.kddi.com/cases/
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Figure 8. Correlation between the parameters.

TABLE III. EVALUATION RESULTS

Target
Industry
Category

Accuracy

Random
Forest

GBDT LightGBM

Smart city 0.837 0.876 0.855

Construction 0.799 0.858 0.828

Commerce 0.846 0.923 0.928

Manufacturing 0.835 0.877 0.869

Transportation 0.795 0.845 0.831

V. CONCLUSION

This contribution provides the machine learning assisted
transformation of ambiguous user intents to network service
specifications conforming to underlying network
infrastructures. The proposed system utilizes ensemble
learning with several decision-tree based algorithms stacked.
The vertical-industry classification process is also
implemented as a feature space reduction methodology to
exploit each category’s knowledge of domain experts. The
preliminary evaluation of the prediction performance
achieves about accuracy of around 80%.

Systems engineering in the digital transformation era,
however, may have an intrinsic difficulty of ever-changing
conditions, which causes situations of data shortage for the
usual statistical machine learning approach. The proposed
architecture utilizes not just conventional machine learning
techniques but also domain-expert knowledge and other
approaches like data augmentation and simulation.

Although the evaluated system is a preliminary one to
bootstrap the proposed architecture, the approach should be
essential in the diversified and accelerated digital
transformation era.

Expanding the applicable industrial categories is a
direction of future enhancements. Some hierarchical
structure can exist composed of common features to every
industry, specific characteristic to each sector, and
individually segmented distinction of each user. Network
model enrichment is also possible enhancements.

Finally, some standard organizations are starting
activities related to service provisioning with machine
intelligence [7][8]. The architecture and results presented
here should contribute to the advancement in these
standardizations.
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