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Abstract—This paper discusses an extensible model-based se-
mantic framework for fault detection and diagnostics (FDD) in
systems simulation and control. Generally speaking, state-of-the-
art fault detection methods are equipment and domain specific. As
a result, the applicability of these methods in different domains
is very limited. Our proposed approach focuses on developing
formal models (ontologies) across categories of domain-specific
and domain-independent (time and space) phenomena. It then
leverages inference-based reasoning over the ontologies for FDD
purposes. Together, these techniques provide a semantic frame-
work for the definition and evaluation of multidisplinary co ncepts
relating to a system. FDD rules associated to those conceptsare
implemented as inference-based rules and are evaluated by a
reasoner. We exercise the proposed method by looking at a FDD
problem for heating, ventilating and air-conditioning (HVAC)
systems simulation.
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I. I NTRODUCTION

A. Problem Statement

Automated fault detection and diagnostic (FDD) techniques
provide mechanisms for condition-based maintenance of en-
gineered systems (e.g., buildings, health monitoring, power
plants and aviation systems). FDD is an automated process
of detecting unwanted conditions (”faults”) in these systems
by recognizing deviations in real-time or recorded data values
from expected values, and then diagnosing the causes leading
to the faults. Proper implementation of FDD can enable proac-
tive identification and remediation of faults before they become
significantly deleterious to the safety, security, or efficiency of
the operating system.

During the last decade, considerable research has focused
on the development of FDD methods for HVAC&R systems.
This work has been driven, in part, by the historically less-than-
optimal operation of many state-of-the-art HVAC systems.
Today, degraded or poorly-maintained equipment accounts for
15 to 30 % of energy consumption in commercial buildings
[1]. Approximately 50 to 67 % of air conditioners (residential
and commercial) are either improperly charged or have airflow
issues [2] and [3]. Faulty heating, ventilating, air conditioning,
and refrigeration (HVAC&R) systems contribute to 1.5 to 2.5
% of total commercial building consumption [4]. Much of

this energy usage could be prevented by utilizing automated
condition-based maintenance. Yet, in spite of recent advances
in building automation and control, automatic methods for
FDD of building systems remain at a relatively immature stage
of development. Present-day fault diagnostic approaches are
domain dependent and semantic-free.

B. Objectives and Scope

In a step toward overcoming these limitations, this paper
proposes a semantic framework, composed of ontologies and
rules sets, for fault detection and diagnostic analysis of HVAC
systems. Our work employs the Web Ontology Language
(OWL) [5] and Jena API [6] for the development of se-
mantic models for FDD applications. A semantic model of
FDD defines it in terms of inference-based rules expressing
conditions within formal, domain-specific ontologies (e.g.,
mechanical equipment, building, and weather). The remainder
of this paper proceeds as follows: Section II contains a
brief introduction to the uses of the Semantic Web and its
enabling technologies. Section III explains different methods
of FDD in building system applications. Section IV describes
the proposed methodology and software infrastructure, anda
simple example for fault detection in a leaking hot water valve.
Sections V and VI provide a discussion of the next steps and
conclusions of the work to date.

II. T HE SEMANTIC WEB

A. Semantic Web Technology

The World Wide Web is almost thirty years old. Its initial
mission was to provide a technical infrastructure for the
representation of a “Web of documents and data” and pre-
sentation of data/content to humans [7]. In this infrastructure,
machines are used primarily to retrieve and render information;
humans are expected to interpret and understand the meaning
of the content. A second, and much more ambitious, vision
for the Web is support for semantic data structures, thereby
allowing machines to access and share information, creating
paths of machine-to-machine communications carrying seman-
tic meanings instead of mere digital values. Realization of
this goal requires mechanisms (i.e., markup languages) for
the representation, coordination, and sharing of the formal
semantics of data, as well as an ability to reason and draw
conclusions (i.e., inference) from semantic data obtainedby
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following hyperlinks to definitions of problem domains (i.e.,
ontology models).

Figure 1. Technologies Used in Semantic Web Layers [8].

Figure 1 illustrates the layers of technologies supporting
implementation of the Semantic Web [8]. Each higher layer
extends, and provides compatibility with, layers of technology
below it. The lower layers provide capability for addressing
resources on the Web, linking documents, and integrating
diverse forms of information. As a case in point, extended
markup language (XML) enables the construction and manage-
ment of documents composed of structured portable data. The
resource description framework (RDF) allows for the modeling
of graphs of resources on the Web. An RDF Schema (RDF-
S) provides the basic vocabulary for RDF statements, and the
machinery to create hierarchies of classes and properties.The
Web Ontology Language (OWL) extends RDF-S by adding:
(1) Advanced constructs to describe the semantics of RDF
statements, (2) Vocabulary support for relationships between
classes (e.g., class A is disjoint with class B), and (3) Restric-
tions on properties (e.g., cardinality). At higher levels of this
stack, the ontology-based approach heavily relies on expressive
features of the logic formalisms. For example, descriptivelogic
(DL) is the logical formalism for ontologies defined in OWL.
Inference-based rules are rules that infer a new statement from
existing statements. Inference-based rules rely on expressive
features of the language they are defined in. Together, these
features and language capabilities provide the foundations for
reasoning - that is, deriving implicit conclusions not explicitly
expressed in the ontology - using DL. In the Semantic Web, an
inference engine gathers information from ontologies to infer
the context that exists. Typically, the ontologies are defined in
OWL or RDF-S.

B. Semantic Models

Semantic models consist of ontologies, graphs of individ-
uals (specific instances), and rules derived from engineering
models. An ontology represents the concepts of the domain

(i.e., mechanical systems, building, weather, or occupant) as
object classes, and the relationships between those classes
as “Object Properties” (the connection between two objects
of two classes). Moreover, the classes may have attributes
that are stored as a simple data type “Datatype Properties”.
RDF-S and OWL are examples of an ontology DL. They
provide ways to define the semantic relationships between
concepts in an application domain, as well as the various
contexts possible in that domain. The goal is a consistent
system of ontological classes, properties, and interrelationships
expressing the application domain in a language translatable
into machine readable code. Such a language provides a means
for the machine to effectively understand and reason about
the contextual information. A context may refer to people,
building, time, weather and so on. The proposition underlying
our work is that Semantic Web technologies could be used for
FDD applications in building systems.

III. FDD FOR BUILDING SYSTEMS

Recent advances in building automation technologies pro-
vide a means for sensing and collecting the data needed for
software applications to automatically detect and diagnose
faults in buildings. During the past few decades a variety
of FDD techniques have been developed in different do-
mains, including model-based, rule-based, knowledge-based,
and simulation-based approaches. Katipamula and Brambley
summarizes FDD research for HVAC systems [1]. Their work
also describes different fundamental FDD methods under the
two main categories of model-based, and empirical (history-
based) approaches. The major difference is in the nature of
the knowledge used to formulate the diagnostics. Model-based
diagnostics evaluate residuals between actual system measure-
ments anda priori models (e.g., first principle models). Data-
driven empirical strategies, on the other hand, do not require a
priori models. The models used in model-based methods can
be quantitative or qualitative. Quantitative models represent
the requisitea priori knowledge of the system in terms of
mathematical equations, typically as explicit descriptions of the
physics underlying system components. Qualitative models,
conversely, combine concepts such as descriptive “states”and
“rules” into statements that are axiological instead of math-
ematical, expressing operational correctness or desirability
through an axiology, a value system, appropriate to each phys-
ical application. As a result, the building system operation can
be continuously classified as being either faulty or not faulty.
Rule-based strategies are one example of qualitative model-
based FDD methods. Rules can be based on first principles or
they can be inferred from historical experiments, but in either
case they represent expert qualitative knowledge that no purely
quantitative representation could model. The first diagnostic
expert systems for technical fault diagnosis were developed at
MIT by Scherer and White [9]. Since then diagnostic systems
have evolved from rule- to model-based approaches.

IV. M ETHODS

Our methodology entails an ontology-based, inference-
based extensible framework to store and reuse data across
different applications and domains. This semantic approach
has been adapted in the area of healthcare [11], biology [12],
[13], and transportation [14]. This section describes how this
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Figure 2. Domain specific and domain independent ontology structure .
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Figure 3. Architecture for coupled integrated semantic physical models in building simulations (Adapted from Delgoshaei, Austin and Pertzborn [10].

framework was utilized to formally model the concepts of the
FDD domain.

A. Semantic Information Model

Figure 2 represents a semantic framework tailored for
FDD and decision making within, and control of, engineered
systems. Domain independent ontologies such as time, space,
and FDD are represented in the upper half of the figure,
and can be utilized in various engineering applications. For
example, HVAC system ontologies along with their rule sets
provide mechanisms to reason in time (e.g., if a measurement
had occurred in a specific interval), deduce spatial information
(e.g., determine if a room is in a specific zone or if a sensor is
inside a room), and detect and diagnose faults (e.g., determine
if a system fault is the result of leaking or stuck valve).

Figure 3 depicts the connection between the formal repre-

sentation of a system and engineering models. On the building
information modeling (BIM) side of the problem, a structural
model of a building can be expressed in an ontology. As a
case, Beetz and co-workers [15] have developed a converter to
transform any format using EXPRESS schema, e.g., Industry
Foundation Classes (IFC) into a Resource Description Frame-
work (RDF) format. IFC is the standard used for BIM [16].
Moreover, to account for the behavior of the system, domain
dependent ontologies (i.e., HVAC equipment) are based on
models of the physical system and described in languages
such as Modelica [17]. In this framework, the properties in
the ontology represent the variables of the Modelica models
that are updated at each time step. Ultimately, the real building
sensors will provide the data to the ontologies.
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TABLE I. Instances of states, hypotheses, and evidence for heating coil fault detections.

State inputSteady
hwValveShut
Tad_GT_Tas
isLeaky

Hypothesis1 HWVDFail --> Hot Water Valve Drive Failure.
Hypothesis2 HWLeakValve --> Hot Water Valve Leaking.
Hypothesis2 TadSensorFail --> Temperature, air, discharge (Tad) sensor bad.
Hypothesis3 TasSensorFail --> Temperature, air, supply (Tas) sensor bad.

Evidence3 Coil metal temperature is above Tas

Pseudo Jena Rules

Rule 1: Assignment rule:

[Rule1: (?c rdf:type eq:Coil) (?c eq:Tad ?v1) (?c eq:Tas ?v2) greaterThan(?v2, ?v1) ->
(?c eq:Tad_GT_Tas "true" ) ]

Rule 2: Expectation rule:

[Rule2: (?c1 rdf:type eq:sensor) (?c1 FDD:inputSteady "true") (?c2 rdf:type eq:valve)
(?c2 "hwValveCommandedShut’’ "true’’) -> (?c3 rdf:type eq:tempSensor) (?s3 rdf:type FDD:State)
equal(?s3 "Tad_GT_Tas’’) (?s3 FDD:expectedValue "false" ) (?s3 FDD:belongsTo "Rule2’’ ]

Rule 3: Detection rule:

[Rule3: (?c rdf:type component) (?c FDD:hasState ?s)(?s FDD:belongsTo ?r) (?s FDD:expectedState ?es)
(?s FDD:currentState ?cs) notEqual(?es ?cs) -> (?r FDD:isViolated "true") ]

Rules 4 and 5: Diagnostic rules:

[Rule4: (?r rdf:type rule2) (?r rdf:type evidence3) -> (?h rdf:type hypothesis2)

[Rule5: (?hwv rdf:type valve) (?hwv FDD:shut "true") (?c rdf:type Coil)
(?c eq:hasValve ?hwv) (?c FDD:metalTemp ?t1) (?c FDD:Tas ?t2) greaterThan(?t2 ?t1) ->
(?hwv eq:isLeaky "true") (evidence3 "true" ) ]

Figure 6. Fault detection diagnostic rules for operation ofa heating coil.

B. Support for Reasoning and Inference

Reasoning and inference are the powerful features of this
semantic framework. The inferences are achieved through rules
and a reasoner called upon by an engine, which executes the
rules and updates the ontology with new inferences that may
result.

Diagnostic procedures are required to have hypotheses of
the underlying cause-effect relationships, and for our purposes
these are represented by the FDD ontology and its rule sets.
Figure 4 is a close-up view of the FDD ontology. The main
concepts of the FDD ontology are “State”, “Rule”, ‘’Hypoth-
esis”, and “Evidence.” These concepts are related to each
other as object properties. Notice that the concept “Detection
Rule” is related to the concept “Hypothesis” through the object
property “has”; the concepts “Evidence” and “Hypothesis” are
linked through the object property “verifies.” Also notice that
“State” has two boolean datatype properties, “CurrentValue”
and “ExpectedValue.” A few examples of different individuals
in the class “State” include: temperature being within a specific
band (T/F) and economizer mode in effect (T/F).

In the FDD ontology there are different categories for the

rules. The first category of the inference rules is responsible
for setting the current states associated with the system com-
ponents (assignment). Some of these states will be computed
based on function evaluations. As a case in point, a built-in
function is called to perform the analysis and determination of
the value for the boolean state “The temperature is going back
to where it was.”

The second category, expectation rules, are responsible for
setting expected values for the states if certain conditions
are met. In other words, if certain states (antecedent) of the
ontology are true, then some other states of the ontology
(consequent) are expected to also be true. As a case in point,
if the outside temperature is within a specific range (T), then
an economizer mode is expected to be in effect (T).

Lastly, the third category of rules is responsible for detect-
ing and diagnosing the faults. The detection process is achieved
by comparing the results of current values of a state with the
expected values of a state. The diagnostics process is achieved
by identifying what evidence holds true and as a result, which
hypothesis accounts for the fault.
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C. Fault Detection for a Leaking Hot Water Valve

Table I summarizes the list of examples for the class
of the FDD concepts shown in Figure 5, a subset of the
HVAC ontology with the values of individuals stored in the
ontological graph at a specific time. Specifically, it represents
a case where a fault has occurred in the system due to a leaking
hot water valve.

The execution of rules in the heating coil operation involves
four steps. Step 1, the assignment rule: If the discharge
air temperature is greater than the supply temperature, then
Tad GT Tas is set to true, e.g., Rule 1. Step 2, the expecta-
tion rule: If the unit has been operating steadily for a specified
interval, and the hot water valve is shut, the mean value of
discharge air temperature is expected to be less than or equal
to the mean of supply air temperature (e.g., Rule 2). Step 3,
the detection rule: When the current value of a specific state
is not equal to its expected value, then the associated rule is
violated (e.g., Rule 3). The final step is a diagnostic rule: If the
coil metal temperature is above Tas twenty minutes after the
hot water valve is manually driven shut, then the shut valve is
still leaking. This presents a significant use of heating energy.

While it is perfectly reasonable to expect that the state
variable values will change as a function of time, the expected
values in a specific rule will stay constant, and act as the
point of reference for detecting faults. As an example, a rule is
defined to detect whether a specific piece of HVAC equipment
is responding properly to conditions in the rooms it serves.If
the data ordinarily sampled do not indicate the equipment is
making the proper response (i.e., it “fails” the rule), the engine
calls on the reasoner and expert knowledge to use deeper,
more extraordinarily obtained data (evidence) to infer a cause
(hypothesis) for the improper response.

Figure 6 shows the pseudo Jena rules described over the
FDD, Equipment (eq) ontologies. The current value for the
stateTad GT Tas is determined based on Rule1. Rule 2, sets
the expected value forTad GT Tas when the valve is shut
off and will set the associated detection rule (rule2). Rule3
detects the fault. Rule 4, asserts if Evidence3 holds, Hypothesis
3 that the valve is leaking holds true. Rule 5, describes how
the values for flow and temperature sensors will determined if
Evidence3 holds true.

V. D ISCUSSION

The proposed approach is a first step in the development
of a model-based semantic framework for FDD. State-of-
the-art techniques for FDD in buildings lack real-time rule-
checking. Consequently, there is always a lag between the fault
detection and potential diagnostics and decision-making.Our
position is that developing ontologies for different categories
of domain-specific and domain-independent faults facilitates
FDD in HVAC system simulation and controls.

VI. CONCLUSION AND FUTURE WORK

This paper demonstrates a model-based semantic frame-
work for automated fault detection and diagnostics (FDD) for
application to building controls, specifically heating, ventilat-
ing and air-conditioning (HVAC). Our preliminary results are
promising and indicate that future building control strategies

could utilize formal models (ontologies and rules) for the
detection of a variety of types of fault. To make building
simulations and fault diagnostic procedures more realistic,
however, our capability needs to be extended toward real-time
simulation and decision making. Our plans are to deploy the
proposed method for an actual case study problem, and use
the buildings library Modelica models.
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