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Abstract—The vast advances of machine learning in recent
years have encouraged researchers to try learning-based end-
to-end neural models for performing robotics operations. On
the other hand, traditional approaches that leverage known
knowledge as rules also have their merits. In this paper, we
focus on robotic arm tasking and compare the learning-based
end-to-end approach with a kinematics-based approach in
terms of their capabilities in trajectory planning, using pouring
as an example. In kinematics-based approach, object detection
is obtained from a deep neural network, and arm trajectory is
calculated with traditional Inverse Kinematics (IK). In the
learning-based end-to-end approach, a single neural network is
developed that takes RGBD images as input and outputs joint
parameters of the robot arm to move the arm forward. We
compare these two approaches with two scenarios, static and
dynamic, in terms of their time usage and memory usage. Our
experimental results show that the kinematics-based approach
is more suitable for static scenarios as it uses less processing
time and memory, while the learning-based approach is more
suitable for complicated and dynamic scenarios.

Keywords-machine learning; neural network; Inverse
Kinematics; robot tasking; trajectory planning.

I. INTRODUCTION

The vast advances of machine learning in recent years
have spurred its widespread adoption across almost all
research fields. In robotics, many researchers have tried
learning-based end-to-end neural models for performing
robot operations. Unlike traditional approaches to robot
systems that require extensive programming and human
knowledge, learning-based approaches use techniques such
as human demonstration and reinforcement learning to train
a policy for the robot to follow to accomplish prescribed
tasks. Such policies are often realized with end-to-end neural
models that take raw sensory inputs and generate control
outputs directly.

For complex problems, the end-to-end approach can
develop well performed models without deep knowledge of
the problems [1]. In addition, it uses a single neural network
to replace the many functional modules in traditional robot
systems, enhancing the systems by using a single
optimization criterion.

On the other hand, the models developed by the end-to-
end approach may be difficult to improve or modify. Any
structural change, e.g., changing the input dimension, often

requires re-training, which may lead to a completely
different model [1]. It is also difficult to tell why the model
does not work well. This is quite different from the
traditional approaches, in which one can check and identify
which function modules may cause an error or inefficiency.
It is interesting to compare the two approaches for a deeper
understanding of their respective merits.

In this paper, we compare these two approaches using
trajectory planning of a pouring task as an example. Pouring
is a common task used in robotics research. Prior works
approach trajectory planning of robot arms from a geometric
perspective and kinematics. They normally involve object
detection, trajectory planning and object manipulation.
Object detection determines where the target object is,
including its coordinates and orientation in the space. Recent
works mostly detect objects with RGB or RGBD cameras.
Object detection then becomes a visual recognition problem,
which can be solved very well with deep neural networks
[9].

Given the location of the target object, trajectory
planning then determines a path for the robot arm to reach
the object. Traditionally, the problem is solved by Inverse
Kinematics (IK), which determines the joint parameters to

move the arm to the given location [7]. Once the end effector

of the arm reaches the location, it can then manipulate the
target object. On the other hand, the learning-based approach
trains a neural model to determine the joint parameters [2].
For example, Staffan et al. used Receptive Field
Cooccurrence Histograms (RFCH) [3][4] for object
recognition and pose estimation. When the human moves the
target object, the magnetic trackers placed on the human
hand help to recognize the grasp type [2]. They designed and
evaluated an automatic grasp generation and planning
system, which facilitates grasping of new objects based on
the shape similarity with the objects that have already been
learned [2].

Sulabh et al. focused on detecting a ‘good grasp’ from
RGBD images. They introduced a robotic grasp detection
system for parallel plate grippers to detect good robotic
grasps for the robot to grasp [5]. Xinchen et al. focused on
parallel jaw gripper’s grasping learning in simulation. The
system can reconstruct the 3D shape of the target from
RGBD inputs by a shape generation network. It then predicts
the grasping outcome from an outcome prediction network
[6].
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The comparison in this paper focuses mainly on robotic
arm tasking by comparing the learning-based end-to-end
approach with a kinematics-based approach in terms of their
capabilities in trajectory planning, using pouring as an
example. For the kinematics-based approach, we use a deep
neural network (YOLO) [9] for object detection and IK for
trajectory planning. For the end-to-end approach, we train a
deep neural network using RGBD images as input and joint
parameters as output. The training data are collected using
the kinematics-based approach to ensure data consistency
and fairness in comparison.

We compare these two approaches in performing a
pouring task, which is to grab a red cup and pour the
contents into a blue cup. The evaluation consists of two
scenarios. (1) Static scenario: the cups are at the same
locations throughout the task. (2) Dynamic scenario: the red
cup will be moved during the task. We evaluate their time
usage, memory usage and actions under different scenarios.
In the static scenario, both approaches can complete all the
tasks. However, in the dynamic scenario, the kinematics-
based approach fails to finish some tasks while the end-to-
end learning-based approach can complete all of them.

The contributions of our work are as follows: (1) We
developed kinematics-based and learning-based end-to-end
approaches to pouring task by a robotic arm. (2) To train the
end-to-end model, we developed a data collection system
based on the kinematics-based method. (3) We evaluate and
compare these two approaches, analyzing their performance
under static and dynamic scenarios. As far as we know, there
is no other work providing such a comparison between these
two approaches to robot tasking.

The rest of the paper is organized as follows. Sec. II
presents the two approaches for comparison. Sec. III shows
the experiments and discusses the results and Sec. IV
concludes the paper with possible future extensions.

II. APPROACHES FOR COMPARISON

To compare the kinematics-based approach and learning-
based end-to-end approach, we place two cups in the view.
The goal is to pour the contents of the red cup into the blue
cup. We first introduce our kinematics-based approach,
discuss our methodology for training the end-to-end model,
and then propose a deep neural network architecture for
learning the pouring task.

A. Kinematics-Based Approach

Our kinematics-based model, shown in Figure 1(a),
consists of an object detection module and a trajectory
planning module determined by IK. The object detection
module was based on YOLO [9] and output the 2D
coordinates of the center of the cup. The whole pouring task
is divided into a number of steps, 64 in our experiments. In
each step, the camera takes one image and the model then
decides how to move the arm accordingly. The trajectory of
the robot in performing the pouring task can be represented
as = ( ), where are the joint angles of
the robot at each time step.

Let be the first image taken by the camera. It is used as
the input of the object detection module. The object detection

module outputs , which is the 2D coordinates of
the target’s center in image . With a mapping between the
3D world-space coordinates and the RGB image, output
can be used to get the 3D coordinate of the center of the
target cup, from an RGBD camera with the
origin of the coordinates being the robot arm.

The trajectory planning module then uses IK to calculate
the joint parameters at each time step to construct a path to
reach . The output of the trajectory planning module =
( ) is then sent to the robot arm in order to control
the robot to finish the task.

(a) Kinematics-based (b) Learning-based

Figure 1. Appraches for comparison.

B. Learning-Based End-to-End Approach

In the learning-based approach, the pouring task is
viewed as consisting of a series of states and actions. The
robot arm is controlled by a neural network model with an
architecture as shown in Figure 1(b). Let denote the
RGBD image seen by the camera at time step . Our model
will take as the input state of
the neural network, which corresponds to the current image
plus four previous images seen by the camera before this
time step .

Our end-to-end model takes the sequence of images at
time as the input and uses a deep residual network (ResNet-
50) to extract features from the input images. The last fully
connected layers of ResNet-50 is replaced by Long Short-
Term Memory (LSTM) [12] with an extra dropout layer and
two fully connected layers. The first fully connected layer
takes Rectified Linear Unit (ReLU) as the activation
function. LSTM is used to deal with the time series data for
sequencing the actions, e.g., deciding when to close the
gripper. The last fully connected layer is the output layer of
the end-to-end model. It predicts the action
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of the robot arm, where
correspond to the settings of the joint motors of the robot
arm. We use Adam [13] as an optimizer and mean square
error as our loss function.

III. EXPERIMENTS

A. Environments

The experiments were conducted on a 6DOF robot arm
with an Intel RealSense Depth Camera, D415. The camera
was set behind the robot arm to the left with a high angle of
around 30 degrees (see Figure 2(a)). The task was to pour the
contents of the red cup into the blue cup. Figure 2(b) shows
the view of this task from the perspective of the camera.

We used MATLAB R2016B for programming IK and
Python deep learning library Keras for training. Our
experiments were performed on a NVIDIA GeForce GTX
1070 GPU with AMD Ryzen 5 2600 Six-Core 3.4GHz
Processor.

(a) Setup (b) View from robot’s camera

Figure 2. Experimental environment.

B. Data Collection

The network of the learning-based approach was trained
on a dataset that was collected from the data collection
system based on the kinematics-based method. The data
collection system recorded the states and actions during each
demonstration by controlling the robot arm using the
kinematics-based approach. In this way, trajectory data were
consistent in comparing both approaches. The dataset is
composed of 40 pouring demonstrations. Each demonstration
contains 64 RGBD images (steps) and 64 corresponding
actions. In total, there are 2560 RGBD images and 2560
actions of the six motors of the robot arm. Figure 3 shows a
part of our dataset with the states in sequence with the
corresponding actions.

Figure 3. Sample states and actions in our dataset.

C. Evaluations

The goal of our experimental evaluation is to compare
the kinematics-based approach with the learning-based end-
to-end approach. We let both perform the same pouring task.
The experiments can be divided into two parts:
 Static scenario: Cups were fixed at the same locations

until the task was completed.

 Dynamic scenario: The red cup may be moved
dynamically while the task was in progress.

Static Scenario
We placed the red cup in 30 different positions in the

area, which the robot arm can reach. The positions spread
evenly across the workspace to ensure that the entire area
could be tested. Figure 4 shows the 30 positions. Our
experiments show that both the learning-based end-to-end
approach and the kinematics-based approach can complete
all the tasks successfully.

Figure 4. The 30 positions to place the read cup.

We show the computation time and the memory usage of
the kinematics-based and the learning-based end-to-end
approaches in Table 1. The computation time is the CPU
time to execute the model, not counting communication. For
the kinematics-based approach, the computation time
includes the time spent on object detection and trajectory
planning. For the learning-based approach, the computation
time is the time to run through the neural model. During the
experiments, the number of moving steps of the kinematics-
based approach was always 64. On the other hand, although
the learning-based approach was trained with the training
data that completed the pouring task in a fixed 64 steps, the
number of steps taken by the learning-based approach in
inference was fewer than 64 steps, with an average of 48.
This is because the learning-based approach could identify
states similar to those trained and took corresponding
actions, thereby skipping steps.

TABLE I. EXPERIMENTAL RESULTS OF STATIC SCENARIO

Ave. CPU
time

Ave. #
steps

Ave.
time

Memory
usage

Size

Kinematics 7.83 s 64 119.4 s 2081 MB 236 MB

Learning 10.27 s 48 84.1 s 2574 MB 278 MB

Both approaches used most memory space on model
loading. The memory usage of the learning-based approach
is higher, because it must process a series of images instead
of just one in the kinematics-based approach. For
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computation time, the learning-based approach spends only
10.27 seconds on model prediction, meaning that our model
can output an action in 0.21 seconds. Both approaches spent
a lot of time on serial communication. However, since the
learning-based approach may skip steps, the computation
time can be shortened.

The total computation time of the kinematics-based
method remains almost the same, because its step count is
fixed and the calculation time of IK does not change a lot.
The total time of the learning-based approach depends on the
number of steps in moving the robot arm. If the model
completes the task with fewer steps, the total time will be
less.

We can see from Figure 5 that there is an uptrend of
moving steps in the learning-based approach. The red dots
show the positions in which more steps are needed to finish
the task. The reason is that when the distance between the
robot arm and the target is far apart, it may be possible to
choose similar states that will finish the task faster by
skipping some steps. However, when the robot arm is close
to the target, it could only do it step by step.

Figure 5. Uptrend of the moving steps of the end-to-end model.

Dynamic Scenario
In the dynamic scenario, the red cup was moved while

the robot arm was reaching the cup. To allow the kinematics-
based approach to handle moving objects properly, we used

the following procedure:

1. While the distance between the robot arm and the target
object d > a threshold h do

2. Detect the target object
3. If the target object is moved since last detection and

the moving distance m > 1.5mm then
4. Re-plan the trajectory
5. Divide the trajectory into n points (n is based on �)
6. Move the robot arm to the next point in the trajectory
7. Grab the target object

We tested both the kinematics-based approach and the
learning-based end-to-end approach under 10 different cases.
The tests were split into four parts according to the way the
target red cup is moved:
 Right-to-left:

The target red cup was placed at the upper right, middle
right and lower right, respectively, in the workspace of
the robot arm. We then moved the cup to the left side of
the workspace, as shown in Figure 6. It was found that
both approaches could complete all the right-to-left
tasks. The most important factor for the kinematics-

based approach to success was the target cup’s final
position -- the whole cup could be seen by the camera
and not be blocked by the robot arm.

 Left-to-right: The target red cup was placed at the upper
left, middle left and lower left, respectively, in the
workspace. Then, we moved the cup to the right side of
the workspace. Our experiments showed that the
kinematics-based approach failed in upper-left and
middle-left positions, due to a failure in object detection.
This is because the moving robot arm blocked the view
of the camera, and, consequently, the target object could
not be detected. It follows that the trajectory planning
module mistook the blue cup for the target. The lower-
left task was successful because the final position of the
red cup was in front of others and the view of the cup
was not obstructed by the robot arm.

 Top-to-bottom: We placed the red cup at the top of the
workspace and then moved the cup to the bottom side of
the workspace. Both the kinematics-based approach and
the learning-based approach can complete the tasks. It
seems that if the object detection module could
recognize the target correctly, the kinematics-based
approach can complete the task successfully.

 Bottom-to-top: We placed the red cup at the bottom of
the workspace and moved the cup to the top side of the
workspace. The experimental results were the same as in
the top-to-bottom case.

From the experiments, we can see that the learning-based
approach succeeded in all the tasks tested, while the
kinematics-based approach failed in some cases. For the
kinematics-based approach to succeed, it is critical that the
target object be visible and identifiable so that its location
can be determined. If the location cannot be determined or is
detected incorrectly, IK will calculate a wrong path and the
robot arm cannot reach the target object.

Furthermore, the kinematics-based method consists of
several independent modules, which are optimized separately
under different criteria. Even if we add rules to let it handle
dynamic scenarios in which objects may be moved, there are
always unexpected situations. Figure 7 shows a conflict of
the rules. If the distance between the robot arm and the target
object is less than the threshold h, the trajectory planning
module will not re-plan the path. This may happen when the

robot arm is very close to the target object, but it obstructs

the view of the camera. The model will mistake the blue cup
as the target. Choosing a suitable threshold value is also a
difficult problem.

By observing the trajectories generated by the
kinematics-based approach, we further find that it could only
handle the change of the position of the target cup early in
the process. This is perhaps because the joints of the robot
arm require sufficient lead time to adapt to new positions.
From the above observations and discussions, we find that
the kinematics-based approach has limitations in handling
complex and dynamic tasks.
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Figure 6. Right-to-left task.

Figure 7. A conflict of the rules in the kinematics-based approach.

Figure 8. The learning-based approach stilll accomplishes the task.

On the other hand, the learning-based approach succeeds
in cases when the target object is obstructed. This is because
the learning-based end-to-end approach takes the entire view
as the state to decide the action to perform. When it
encounters an unseen state, it will try to find a similar known
state and act according to that state. Therefore, even when
the target is moved and obstructed, the model can still find a
proper action to perform.

Furthermore, from Figure 8, we can see that the learning-
based approach can still finish the task even if we move the
target cup when the robotic arm almost grabs it. The end-to-
end model is less affected by the obstructions caused by the
moving robotic arm as it knows the end goal of the task.
From all our experiments, we conclude that the learning-

based end-to-end approach is more suitable for handling
complicated and dynamic scenes.

In Table 2, we show the time usage and the memory
usage of the kinematics-based and the learning-based end-to-
end approaches. The biggest difference between static
scenario and dynamic scenario is the computation time. The
kinematics-based method spends additional time for object
detection and re-planning the trajectory when the target
object is moved. On the other hand, the learning-based end-
to-end approach can handle the dynamic scenario with the
same trained neural model and thus incur similar amount of
computation time as in the static scenario. By observing the
number of moving steps of both approaches, the learning-
based approach completes the task more efficiently in the
dynamic scenario too.
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TABLE II. EXPERIMENTAL RESULTS OF DYNAMIC SCENARIO

Avg.
CPU
time

Avg. #
of

steps

Avg.
total
time

Memory
usage

Size

Kinematics 21.53 s 66 137.2 s 2279 MB 236 MB

Learning 9.33 s 47 81.7 s 2572 MB 278 MB

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we compare the kinematics-based approach
and the learning-based end-to-end approach to robot tasking,
using pouring as an example. The kinematics-based
approach is composed of object detection module and
trajectory planning module, in which the trajectory is
calculated by IK. The end-to-end learning network was
trained by the dataset that was collected by the data
collection system based on the kinematics-based approach.

The two approaches are compared in static scenario and
dynamic scenario by evaluating their time usage and
memory usage, and observing how they complete the tasks.
Our experimental results demonstrate that the kinematics-
based approach is suitable for static scenario, because it
requires less computation time and memory. The learning-
based approach is more suitable for complicated and
dynamic scenarios, because it can perform properly for
unseen and dynamic states.

In the future, we plan to improve the kinematics-based
approach by using different object detection methods, e.g.,
grasp detection model, to handle more dynamic scenarios.
Furthermore, we found that it was too troublesome to collect
test data, since we need to keep changing the position of the
target object manually. It is necessary to develop an
automated data collection system for collecting the testing
data easier. Additionally, we would like to extend both the
kinematics-based approach and the learning-based approach
to more complicated scenarios, e.g., blue cup in different
positions, complex scenes and background, and obstacles. It
is interesting to study how the two approaches handle these
complex states.
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