
Design of Mobile Services for Embedded Device

Guy Lahlou Djiken
Laboratory of Algorithms,
Complexity and Logics,

LACL, UPEC University
Créteil, France

guy-lahlou.djiken@lacl.fr

Sanae Mostadi
Ecole Supérieure d’Informatique

Appliquée à la Gestion,
ESIAG, UPEC University

Créteil, France
mostadis@miage.u-pec.fr

Fabrice Mourlin
Laboratory of Algorithms,
Complexity and Logics,

LACL, UPEC University
Créteil, France

fabrice.mourlin@u-pec.fr

Abstract—The design of distributed applications requires
theoretical knowledge and hands-on experience. Our work is
about distributed applications based on embedded platforms,
such as smartphones or tablets. We define a software chain
development from design to implementation where services are
designed through interface diagrams and component
diagrams. From these declarations, we are able to generate
software descriptions into two languages. Android Interface
Description Language (AIDL) is utilized for local services to an
embedded platform. Web Application Description Language
(WADL) is utilized for remote services. Such services are
called from one platform to another one. The first kind of
description allows developers to create Android services. Then,
WADL description provides all the features for building
Restlet Web services. We applied our strategy to the design
and building of a case study on medical picture set
management. Embedded tablets can take pictures during the
users’ activities. Local services allow users to display their
medical picture through specific viewers. Remote services are
set to expose these data to specific medical material. So, we
provided a way to exchange technical data from well spread
platforms to medical application servers.

Keywords-mobility; data collection; mobile service;
distributed application.

I. INTRODUCTION

Tanenbaum defines a distributed system as a “collection
of independent computers that appear to the users of the
system as a single computer”. This means that two features
are essential: independent and suitable software for hiding
the architecture from the users [1].

We consider a distributed system as a collection of
autonomous computers linked by a network and using
software to produce an integrated computing facility. The
size of a distributed system can belong to a local area
network (10's of hosts) or a metropolitan area network (100's
of hosts) or a wide area network (internet) (1000's or
1,000,000's of hosts). The key characteristics of such
distributed systems are the resource sharing, where data
source or external device are used by applications. Then, the
use of open standard allows to build applications which need
to have the components of a solution work together [2]. The
concurrency property is also important in the fact that
multiple activities are executed at the same time [3]. This
reduces latency and allows to hide blocking with some
computing.

The scalability in size deals with large numbers of
machines, users, tasks, etc. This property also occurs in a
location with geometric distribution and mobility [4]. The
subject of our work is the design of distributed applications
based on services. When considering a scalable application
design, a service helps to decouple functionality and thinks
about each part of the application as its own service with a
clearly defined interface. For SOA application (Service
Oriented Architecture), each service has its own distinct
functional context, and interaction with anything outside of
that context takes place through an abstract interface,
typically the public-facing API of another service.

Building a system on a set of complementary services
decouples the operation of those pieces from one another.
This abstraction helps establish clear relationships between
the services, its underlying environment, and the consumers
of that service. Our work is about the use of services, which
are Web services or embedded services. Both types occur in
real projects, and it seems to be essential to adopt the same
design approach. Section II describes our methodology for
specifying both types of services. Section III is about the use
of intermediate representation between design charts and
computer representations. The following section is about a
way to provide an implementation. In the last two sections
we describe a case study and we built on the management of
the pictures with their localization. Finally, we summarize
the results explained in this paper.

II. DESIGN OF DISTRIBUTED SERVICES

Client/server, 3-tier and n-tier distributed applications
and cloud computing, open up new opportunities and ways
to design systems and develop applications. The design
challenge is the main step of the life cycle of any project.
The definition of message exchange pattern is essential for
the declaration of each remote service. An object-oriented
modelling approach is often used to describe business
requirements, identify components, their interactions and
placement in a multi-tier environment.

We have chosen UML description language [5] as a
specification language. There are a lot of charts which can
help designers perform requirement specification. We have
selected a deployment diagram for architecture level and
how materials are linked. Next, the use of component
diagram is the core of our methodology with the
specification of interfaces and the declaration of signatures.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

A. Design step of distributed services

1) A service approach
Similar to other distributed applications, Web services

have a specific structure and behavior. The structure is the
static part of Web services, which is composed of the
candidate classes and their associations. The behavior is
called the dynamic part. It represents how the Web service
are executed in terms of sending requests, preparing
responses to these requests, and how they will be sent back
to the clients.

The Unified Modelling Language (UML) [5] gains
greater acceptance among software designers, not only
because of its standardization by the Object Management
Group (OMG) [10], but also because of the high support
from tool vendors, such as IBM and Oracle.

2) First step in our case study
Throughout our paper, we use a case study about the

management of pictures which are taken with mobile devices
such as smartphones and tablets. The main goal for an end
user is to know precisely where a given picture is. More
precisely, if several devices are used in a lab, it could be
convenient to localize the pictures on the devices without
any upload of working pictures on a common data server.

The main goal of the Web service requirements analysis
task is to capture and gather the requirements for the target
Web service. This includes the identification of the precise
services that have to be provided. This means that UML
interfaces are defined in a package structure. For instance,
assume a context where a set of pictures has to be exposed to
a network with HTTP methods. So, Figure 1 will be the first
step of the requirement specification.

This short example stresses 2 main tasks: the naming and
the signature definition. Type and name of the domain and
co-domain are essential to the future implementation and the
clients. All these definitions are relative to a namespace (in
our example fr.upec.lacl.project.gallery).
This allows reducing name conflict. A package structure is
an ideal entry point into a project dictionary.

On the other hand, a material description provides all the
details useful for the deployment step. In our previous
example, the occurrences of the service are deployed on
mobile devices. The clients could also be installed on mobile
platforms or workstations. In Figure 2, a potential
deployment diagram is described as a mobile application
server deployed over a mobile device. Its client is installed
on an application server. When all data are collected about
the pictures, the other artifact, called picture.inventory.war
deployed over the application server, can answer the requests
of the standard clients.

From this view, we define several artifacts. They play the
role of deliverables. Each of them will provide one or more
components. A component diagram gives a snapshot of a
runtime. Each component has provided interfaces and also
dependencies on other parts of the software. Also, we can
check how precisely the requirements are defined. This
allows defining the used network protocol and the message
exchange pattern. For instance, the requests to the
PictureManager service is considered synchronous and
parameters are exchanged through an XML format

This component diagram is also the support to express no
functional properties, such that the maintainability of the set
of services and the management of several versions. All the
components follow the OSGi specification (Open Service
Gateway Interface). A feature of OSGi technology is its
portability, since it can be implemented both in the terminal
board as well as in conventional applications or servers [6].
In this context, the OSGi technology is designed to address
the other non-functional aspects, such that to enable the
management of complex applications and to improve the
quality of service applications for administration at runtime;
see Figure 3.

In Figure 3, all components are placed. The naming
convention allows readers to understand the correspondence
between components and artifacts. There are three kinds of
components depending on the kind of deployment node. This
diagram highlights the roadmap of our development. So,
because Figure 2 requires different kinds of platforms, then,

Figure 1. Precise declaration of interface and signature

Figure 2. Deployment diagram

Figure 3. Software architecture of case study

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

the next refinements are going to provide more details about
the technical features.

B. Integration testing

The integration testing is a level of the software testing
process where individual units are combined and tested as a
group. The purpose of this level of testing is to expose faults
in the interaction between integrated units. In our context, it
means the integration of the three parts: mobile part, server
part and a client part. This level of test can be considered as
business routes where each of them is a use of our distributed
application. In Figure 4, we describe the integration scenario
where the application server sends requests to mobile
platforms and collects the URLs of pictures and their
technical features.

This sequence diagram plays the role of validation after
the integration of all the components and their deployment
on to the set of materials.

We also use such kind of diagrams when we study the
impact of a scenario on the other behaviors of the application
server. For instance, the problem can be to understand what
the consequences of the data collections are during the
subscription of other mobile devices. It seems to be obvious
to require that the main business functionalities have to be
isolated and the use of one mobile device is independent
from the use of another one.

Figure 4 shows the interactions between a tablet and the
application server. First, the mobile device is registered and a
collector service validates the availability of all the data
around the pictures (content, format, identification,
localization, etc.). This diagram can be extended with the
introduction of other mobile devices or the interaction with

other scenarios, but this will introduce some noise into the
description and the role of such diagram will be reduced.

III. INTERMEDIATE REPRESENTATION

From the previous set of diagrams, we have to continue
towards a more technical representation. As we can observe,
this distributed application is based on the use of remote
service. These services are clearly defined and, depending on
the kind of platform, we use a precise approach.

A. AIDL services

The IDL (Interface Definition Language) [7] is generally
language independent for the service specification. It is used
theoretically for generating C++ or Python stub code from it.
The Android one is Java-based though, so the distinction is
subtle. One difference is that there is only a single interface
in an .aidl file, while Java allows multiple classes/interfaces
per Java file. There are also some rules for which types are

supported, so it is not exactly the same as a Java interface,
and it is not allowed to use one instead of AIDL.

In the context of mobile programming, a service is an
application component that runs in the background without a
user interface. In our case study, the picture manager can
perform data collection by using a background service to
prepare data for a foreground application. This means
another application of the mobile device. This is quite
important because the consequence is that a service built
from AIDL cannot be used remotely.

Services work in the background, even though the
application is running neither in foreground nor in the
background. A service might handle long running tasks like
network connections or retrieving database records with the
help of a content provider from the background. In our case

Figure 4. Interaction diagram as integration test

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

study, two interfaces are defined to expose services on the
mobile platform: these are PictureManagerPortType
and PicturePortType; see Figure 1. So from these
declarations, we transform them into two .aidl files.

These files (called PictureManagerPortType.aidl and
PicturePortType.aidl) define the interfaces that declare the
methods and fields available to a client. AIDL is a simple
syntax that lets the designer declare an interface with one or
more methods, that can take parameters and return values.
These parameters and return values can be of any type, even
other AIDL-generated interfaces. Then, the AIDL compiler
creates an interface in the Java programming language from
the AIDL interfaces. These interfaces have an inner abstract
class named Stub that inherits the interface and implements a
few additional methods necessary for the IPC call (Inter
Procedure Call).

The next step is to create two classes that extend our
previous interfaces PictureManagerPortType.Stub and
PicturePortType.Stub and implements the methods we
declared in our .aidl file. Then, we extend the Service class
and override Service.onBind(Intent) to return an
instance of one of our classes that implements one of our
interfaces. The parameter intent plays the role of incoming
message. The corresponding aidl descriptions of Figure 1 are
given in Figure 5.

The primitive types are in direction by default. We limit
the direction to what is truly needed, because marshalling
parameters is time expensive. We have a class called
Picture that we would like to send from a client process
to the implementation process through an AIDL interface.
We have made the Picture class which implements the
Parcelable interface. The consequence is the overriding of
the method public void writeToParcel(Parcel out)
that takes the current state of the Picture and writes it to a
parcel. The dual method is the method public void
readFromParcel (Parcel in) that reads the value
of a parcel into a Picture.

B. REST services

The use of AIDL is required because of application
sandboxing. Each application in Android runs in its own
process. An application cannot directly access another
application's memory space. In order to allow cross-
application communication, Android provides the inter-
process communication protocol. IPC protocols tend to get
complicated because of all the marshaling/unmarshaling of
data that is necessary, but it has also a main limit: it is not
possible to use it in a remote manner.

Today, a remote access is a common requirement, but the
installation of a Web server on a mobile platform is not so
natural. Also, we propose to use remote access by the use of
the REST (Representational State Transfer) service through
the use of Google implementation called Restlet. It relies on
a stateless, client-server, with cache communications
protocol, and generally, in all cases, the HTTP protocol is
used. REST is an architecture style for designing networked
applications. The idea is that, rather than using complex
mechanisms such as CORBA, RPC or SOAP to connect
between machines, simple HTTP is used to make calls
between machines.

As a programming approach, REST is a lightweight
alternative to Web Services and RPC (Remote Procedure
Calls) and Web Services (SOAP, WSDL, etc.). Much like
Web Services, a REST service is platform-independent,
language-independent, standards-based, runs on top of
HTTP, and can easily be used in the presence of firewalls.

There are several reasons for having a Web server on a
mobile phone. The main one is to allow third-party
applications, on other phones or other platforms to access
the phone remotely. This requires strong security
mechanisms that are provided in part by the Restlet
framework as well as network level authorizations by the
carrier. We have decided to apply a Proxy design pattern to
hide Restlet mechanism. So, each AIDL service is equipped
with a Restlet service. To sum up, the AIDL implementation
is used as a local facet on the mobile device and the Restlet
implementation can be considered as a remote facet from
other platforms.

In accordance with the Proxy design pattern, we have
declared a subclass of the ServerResource class which
belongs to the Restlet framework. Our class is called
PicturePortTypeResource and has an attribute which
is the previous AIDL implementation. Both classes
implement the same business interface, but this last one
provides our local service on the http protocol as a web
resource. Figure 6 shows the main changes. Two technical
packages are drawn to precisely the role of our technical
classes.

Now, this mobile part is accessible from other mobile
devices and also from workstation and application server, if
necessary.

IV. CODE CONSTRUCTION

We design the embedded part with respect to such
properties, such that the independence of the layers and
interoperability remains. It means that the client part of the

package fr.upec.lacl.project.gallery;

interface PictureManangerPortType {
PicturePortType getPicture(long id);
long putPicture(in Picture p);
String getPictureDetail();

// other methods are added in the case study.
}

package fr.upec.lacl.project.gallery;

// Declare Picture so AIDL can find it, knows
// that it implementsthe parcelable protocol.
parcelable Picture;

package fr.upec.lacl.project.gallery;

interface PicturePortType {
Picture read();
boolean update(long id, in Picture p);
boolean available();

// other methods are added in the case study.
}

Figure 5. aidl output files

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

previous service does not know any technical details of our
solution. This preserves the client from the changes of the
new versions.

A. JavaEE implementation

As explained previously, the middle layer is the pilot of
the data collection. After the subscription of a mobile device,
requests are sent periodically from the application server to
the mobile device. Applications that model business work
flows often rely on timed notifications. We schedule a timed
notification to occur at time intervals. Then, the collected
data are stored on the application server. Of course, other
mobile devices can subscribe to that picture manager service
even if several data collections are running. Both
functionalities are isolated.

Another artifact is deployed on this application server: it
is the inventory service. It is a stateless component which
answers to the presentation layer running on a client
workstation. The role of the inventory service is to answer to
the client about the previous data collections. For instance,
assume several mobile devices are previously registered, so a
client can ask precisely to know where a picture, called
“picture1” under a JPEG format is. The structure of that part
is more convenient: it is a three tier layer. These different
responsibilities of an application are broken up into distinct
tiers, typically:

• The integration tier for data transformation and
persistence services. The persistence unit is about the
details which are collected during the data collection.

• The business tier for the validation, business rules,
workflow and interfaces to external systems. The
request is expressed by a subset of the features of the
pictures. This means the content type, the size the
annotations, etc.

• The presentation tier for user interface generation
and lightweight validation. The web panels allow the
requester to define his need.

The requests between the presentation and business
layers are synchronous over TCP protocol, but a message
broker is used to separate client and service. The exchanges
are totally asynchronous between the business and the
integration layers. This is essential because the integration

part can be considered as a cache of the database for several
Web applications.

B. JavaSE implementation

First, we use a web explorer to send http request and to
display html tier. This display is a default graphical user
interface used to send requests about the location of images.
Next we have provided an API to develop new requests into
programmatic clients. This is particularly useful for the
automatic functional tests. This allows us to replace the use
of Selenium tool of our own test application.

Our API also allows other developers to program new
client tiers. It is based on the use of REST services which
send requests to our business tier. Because we have chosen a
REST implementation with the WADL generation (Web
Application Description Language) [8], other developers can
build their own version of our API. Also, SOAPUI tool [9]
provides an easy way to create test suites of our business tier.

Our next case study is built with a lightweight client tier.
In this context, the user is sure that the Web client is well
suitable for the version of the business tier. Moreover, a
comparison with other testing tools can be done, especially
for performance measures.

V. CASE STUDY

As we explained in our contribution, our case study is
about the management of the pictures on Smartphone.
Several embedded devices are used, for instance, in a lab or
in a classroom. So, a distributed tool is necessary to locate
precisely where the pictures are. More generally, such kind
of tool is useful for the whole management of the pictures.
This means collect, remove, transfer, duplicate or transform
to an appropriate format.

A. Deployment view

Before starting our case study, we have to deploy all
artifacts on a given computer, as mentioned in Figure 2.
Next, services have to be started by local servers. So,
observations and measures could be done by a tester.

1) Mobile data tier
Under Android 4.2 operating system, the mobile devices

are used by members of a laboratory to take photos. The
camera records the pictures into a gallery where each of them
corresponds to a separate file with a set of features (name,
format, size, date, owner, etc.). Because, a gallery can be
considered as a set of pictures, each picture has its own name
for their identification. Often, the name is generated by the
software component which manages the camera. This means
that the name is not easily known by the scientist.

For a test phase, the first activity is to take several photos
and then, register the mobile device as a data tier to a
business server. This will engage a set of REST services as
and points to the gallery of photos

2) Business tier
Its first objective is to be ready for receiving registration

for all the mobile devices. From its point of view, the mobile
devices are considered as a distributed data set of pictures.
Concurrently, it performs a data collection about the features
of the photos. This is not a collect of the photos because this

Figure 6. Design class diagram of the mobile part

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

will spend too much time. But this activity is to bind all the
features, such as localization, into a registry for future
requests. The inventory activity is managed by a timer. Also,
regularly, a mobile device receives requests about new
pictures if there are until the end of its registration onto the
business server.

A third activity is to answer to the end users who want to
localize the photos which are taken during a given period of
time. Additional conditions can be set, such as the content
type, the dimension of the picture, the size of the file, etc.

3) Client tier
In the test phase, we use a Web client for sending the

requests. This client is received by sending an HTTP request
from a navigator. It allows end users to define precisely the
photos that they want to have access to. The answer of a
request is a set of links. They can be used to access the
embedded devices and the concrete photo. So, by the end of
a test, this means: a request and a click on a hypertext link, a
photo is displayed in the Web browser of the end user.

B. Artifact deployment

1) Mobile data tier
In order to install third party applications on our Android

phone, we need to install APK (Android Package, files). The
way we usually do is like the next iteration, but it is for
testing:
• Plug in an USB cable to a PC and mount a SD card on

my computer
• Get the APK file some
• where on the SD card on the phone
• Unmount the SD card on the PC, allowing the phone to

see the SD card contents again
• Use Astro File Manager or some similar app to browse

to that file on the SD card and select it, which will
prompt us to answer if we want to install the app on the
phone.

For the end users, we have defined a simpler strategy
based on the use of the local repository. We deploy the .apk
file on a local server (apache http server) with a static IP to
make the file available for download. Now, the end user has
to open the download link of the apk file in his mobile
browser. The device will automatically start the installation
after the download completes.

2) Business tier
We use an application server called JBoss where our

applications are installed though an ear file (Enterprise
Application aRchive). The standard configuration of JBoss
provides a very simple and convenient system for deploying
applications, but not necessarily suitable for a production
environment.

As standard, the deploy directory is a configuration for
deploying services, components and applications. Just
include a file according to the specific type of component
specifications for JBoss deployment take into account. It is
possible to deploy the files to the deploy directory or its
subdirectories. Each file type is taken into account by an
appropriate service deployment. The EARDeployer service

is used for our two main components: the registration of
tablets and the data collector.

The AbstractWebDeployer service is used for the Web
application called by the client. It is implemented for the
servlet container TomcatDeployer. The archive files are in
the format war (Web ARchive).

3) Client tier
In the test phase, we use a Web client for sending the

requests. This is a set of JSP pages which belongs to the
previous Web application. Also, the client tier is just a Web
browser which is already installed on the computer of the
client.

We also use Java Web Start, which is a mechanism for
program delivery through a standard Web server. The Java
GUI client is downloaded to the client and executed outside
the Web browser. The GUI client does not need to be
downloaded again in the next run. If the GUI client is
updated, a new version will be downloaded automatically.
The jar file contains an XML descriptor with an XML
schema. It specifies the resources needed to run Java Web
Start applications. It also defines the URL location of the jar
file, VM arguments and other resources that JRE on the
client side should know to start Java Web Start GUI client.

Such GUI client that needs access to system resources,
like file system, network connections, etc., needs to be
signed. Also, we generate a keystore (certificate) and attach
it to the jar file. After that, an end user is able send requests
to the business tier and also to access to mobile device.

C. Measures

Measuring the execution time is a really interesting, but
also complicated topic. To do it right, in Java, we have to
know a little bit about how the JVM works: generation
decomposition and so on. But, we do not have the same VM
on all the nodes of the network. The mobile devices have a
DVM (Dalvik VM), the business tier and the client tier have
a JVM (Java VM) but the versions are not correlated.

Also, we use a "ready to run" benchmarking framework
that addresses many of our issues [7].

1) Measures Method execution time: The framework's
essential class is named Benchmark. It is the only class that
we use for the computation of measures; everything else is
ancillary. Client and business tiers are observed by instances
of the Benchmark class. We supply the code to be
benchmarked to the Benchmark constructor. The
benchmarking process is then fully automatic. Then, we
generate a result report. The only restriction is that the code
needs to be contained inside a Callable or Runnable.
Otherwise, the target code can be anything expressible in
the Java language.

2) Business tier Measures: there are two sets of
measures. One is about the requests between the mobile
devices and the application server. There two main tasks
are: one is the registration of the mobile devices, and the
second is the data collection which is started and ended by
the application server.

The other set is about the treatment of the requests of the
clients. Each request is received and treated by a business

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

action which is also a Runnable instance. This means that
we have measures on it. Both are interesting and their
observations involve future improvements.

3) Results:
Table I presents measures of RegistrationTask

class. It is a Callable subclass and its method is invoked
when a mobile device needs to belong to the community of
the mobile data tier. Next, a data collection will be applied.

TABLE I. REGISTRATION OF MOBILE DEVICES

Measures
Method execution time

First time Mean time Standard deviation

Registration 112.901 ms 108.501 ms 725.510 µs

In the meantime, we have additional information on it:
deltas: -35.205 µs,+46.206 µs).

For the standard deviation execution time, we have the
info: deltas: -161.405 µs, +361.108 µs

Table II presents measures of
DataCollectionTask class. It is a Runnable
subclass and its behavior is managed by a timer. At each
interval of time, a data collection is started on a given
mobile device. By the end, the changes are updated on the
business server. This task is not linked to the previous one
and several data collections are started concurrently in a
manner that there is no effect from one data collection onto
the other ones.

TABLE II. DATA COLLECTION ON A MOBILE DEVICE

Measures
Method execution time

First time Mean time Standard deviation

Data collection 225.910 ms 220.050 ms 555.004 µs

In the meantime, we have additional information on it:
deltas: -31.520 µs,+41.602 µs).

For the standard deviation execution time, we have the
info: deltas: -124.040 µs, +302.088 µs

Table III presents the measures of the
ClientRequest class. It is also a Runnable subclass
and its method is invoked when the end user sends a request
about the URL addresses of several photos. Next, all the
features of the user request are parsed and a result is
computed from the previous data collections. Then, an
answer is built with a set of URL instances. Each URL
instance is a REST call to a service deployed on a mobile
device.

TABLE III. CLIENT REQUEST ABOUT PHOTO ON DISTRIBUTED DEVICES

Measures
Method execution time

First time Mean time Standard deviation

Client request 164.621 ms 158.921 ms 605.233 µs

In the meantime, we have additional information on it:
deltas: -41.115 µs,+51.261 µs).

For the standard deviation execution time, we have the
info: deltas: -103.523 µs, +112.561 µs.

VI. ANALYSIS

The first time that RegistrationTask instance was
called, it took 112.901 milliseconds to execute. A point
estimate for the mean of the execution time is 108.501
milliseconds. The 95% confidence interval for the mean is
about -35/+46 microseconds, which is relatively narrow, so
the mean is known with confidence.

A point estimate for the standard deviation of the
execution time is 725.510 microseconds. The 95%
confidence interval for the standard deviation is about -
161/+361 microseconds about the point estimate, namely
[235.389, 1086.51] μs, which is relatively wide, so it is
known with much less confidence. In fact, the warning at the
end says that the standard deviation was not accurately
measured. The result also warns about the outliers. They are
not significant in this case because the scenarios contain
network connections. This involves blockings and time
consuming only for negotiation between mobile devices and
business server.

In the case of the data collection the first time that
DataCollectionTask instance was called, it took
225.910 milliseconds to execute. A point estimate for the
mean of the execution time is 220.050 microseconds. The
95% confidence interval for the mean is approximately -
31/+42 microseconds, which is relatively narrow too, so the
mean is known with confidence.

The standard deviation of the execution time is 555.004
microseconds. The 95% confidence interval for the standard
deviation is about -124/+302 microseconds about the point
estimate, namely [430.964, 857.092] μs, which is less wide
than the previous case. So it is known with much confidence.
In fact, the warning at the end notes that the standard
deviation comes from the size of data which is collected. The
result also warns about the variability in the measurement.
The latter is sometimes excluded from the data set.

The last case is about request treatment. The first time
that ClientRequest instance, was called, it took 164.621
milliseconds to execute. A point estimate for the mean of the
execution time is 158.921 microseconds. The 95%
confidence interval for the mean is approximately -41/+51
microseconds, which is relatively narrow too, so the mean is
known with confidence.

Then, the standard deviation of the execution time is
605.233 microseconds. The 95% confidence interval for the
standard deviation is about -103/+112 microseconds about
the point estimate, namely [501.71, 717.794] μs, which is
relatively small. So, it is known with confidence. In fact, the
warning at the end notes that the standard deviation comes
from the number of requests which are received by the Web
application. The result also indicates an experimental error
because of the latency of the network. When we compute
other measures on a sample with a bigger volume of

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

requests, then this overhead time is hidden or recovered by
the computation of the answers.

VII. CONCLUSION AND FUTURE WORK

We have presented in this document our approach to the
design (D), the implementation (I) and the evaluation (E) of
mobile applications based on services. We have shown that
there are two families of services: some of them are local and
others are called from outside the mobile platform. Our esign
is based on the use of UML diagrams and stereotypes to
identify interfaces and the locality.

The implementation is based on Java programming and
the use of frameworks, such as Restlet and Android. We
have shown how to refine the diagrams towards a more
technical description. A designer can sketch his/her
applications with the use of local or remote services.

The evaluation is also described by interaction diagrams,
which will become a test suite. We have built a case study
based on our approach. It highlights all kinds of services
(local and remote). So, interoperability is insured by the use
of XML messages.

To conclude, our approach, called D.I.E. validates our
design choice. Our experiments highlight the use of mobile
devices as mobile data tier. As the number of embedded
devices increases, our prototype shows that our software
protocol supplies a way to exploit data on mobile devices
without big data transfers.

REFERENCES

[1] J. B., Warmer and A. G. Kleppe, “The object constraint
language: Precise modeling with uml”, addison-wesley object
technology series, 1998.

[2] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.

Tanenbaum, (2006, September). “Reorganizing UNIX for
reliability”, In Asia-Pacific Conference on Advances in
Computer Systems Architecture (pp. 81-94). Springer Berlin
Heidelberg.

[3] M. Gould, M. A. Bernabé, C. Granell, P. R. Muro-Medrano,
J. Nogueras, C. Rebollo, and F. J. Zarazaga, (2002). “Reverse
engineering SDI: Standards based Components for
Prototyping”, In Proc. of the 8th European Comission
GI&GIS Workshop, ESDI-A Work in Progress.

[4] J. Kołodziej, S. U. Khan and E. G. Talbi, (2013). “Scalable
optimization in grid, cloud, and intelligent network
computing–foreword”, Concurrency and Computation:
Practice and Experience, 25(12), 1719-1721.

[5] T. Erl, (2004), “Service-oriented architecture: a field guide to
integrating XML and web services”, Prentice Hall PTR.

[6] O. Alliance, (2003). “Osgi service platform, release 3”, IOS
Press, Inc.

[7] O. M. G. Corba, “Common object request broker
architecture” (Vol. 2), 1995.

[8] M. J. Hadley, (2006), “Web application description language
(WADL)”.

[9] C. Kankanamge, (2012), “Web services testing with soapUI”,
Packt Publishing Ltd.

[10] R. M. Soley and C. M. Stone, (1992), “Object Management
Architecture Guide: Revision 2.0” (Vol. 92). Object
Management Group.

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

