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Abstract—The ease of inter-connectivity among modern systems
is permeating numerous System-Of-Systems (SoS), wherein multiple,
independent systems interact and collaborate to achieve unparalleled
levels of functionality that are otherwise unachievable by the constituent
systems in isolation. This has resulted in exponential increase in
complexity associated with modern systems and SoS. Complex SoS
are characterized by emergent behavior which is very difficult, if not
impossible, to anticipate just from knowledge of constituent systems. The
emergent behavior manifests at the boundary of the SoS and impacts the
Measures of Effectiveness (MOEs) of the SoS. In the context of SoS, each
constituent system has its own MOEs, while the SoS has its own MOEs.
Constituent systems collaborate and interact with each other, towards
achieving the desired functionality and behavior at SoS level. Recently,
there is an explosion in the adoption of Machine Learning techniques
and models in various systems, and these techniques are increasingly
being used to control many physical systems, such as cars and drones.
Reinforcement Learning is a type of machine learning approach that
allows agents to optimally learn strategies through interactions with
its environment. This paper presents a novel approach towards using
reinforcement learning models and techniques for evolving MOEs of the
constituent systems and SoS towards addressing emergent behavior. The
proposed approach, through SoS-Constituent System MOE Relationship,
enables constituent systems to learn and adapt their behaviors in tandem
with the evolution of emergent behavior at SoS level.

Keywords—Systems of Systems; Emergent Behavior; Measures of
Effectiveness; Reinforcement Learning; Complexity.

I. INTRODUCTION

Advances in machine learning have enabled the development
of sophisticated autonomous systems such as self-driving vehicles,
and drones. Though developed independently, these systems are
expected to be brought together as System-of-Systems (SoS) and
operate in a real-world environment. This demands integration of
the heterogeneous and inter-operable systems to provide superior
levels of functionality.However, to operate in SoS context the systems
should be able to achieve their objectives as well as adapt based on
SoS-level objectives– that are typically defined as system-level and
SoS level Measures of Effectiveness (MOE). For example, consider
a self-driving truck planning a shortest path (truck MOE) through the
city using its own navigational aids. However, if certain roads in the
city (SoS context) have to be used for other high-priority purposes
(SoS MOE), the truck is expected to alter its path to respect the
city-level constraint. While the new path may not be optimal for the
truck, it is expected to near-optimally meet the MOEs at both SoS and
system levels. Conventional approaches involve human intelligence in
understanding such relationships between constituent systems MOEs
and SoS MOEs, towards addressing emergent behavior and MOE
evolution. However, with the recent evolution of autonomous systems,
there is compelling need and interest to explore approaches that
enable systems to automatically learn the implications at SoS level.

In this paper, we propose the use of Reinforcement Learning
(RL) approaches to enable a system to learn optimal policies in
SoS-context. Our approach trains non-collaborative, independent

agents whose rewards are uniquely designed to balance system-level
and SoS-level goals. Our approach leverages the SoS-Constituent
System MOE Relationship to uniquely design the reward structure
of each system (embedded with an intelligent agent). This enables
constituent systems to learn policies respecting the SoS and
system-level MOE towards addressing evolving emergent behavior.

The rest of the paper is organized as follows: Section II discusses
complexity, emergence and MOE evolution in the context of SoS,
and briefly introduces reinforcement learning. Section III illustrates
the proposed approach, while Section IV describes the simulation of
the proposed approach, and the experimental results. Finally, Section
V has the conclusion.

II. BACKGROUND & RELATED WORK

A. Systems and SoS

A system can be considered as an integrated and interacting
combination of elements and/or subsystems to accomplish a defined
objective [1]. These elements may include hardware, software,
firmware and other support. SoSs are systems of interest whose
system elements are themselves systems [2]. SoS has evinced
keen interest among the systems engineering community, and there
has been significant research pertaining to principles and practices
on the architecture design, development, deployment, operation
and evolution of SoS [3]-[6]. Applications of SoS principles and
practices span many domains, including electrical power distribution,
and Internet-of-Things. SoS characteristics discussed in literature
include operational/ managerial independence, emergent behavior and
evolutionary development.

B. Complexity and Emergence

In a general sense, the adjective “complex” describes a system or
component that by design or function or both is difficult to understand
and verify. There are different types of complexity measures
discussed from different perspectives [7]. Emergence, hierarchical
organization and numerosity are some of the characteristics of
complex systems [8]. Emergence refers to the ability of a system to
produce a highly-structured collective behavior over time, from the
interaction of individual subsystems [7]. Common examples include
a flock of birds flying in a V-formation, and ants forming societies
of different classes of individual ants, wherein these patterns are
not induced by a central authority. For a system, emergent behavior
refers to all that arises from the set of interactions among its
subsystems and components. Complex systems and SoS are expressed
by the emergence of global properties which are very difficult, if
not impossible, to anticipate just from a complete knowledge of
component or subsystem behaviors [9][10]. Emergent behavior can
be characterized as positive or negative, depending on the impact on
the MOEs. The challenge for complex SoS is that there is inadequate
knowledge on combination of events that would result in a negative
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emergent behavior. Specifically, for complex SoS, the “stringing”
together of the constituent systems results in unique functionality
and emergent behavior being exhibited at the SoS level that is very
difficult to envision and predict, and cannot be attributed to any of
the constituent systems individually.

C. MOEs in SoS

MOEs are the operational measures of success that are closely
related to the achievement of the objective of the system of interest,
in the intended operational environment under a specified set of
conditions [1]. MOEs are measures designed to correspond to
accomplishment of mission objectives and achievement of desired
results. MOEs provide quantifiable benchmarks against which the
system concept and implementation can be compared. It reflects
the overall customer and user satisfaction, and it manifests at the
boundary of the system. MOEs are independent of the specific
solution. Example of MOEs include service life of satellite, search
area coverage and survivability. Failure of the system to meet an MOE
implies that the system does not meet its purpose and objectives [11].

Figure 1. SoS-Constituent System

Understanding MOEs is critical to analyze the impact of the
emergent behavior at SoS level. In the context of SoS, each
constituent system of the SoS has its own MOEs. The MOEs for
a constituent system can be independently measured to assess its
success. MOEs of the SoS are the operational measures of success
for the SoS as a whole. Figure 1 illustrates SoS MOEs versus
constituent system MOEs. System A can have MOEs: SysA-MOE-1,
SysA-MOE-2 and SysA-MOE-3. The MOEs of System-A represent
the measures of success for System-A as an independent system, and
the MOEs for System-A can be independently measured to assess the
success of System-A. In addition to each constituent system having
its own MOEs, MOEs are also relevant at the SoS level, i.e., SoSx
would also have its own MOEs. The MOEs at the SoS level represent
the measures of success for the SoS as a whole. Figure 2 further
illustrates the impacts on MOEs at system level and at SoS level.
The MOEs of the system are impacted by the behaviors exhibited
by the system. Similarly, the MOEs of the SoS are impacted by the
behaviors exhibited at SoS level. Further, the behaviors exhibited at
constituent system level also impacts the SoS MOEs.

D. MOE Relationship Matrix

As discussed earlier, one of the characteristics of SoSs is that
the stringing together of the constituent systems results in unique
behavior and functionality that gets exhibited at the boundary of the

Figure 2. SoS-System Behaviors

Figure 3. MOE Relationship Matrix

SoS, i.e., the behavior may not be attributed to any of the constituent
systems functioning independently. With this being the case, the
relationships between the MOEs of the SoS vis-à-vis the MOEs of the
constituent systems might turn out to be complex and dynamic. There
are different means to analyze the MOE relationships between the
constituent systems and SoS. SoS-System MOE relationship matrix
[6][12] is one of the means to analyze the relationships, as indicated
in Figure 3. The impact of different system MOEs on the SoS MOEs
could vary. There might be scenarios where a specific constituent
system might be meeting all its MOEs, but the SoS MOEs might not
be met. Similar scenarios will be discussed later in this paper.

E. SoS MOE Evolution

Evolution is often considered as a major challenge in
system-of-systems, given the heterogeneity of constituent systems,
hyper-connectivity of systems involved, the emergent behavior and
the evolutionary development processes [13]. Architecture evolution
deals with changes to the static SoS architecture - for instance,
changes to how the constituent systems are networked to each
other. On the other hand, behavior evolution pertains to evolution in
emergent behavior, based on dynamic SoS architecture - for instance,
in terms of changes in set of resources and environment parameters.
As the SoS evolves, there might be changes in the impact of an
existing constituent systems’ MOEs on the MOEs of the SoS, or
on the MOEs of other constituent systems. Further, there might also
be changes in the relationships of an existing constituent system’s
MOEs on the MOEs of the SoS, or on the MOEs of other constituent
systems. Many other such inherent dynamics would play a role in
the SoS evolution. While the MOE relationship matrix (Figure 3)
would provide a good sense of the intertwining relationships from
the functional and behavioral properties of the SoS, factoring in these
additional constraints would be a challenge for complex SoS.
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Figure 4. Overview of Proposed Approach

F. Reinforcement Learning

Reinforcement learning is a type of machine learning approach
that allows agents to automatically learn optimal control strategies
through trial-and-error interactions with its environment [14]. As
shown in Figure 5, a RL agent iteratively performs actions on
the environment and in response, it receives the description of the
environment (called state) and feedback (called reward) that indicates
the impact of the action on the environment. While positive rewards
indicate desired behaviour, negative rewards are penalties of bad
actions. Based on the reward, the agent learns an optimal strategy or
policy for choosing its next action that would receive higher reward.
The training typically involves exploration in which random actions
are selected, and exploitation which uses prior learned knowledge
to select the best action. Striking a balance between exploration and
exploitation is essential for maximizing rewards at minimal cost.

Figure 5. Reinforcement Learning

In the last decade, RL has become increasingly successful in
solving complex systems in various fields such as robotics [15],
gaming [16], and safety critical systems [17]-[19]. Typically, most
of the existing RL literature concerns training single, or multiple
agents that cooperate/compete [20][21] within the same environment,
in which the agent observes a single scalar reward function and the
goal is to find a policy that maximises the expected rewards [22].
However, since SoS is characterized by multiple constituent systems
that have independent objectives and varying priorities, single agent
or single objective training approaches are generally unsuitable in SoS
context. Although there are theoretical discussions about multi-agent
and multi-objective optimization approaches [23][24], to the best of
our knowledge, the application of these techniques in a SoS context
has not been previously explored. On the contrary, in this paper, we
focus on training agents independently to achieve their own-goals, as
well as the SoS-level goals by leveraging the relationships between
SoS and constituent system MOEs for designing the rewards.

III. PROPOSED FRAMEWORK

This section discusses the proposed framework towards application
of reinforcement learning for constituent systems to learn the
implications of its behaviors on the MOEs of the SoS and the
emergent behavior witnessed at the SoS level.

A. Overview

Figure 4 provides an overview of the proposed approach. The
complex SoS has a set of defined MOEs. The SoS comprises
independent constituent systems, with each having their own
corresponding system MOEs. A Machine Learning (ML) Classifier
[25][26], that observes the various MOEs at SoS level and constituent
system level and learns the positive and negative emergent behavior,
is leveraged. In the proposed approach, the ML Classifier is used
to advise the SoS-Constituent System MOE Relationship (SSMR)
on positive and negative emergent behaviors. SSMR is built with
the required intelligence to serve as the Environment (per Figure 5)
for the constituent system, and provide the required feedback based
on the positive and negative emergent behaviors witnessed at the
SoS level. The constituent system is embedded with a reinforcement
learning Agent (per Figure 5) to learn and evolve its behavior. Figure
6 provides details of the proposed approach.

Figure 6. Proposed Approach
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Figure 7. System-A: MOEs and State Transitions

B. Framework Illustration

Towards illustrating the adoption of proposed approach, the generic
case of a constituent system, System-A, having a set of three MOEs:
SysA-MOE-1, SysA-MOE-2 and SysA-MOE-3 is considered. The
behavior exhibited by System-A is considered in terms of the specific
levels of performance being exhibited in terms of its MOEs. The
states of System-A, as mapped to the various performance levels of
the MOEs are illustrated in Figure 7. For instance, System-A meets
SysA-MOE-2 at two possible performance levels: V2-1 and V2-2.
The figure also illustrates the various transitions permissible between
the different states, as in state transition diagram. For instance, from
state S2, the possible transitions are S1, S3 and S18. The System-A
is a constituent system in SoSx. Let SU denote the set of all systems.
The definitions below illustrate the elements discussed (Z+ is the set
of positive integers) .

SU = {S1, ...Sn}, where n ∈ Z+ (1)

SoSx⊂ SU ; |SoSx|> 1 (2)

MOESoSx = {mSoSx
1 , ...mSoSx

x } (3)

MOESA = {mSA
1 , ...mSA

w }, SA ∈ SU (4)

A subset of MOEs of SA contribute towards a subset of the MOEs
of SoSx, represented by RMOESoSx

SA
. It is to be noted that this relation

has at least one element. Note that RMOESoSx
SA

is defined iff ∃mSA
w ∈

MOESA contributing to mSoSx
x ∈MOESoSx.

Relation RMOESoSx
SA

= {(mSA
w ,mSoSx

x )} (5)

mSA
w ∈MOESA contributes to mSoSx

x ∈MOESoSx (6)

With various MOE performance levels being mapped to different
states, the constituent system essentially has multiple means to
transition from one state to another state. If given the narrow focus
of achieving its own MOEs only, the system would perform at a level
that maximizes its MOEs performance. In the proposed framework,
the SSMR provides the required feedback to the constituent system
on the impact of its MOE performance levels on the positive/ negative
emergent behavior at the SoS level. This enables the constituent
system to learn on the required MOE performance levels that balances
its own mission along with the SoS objectives.

IV. SIMULATION & EXPERIMENTAL RESULTS

In this section, we illustrate our approach using the Grid World
example, in which the goal is to allow the agent learn the optimal
set of transitions from an initial state to a terminal state. The Grid
World serves as an abstract representation of a real world agent’s state
transition, where each state has implications both at system-level and
SoS-level MOEs as described in the previous section. The goal for
the agent is to navigate through states such that the SoS MOEs are
met in addition to not unduly compromising the MOEs of the system.

A. Experiment Details & Results

We implemented our approach using MathWorks® MATLAB
R2020b Reinforcement Learning toolbox [27]. For training, we used
a Windows 10 OS with an Intel I-5 Core processor and 8 GB RAM.

Figure 8. Grid World

We programmed a 2-dimensional 5 x 5 Grid World matrix [28],
as shown in Figure 8. Each cell in the grid, that corresponds to
each state, has an assigned reward value per the SSMR. The agent
(visualized as a red circle in the Figure 8) begins from a programmed
initial state and learns to traverse to the terminal state (colored blue).
The agent has four possible actions in each grid state: west, north,
south, and east. Further, certain states are defined as obstacles (black
cells) to represent the infeasible states and transitions. The goal of
the agent is to learn an optimal state transition through the grid, given
the obstacles, such that the total rewards received is maximized. The
parameters used for this training are shown in Table I.
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(a)

(b)

(c)

Figure 9. Training Visualization Plots and Learned Path

TABLE I. TRAINING PARAMETERS

Parameter Name Description Value
Epsilon Probability threshold to

select a random action
or an existing action that
maximizes the state-action
value.

0.25 (Fig 9 a,b)
0.45 (Fig 9 c)

MaxEpisodes Maximum number of
episodes to train the agent.

100

MaxStepsPerEpisode Maximum number of steps
to run per episode

30

StopTrainingCriteria Training termination
condition

AverageReward

StopTrainingValue Critical value of the training
termination condition

100

First, to observe the learning in a non-SoS context, we trained
the agent by assigning only system-level MOEs as rewards to each
cell of the grid. We considered high MOE for the terminal state,
a low positive reward for all intermediate states and a negative
reward for the obstacles states. Figure 9(a) shows a plot of (i)
rewards obtained by agent in each episode during the training (shown
in blue line with circles),(ii) average rewards obtained after each
training episode (shown in orange line with asterisks), (iii) the
learned policy visualised in the grid environment, and (iv) the learned
policy visualized in the state transition diagram (traversed states and
transitions colored in beige and green respectively).

Next, to understand the emergent behaviours in a SoS context, we
altered the reward for each state based on a predefined SSMR. We
programmed the agent in a such a way that, at run-time if the learning
context is set to SoS, it will adapt to learn a policy to traverse the
grid to maximize the reward per the SSMR. For example, in one of
the experiments, when an intermediate state ([3,3] in the grid) has
low SoS-level MOE (i.e., negative SoS-level reward), the agent learnt
to traverse avoiding that cell, as shown in Figure 9(b). Further, when
we re-defined a higher SoS-level MOE for another intermediate state
([3,4] in the grid) in the SSMR arrangement and trained the agent
again, it learnt another path that favors traversing that state, as shown
in Figure 9(c).

The various paths learnt by the agent depending upon the SSMR,
demostrates how the agent adapts to maximize SoS-level MOE.
As one can observe, while the path taken by the agent could be
sub-optimal at the system-level in some cases, it is optimal at the
SoS-level, which is ultimately the desired behavior.

B. Limitations: Reward Hacking

While RL with appropriately designed rewards can help effectively
train agents without expert supervision, it is not completely
fool-proof. One of its well known failure modes is reward hacking,
which happens when the agent attempts to learn to obtain high
rewards in unexpected, rather undesired, ways. For example, when
training the agent in the Grid World with higher SoS-level reward for
a specific state transition (to [3,4] in Figure 9(c)), we found that the
agent did not learn to reach the terminal state even after numerous
training episodes. On examining the root cause, we found that the
agent tried to accumulate rewards by just moving back and forth to
accumulate more rewards, rather than moving past it to reach the
terminal state with highest reward. While we addressed this problem
in the case example by suitably adjusting the exploration factor as
well as the SSMR values, we believe that RL designers of SoS
should carefully evaluate the domain and design appropriate rewards
to overcome this problem.
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V. CONCLUSION

In this paper, we presented a novel approach towards using RL
models and techniques for evolving MOEs of the constituent systems
and SoS towards addressing emergent behavior. The proposed
approach, through SoS-Constituent System MOE Relationship,
enables constituent systems to learn and adapt their behaviors in
tandem with the evolution of emergent behavior at SoS level. While
the implementation and results described are specific to the case
example considered, we believe that this serves as a promising proof
of concept for a general, scalable and practical approach to train
machine learning based systems in SoS context. In order to further
realize the promise of this approach, we are currently working to
make the approach applicable for dynamic MOE evolution scenarios
in large complex systems and SoS. We are also exploring the use
of deep RL approaches that incorporate deep neural networks for
superior decision making capabilities and scalability.
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