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Abstract—Crowd gathering places are prone to crowd stampede
and other public emergencies, resulting in large numbers of
casualties and property losses, then, leading to negative social
impact. At present, the research on dynamic assessment of crowd
gathering safety situation mainly relies on isolated real-time
video monitoring, and lacks reliable methods to deal with plenty
of video data from different sources, perspectives and granu-
larities. Based on the traffic Internet of things infrastructure,
this paper explores the fusion technology of multi-sensor source
homogeneous video data. On the basis of the static model of
crowd aggregation based on the high-altitude perspective, this
paper studies the different source and multi granularity real-time
dynamic monitoring video cooperative perception methods in the
middle and low altitude and different perspectives. The dynamic
scene crowd statistical perception including motion prediction
mechanism is used to extract the global coarse-grained motion
situation of the crowd from the perspective of high altitude. The
multi column convolution depth neural network is used to extract
the local fine-grained density features of the crowd with line of
sight occlusion in low altitude perspective, thus establishing the
holographic model of the temporal and spatial evolution of crowd
situation, and proposing a new method of crowd aggregation
safety situation assessment. This method is applied to the crowd
gathering safety situation assessment of Suzhou city life fountain
square, and achieves good results, which provides theoretical
support for the safety control of crowd gathering place based
on the Internet of things.

Keywords–Crowd gathering safety situation; Video monitoring;
Accident analysis and early warning; Traffic safety.

I. INTRODUCTION

When the flow of people in space is highly concentrated
for a long time, the crowd density will rise sharply and the
distribution is extremely unreasonable, which increases the
potential safety hazards and seriously threatens the personal
safety. After the spread of the flow, it will even affect the
circulation and control of the surrounding traffic. Typical such
events, such as the example occurring in the Shanghai Chen
Yi Bund Square on December, 2014. The opposite ow of
people formed a hedging caused a crowded stampede accident,
resulting in 36 deaths and 49 injuries. In addition, according
to incomplete statistics, from 2001 to 2014, there were more
than 150 people trampling events around the world, all of
which occurred in crowded places. Such incidents are sudden,
complex and low-level control, which is extremely lightly to
cause large-scale casualties. This also makes the prevention
and research against crowded stampede accidents become the
urgent needs to developing countries with rapid crowd and
relatively backward management.

At present, the monitoring of the crowding degree and trend
of population is beneted from the mature use of intelligent

surveillance video systems, and its comprehensive perspective
coverage provides more data support for crowd density estima-
tion. Some scholars have processed the video frame image, and
finally got the number of people and the density of the crowd,
with good accuracy [1]. To a certain extent, such detection
methods have solved the accuracy problems existing in the
current crowd density detection, However, the safety of the
current location cannot be determined. On the other hand,
in the related research on group disaster dynamics, we are
more concerned with pedestrian flow simulation and individual
motion models. Helbing et al. analyzed the two phenomena
of laminar flow from the laminar flow to the stop flow and
turbulent flow after analyzing the video of the Mina/Mecca
crowd disaster during the 1426 hours pilgrimage on January
12, 2006 [2]. Insights into the causes of these key population
conditions are important for organizing safer group events.
Johansson et al. discussed how to study high-density conditions
based on appropriate video data on the basis of Helbing,
and explained the critical conditions of crowd turbulence, and
proposed corresponding measures to improve population safety
[3]. Moussaid et al. proposed a cognitive heuristic based cog-
nitive science method that predicts individual trajectories and
collective movement patterns [4]. The essence of the pedestrian
movement model is to study the spatial and temporal evolution
trend of the crowd. The input of the model comes from some
simple rules and hypotheses. In practice, these inputs often rely
on the help of human experience. In fact, with the continuous
development of sensor technology, real-time crowd gathering
information can effectively replace artificial experience and
become the input of a group disaster model. In view of the
above problems, this paper combines the analysis of the overall
crowd situation and individual model of the crowd gathering
place in the context of the intelligent traffic key technology of
multi-layer domain collaborative intelligent sensing and data
fusion. The focus is transferred from accurately estimating
the number of people on the current picture or signal to
the reasonable distribution of crowd density. Considering the
distance of the crowd within the space from the attraction point
and the psychological state of the crowd and other factors, the
individual model and the static model of the crowds gathering
are established, and the spatial-temporal evolution of the crowd
situation is extracted from the real-time monitoring video,
thus proposing the crowds gathering early warning method for
multi-domain information. The method is used to analyse the
crowd density distribution of Suzhou City Life Squares on a
certain day with certain guiding significance.

The structure of this paper is as follows: Section II in-
troduces the work related to crowd density detection and
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individual motion models; Section III establishes the static
model of crowd gathering based on the theory of personal
space, and analyses the crowd situation from the low-altitude
local perspective and the high-altitude global perspective re-
spectively, then, establishing the dynamic model of the spatial-
temporal evolution of the crowd situation. Section IV applies
the static and dynamic model to Suzhou City Life Squares,
which guides crowd monitoring and evacuation, and achieves
good results. Section V discusses the results.

II. RELATED WORK

This section introduces the crowd density detection meth-
ods in the field of machine vision in recent years, and also
summarizes the pedestrian model in crowd disaster dynamics.
This has inspired the work of this paper.

A. Crowd Density Detection
The core of crowd density model is to calculate and

estimate the crowd density. So many methods have been used
to estimate the crowd density, and abundant results have been
achieved. From the perspective of computer vision research,
the crowd density estimation and counting methods in visual
surveillance can be divided two classes. That is crowd density
detection based on model labeling and crowd density detection
based on feature extraction [5].

The methods using model labeling directly can label and
count the human model in the image. Luo et al. mapped the
crowd image directly to its crowd density map, then, obtained
the total number of people by integral [6]. Zhao et al. divided
the human body into multiple objects and used the ellipsoidal
model for global tracking to calculate the crowd density [7]. Ge
et al. proposed a bayesian method for estimating the number
and location of individuals in video frames, which combines a
spatial stochastic process that controls the number and location
of individuals with a conditional marking process for selecting
body shape, shape and direction, and nally gives the number
of individuals [8]. Rao et al. proposed a method of estimating
crowd density by motion hints and hierarchical clustering,
which uses optical ow for motion estimation, contour analysis
for crowd contour detection, and gets crowd density by cluster-
ing [9]. Although this method retains the features of detection
targets to the greatest extent, it is easy to cause inaccurate
detection results and difcult to meet the requirements due to
the blurred individual contour and inaccurate positioning for
dense crowds.

The methods using feature extraction can estimate the
crowd density by extracting human features or using other
parameters instead of human behavior, then, using normalized
method. Koki et al. used the rotational angular velocity of hu-
man body as test data, and used continuous wavelet transform
and machine learning methods to measure crowd density [10].
Ven et al. learned to distinguish crowd characteristics from
granules and tted the contours between crowd and background
(i.e., non-crowd) regions for density estimation [11]. Oliver
et al. compared the application of two texture classification
methods of bow and Gabor filters on aeronautical image
plaque datasets to distinguish different crowd densities [12].
Zhang et al. proposed a simple and effective Multi-column
Convolution Neural Network (MCNN) structure to map the
image to its population density map [13]. By using filters
with different size of receiving fields, the features of each

column of Convolution Neural Network (CNN) can adapt
to the changes of head size caused by perspective effect
or image resolution and the effect is remarkable. Although
the method of calculating individual density by extracting
individual characteristics improves the accuracy of population
density detection, the uneven distribution of population density
leads to the identication of regional safety hazards not only by
estimating the accuracy of population density.

B. Pedestrian Behavior Estimation
As mentioned above, on the basis of high-precision crowd

density, we also need to pay attention to the position and state
information of each individual. On the micro level, we divide
the pedestrian motion model into cellular automata model,
social force model, agent-based model and so on.

Based on the individual movement analysis of the cellular
automata model, Claudio et al. proposed an improved version
of the cellular automaton floor field model, using a sub-grid
system to increase the maximum density allowed during the
simulation and to reproduce the observed phenomena in dense
crowd [14]. Ji et al. proposed a new triangular mesh cellular
automaton model for the characteristics of high-density crowd
evacuation, and accurately simulated the evacuation process
of high-density crowd [15]. The advantage of the kinds of
model is relatively simple and suitable for pedestrian behavior
simulation in large-scale scenes. But its disadvantage is still
obvious. That is, the algorithm itself is a heuristic algorithm,
whose results with statistical signicance is unpredictable. And
it can not be explained rationally due to divergent rule setting.

Based on the individual movement analysis of the social
force model, Helbing et al. suggested that pedestrian move-
ment be described as ”social forces”, which are not directly
imposed by the pedestrian’s personal environment, but the
measurement of the intrinsic motivation of the individual to
perform the task [16]. Yang et al. proposed a pedestrian
dynamics correction method based on social force model. By
comparing the density-velocity and density-flow maps with the
basic maps, it was verified that the guided crowd model can
better reflect the pedestrian behavior characteristics in emer-
gency situations [17]. However, the social force model lacks
a clear and effective mechanism to ensure that pedestrians do
not excessively contact (also known as overlap), so anti-overlap
mechanism needs to be introduced.

Based on the individual motion analysis of the agent
model, Tak et al. proposed an Agent-based Redestrian Cell
Transmission Model (A-PCTM), which shows the flexibility
of switching destinations and selecting driving directions ac-
cording to the situation ahead [18]. Ben et al. presented an
agent-based Cellular Automata (CA) environment modeling
method that simulated four different evacuation scenarios and
effectively guided crowd evacuation [19]. Was et al. proposed a
proxy-based non-homogeneous cellular automaton model and
an asynchronous cellular automaton model, enabling people
to simulate pedestrian complex decision processes in complex
environments [20].

III. MODEL ESTABLISHMENT

In this section, a static early warning model of crowd
aggregation is established, and the crowd gathering state is de-
rived through formulas. In addition, a dynamic spatio-temporal
evolution model of the crowd situation is also established, and
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Figure 1. Individual model based on personal space theory.

the calculation methods of the crowd density are given from
two perspectives: high altitude and low altitude.

A. Static Early Warning Model of Crowd Aggregation
In 1966, Edward Hall proposed the theory of personal

space, which distinguishes four personal spatial distances,
intimate distance, personal distance, social distance and public
distance [21], as shown in Figure 1(a). Personal space theory
is a kind of intimacy interpretation that serves the public
relations of the public, which only divides the distance of
the individual space and generally just applies to individual
motion research. However, personal space theory does not
directly quantify the relationship between population density
and distance, and has great limitations for the application of
large crowded places. On the basis of personal space theory,
we defined the individual model as a solid circle with radius r,
and the personal space is defined as a hollow circle with radius
R, as shown in Figure 1(b). In the crowded place, we fitted
the relationship between density and distance to analyze the
distribution law of population density in large crowds. Firstly,
we define the aggregation state T when a crowd gathers in a
site, assuming that the crowd is in absolute static state with the
most reasonable and safe distribution state, whose optimality
depends on the characteristics of the site and the nature of
the event. We assume that the determinant is expressed as
the attraction of the site, therefore, the site is divided into
n attraction points Oj(j = 1, 2, ..., n). Each attraction point
will cause the crowd to distribute according to some rules in
the range of itself, so the position and size of each individual
are different. These aggregates of individuals with different
positions and sizes of individual space are called the crowd
distribution at the attraction point, which is recorded as U(Oj),
and the aggregation state of the site is as follows:

T =

n∑
j=1

U(Oj),
∂T

∂t
= 0 (1)

According to the actual situation, we set a plurality of
attraction points for the place, and select one attraction point
O1. Then, we set two individual activity ranges closest to and
farthest from the attraction point O1. Rmin is the radius of
the nearest individual activity range from O1, and Rmax is
the radius of the farthest individual activity range from O1,
as follows the formula calculating the change trend of the
personal space radius R:

R = tan θ ∗ x+A =
Rmax −Rmin

L
∗ x+A (2)

Where θ is the angle between the center line of the two
individuals range of activity and the horizontal plane. L is
the straight line distance between the center of the farthest

Figure 2. Relationship between personal activity space and distance.

individual range of activity and the attraction point. A is the
constant of 0.22 ∼ 0.25, representing the radius of the first
individual space closest to O1. x is a variable between 0 and
L that changing along with L, as shown in Figure 2.

At this time, the personal activity space has a corresponding
relationship with the distance. Assuming that the activity radius
of the individual i is Ri, the area occupied by the individual
at that place is Si, and the density ρi at that place is 1

Si
:

ρi =
1

Si
=

1

πRi
2 =

1

π(tan θ ∗ x+A)
2 (3)

So, we get the corresponding relationship between different
size of activity space and the density of the individual’s
position at this time. Then, we use the least square method
to fit the discrete points of different density in different size
of activity space, so as to determine the relationship between
density and distance. The main idea of the least square method
is to solve unknown parameters so that the sum of squares of
residual errors can be minimized:

E =

n∑
i=1

(ρi − ρ̂i)2 (4)

The observed value ρi is the density of the position of the
individual obtained after we calculate the trend of density
change. The theoretical value ρ̂i is the value of the polynomial
after we obtain the specific coefficient under the set order. The
objective function is also the loss function that is often said in
machine learning. Our goal is to obtain the parameters when
the objective function is minimized. The final fitting result is
the relationship between the distance and the density at the
attraction point O1. After calculating the density at different
distances, there is a microscopic individual combination N ,
which can be regarded as a population aggregation state U(O1)
from a macro perspective:

U(O1) = N =

n∑
i=1

Pi (5)

Among them, Pi is the information set of the location of the
individual i and the current personal space size. In the same
way, the aggregation state U(O2) at the second attraction point
O2 is calculated.By analogy, a crowded static early warning
model T =

∑n
j=1 U(Oj) can be obtained.

B. Dynamic Evolution Model of Crowd Situation
The perception of crowd density is divided into high-

altitude overall perspective and low-altitude local perspective.
Low-altitude camera equipment tends to capture rich human
characteristics and perceive local population density more
accurately. When it is necessary to perceive the overall crowd
situation as a whole, highlighting individual characteristics is
not conducive to observing the overall movement trend, so the
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Figure 3. Density judgment of key moving points.

position and movement trend of the crowd at different times
can be perceived by using high-altitude camera equipment.

The crowd gathering static early warning model describes
the gathering state T of the site. If the crowd distribution V
of all the moments t in the activity is described, the dynamic
evolution of the crowd situation can be obtained. The static
model of the crowd is a certain moment of the dynamic
model:Vt = T . Since the perception of the crowd situation
pays more attention to the group behavior, the characteristics
of the person itself are no longer concerned. Therefore, what
we need to know is the position evolution and the movement
trend of the key moving point Q in the video image at different
moments. The point Q can be obtained by extracting the
foreground of the moving target from the Gaussian mixture
model. Assuming that the mixed gaussian model consists of K
Gaussian models, the probability density function is as follows:

p(w) =

K∑
k=1

p(k)p(w|k) =
K∑

k=1

πkN(w|πk,
∑

k) (6)

Where p(w|k) = N(w|πk,
∑
k) is the probability density

function of the gaussian model k, that is, the probability of
generating w after the model k selected, p(k) = πk is the
weight of the gaussian model k, that is, the prior probability
of the model k is selected, and

∑K
k=1 πk = 1. Then, the open

operation and morphological denoising are performed on the
model results. Finally, the foreground image consist of key
moving points is obtain.

In the static model, the individual model represents a
human body. In the crowd situation model in this section,
the individual model is described to the simulation of the
key moving point Q. At this time, the personal space is
correspondingly transformed into the motion space between
the key moving points, and the personal space distance is
redefined as a point. The personal space distance is also
redefined as the distance between the set of points

∑n
i=1Qi:

dgl =
√

(mg −ml)2 + (ng − nl)2, g 6= l, l ∈ [1, n− 1] (7)
dgl denotes the distance between any moving point Qg and

other moving points Ql, (mg, ng), (ml, nl) are the position
coordinates of the moving point Qg and the moving point Ql,
respectively.The distance and direction of motion between the
points change with time. We specify a personal space for each
moving point Qi, shown as the inner circle in Figure 3. And the
public space shown as the outer circle in Figure 3. The number
of moving points contained in the space between them is used
as the basis for dividing the density:

din < dgl < dout (8)
Where din represents the distance from the center of the circle
to the inner circle, and dout represents the distance from the

center of the circle to the outer circle.
The perception of local crowd situation depends on the

video and image acquired by low-altitude camera with obvious
individual characteristics. We use Multi-column Convolution
Neural Network (MCNN) model to extract human head fea-
tures of different sizes [13]. The original image obtains differ-
ent size of human head features through parallel networks with
different sizes of three-column filters. Finally, the obtained
features are weighted linearly to obtain the crowd density
map. The model uses the maximum pooling layer of 2*2
and the activation function of the linear rectifier function, and
integrates the three-column feature map. The loss function uses
the optimized Euclidean loss function, which can standardize
the density map of the network output:

L(β) =
1

2N

N∑
i=1

||F (Xi, β)− Fi||22. (9)

Here β is the network parameter to be optimized, N is the
number of training images, Xi is the input image, Fi is the
ground truth density map corresponding to Xi, F (Xi, β) is
the density map generated by MCNN. Figure 4 shows the
structure of our MCNN. The three-column network structure
has the same number of convolution layers and functions for
each column except that the size of the filter. The purpose is to
capture the head features of different sizes. Therefore, the first
column is taken as an example. Enter an image of unlimited
size, the first layer whose filters with 7*7 size to capture the
local human head features. Then, max pooling is applied for
each 22 region to reduce the resolution of the upper layer
image to 1

4 of the original image, the number of parameters is
reduced, and more useful features are extracted. At the end, the
features are weighted and stacked by a 1*1 filter, so that the
output results are averaged for density grading processing. The
density normalization process mainly depends on the Gaussian
kernel function. This paper proposes that the adaptive Gaussian
kernel function is slightly different from Zhang[14]:

F (x) =

M∑
i=1

δi ∗G(x, σi) (10)

Where δi represents the impulse function of each head, M
is the number of heads in the image. And σi denotes the
maximum head distance of the adaptation within a certain
range (Using the maximum is to make the crowds more dense),
σi = αmax(dij). α is the weight value of the adaptive range.
In our experiment, it shows that when α = 0.5 the crowds
intensity is the most consistent with the actual situation.

IV. MODEL APPLICATION

Located near Jinji Lake in Suzhou City in China, the city
life square covers an area of 4300 square meters and periodi-
cally carries out large-scale fountain projection activities, with
a maximum of 35,000 people. Our crowds gathering model
was been applied in this square. The data come from the
video camera equipment covering the inside and the exits of
the square and the construction drawings of the construction
of the site. The crowd distribution of the square was been
investigated on the spot. The concrete implementation is as
follows.

A. Application of Static Early Warning Model
We select the fountain where it is an attraction point

O1(n = 1), then, establish a spatial coordinate system choos-
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Figure 4. MCNN Network Structure [13].

ing O1 as the coordinate origin. The radius r of the individual
model is determined by the shoulder width of the person
standing. according to [22] [23], a solid circle with radius
r = 22cm is used as an individual model in this paper.
Through field survey and CAD drawing measurement, we set
L = 200m in the static early warning model, and take Rmax

and Rmin as 0.62m and 0.25m respectively according to the
queued waiting state pedestrian service level table [24]. When
the least squares method is fitted, we calculate it repeatedly.
When the loss E reaches 0.1 at the first time, the fitting effect
is the best, and the relationship between the crowd density ρ
and the distance d from the attraction point is calculated as:

ρ = −1.8782e−12d5 + 2.3706e−9d4 − 1.187e−6d3

+0.0030768d2 − 0.045949d+ 3.9659
(11)

Taking N = 50000 different distance corresponding to differ-
ent density of points cyclic calculation, these point sets N is
the crowd aggregation state U(O1) at the point O1:

U(O1) =

n∑
i=1

Pi =

n∑
i=1

P (di, ρi) (12)

thus establishing a static early warning model of crowd aggre-
gation taking Fountain Square as an example.

B. Application of Dynamic Evolution Model

We intercept the key frames of the video images captured
by the aerial camera. We extract the foreground image of the
moving target through the Gauss mixture model, and get the
set of the key moving points. At low density, we take 18724
moving points, 43779 moving points at medium density, and
61386 moving points at high density, as shown in Figure 5.
According to the distance between the moving points, we can
judge the density grade at the point whether it is between
din and dout. Here, we select din = 1 and dout = 8 to get
the density grade of the key moving points, which reflects
the crowd situation at that time, as shown in Figure 6 (a1),
(b1), (c1). At low density, the distribution of moving points
is scattered and the intensity is relatively light. At medium
density, the moving points cover the image area in a large area,
and some of the point sets are in a highly concentrated state.
While at high density, the moving points basically occupy the
image area, showing a trend of global high density, reflecting
the high crowding in the square at the moment. The distance

Figure 5. Key moving points map of fountain square in different time
period(a1) Low crowd density real-time video (a2) Low crowd density key

moving points set (b1) Medium crowd density real-time video (b2) Medium
crowd density key moving points set (c1) High crowd density real-time

video (c2) High crowd density key moving points set.

between people is very short, which leads to people moving
slowly and potential safety hazards.

We performed a curve analysis of the population density
at the same angle for the three densities. According to the
collected data, a density curve is shown, as shown by the
red lines in Figure 6 (a2), (b2) and (c2), the horizontal axis
represents the distance from the attraction point, and the
vertical axis represents the density at that point. Comparing
the crowd density change of static early warning model of
crowd aggregation (blue line in Figure 6) with that of low
density, medium density and high density.We found that, when
the crowd density reaches high density, the density line almost
exceeds the warning line, which means potential safety hazards
could be in the square, as shown in Figure 6 (c2). Under
the high density, pedestrians often have inevitable contact
with each other. It is impossible to walk horizontally or
reversely, and the flow of people is extremely unstable, which
is in accordance with the conclusion of Figure 5 (c1), (c2).
We carry out dynamic crowd situational awareness of high-
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Figure 6. The crowd density curve of the early warning model and the
actual population density curve under three states. (a) Early warning curve
and low density curve (b) Early warning curve and medium density curve

(c) Early warning curve and high density curve.

altitude video, which mainly includes the following three steps:
extracting video key frames, extracting foreground images of
sports people through Gaussian mixture model, and performing
density calculation on all key moving points to obtain density
classification of moving points. After the above work is carried
out, the perception of the crowd situation can be realized to
capture the preference trend of the crowd evacuation. Then,
we can formulate the strategy for evacuation of the crowd,
which can guide the staff to carry out the evacuation work
quickly and effectively. Based on the perception of the crowd
situation, we finally get the direction and magnitude of the
crowd flow, which provides a reference for our subsequent
simulation parameter settings. In addition, we also attempted
to analyze the density of low-altitude crowd.

V. CONCLUSION

In this paper, we discussed the limitations of Hall’s per-
sonal space theory in the crowded scene. On the basis of
this, we explored the quantitative relationship between crowd
density and distance, so that the static early warning model
for crowd gathering can be established. In contrast, we used
the characteristics of overall video images to perceive the
temporal and spatial evolution of the crowd situation and
established a dynamic model of the crowd situation. The
joint analysis of static early warning model and dynamic
model can comprehensively perceive the real-time situation
of the crowd and improve the public safety of the site. We
have successfully applied our models in the Fountain Square
of Suzhou City. Through the video images acquired by the
high-altitude camera equipment, we perceived the changes
in the crowd situation of the site. In future work, we will
fuse heterogeneous multi-granularity surveillance videos and
supplement the entire situation with local actual number to
estimate the number of people in the entire venue.
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