
Distributed System Behavior Modeling of Urban Systems withOntologies, Rules and
Many-to-Many Association Relationships

Maria Coelho and Mark A. Austin
Department of Civil and Environmental Engineering,

University of Maryland, College Park, MD 20742, USA
E-mail: memc30@hotmail.com; austin@isr.umd.edu

Mark Blackburn
Stevens Institute of Technology,

Hoboken, NJ 07030, USA
E-mail: mblackbu@stevens.edu

Abstract—Modern societal-scale infrastructures are defined by
spatially distributed network structures, concurrent subsystem-
level behaviors, distributed control and decision making,and
interdependencies among subsystems that are not always well
understood. This work-in-progress paper presents a model of
system-level interactions that simulates distributed system behav-
iors through the use of ontologies, rules checking, messagepassing
mechanisms, and mediators. We take initial steps toward the
behavior modeling of large-scale urban networks as collections
of networks that interact via many-to-many association relation-
ships. The preliminary implementation is a collection of families
interacting with a collection of school systems. We conclude with
ideas for scaling up the simulations with mediators assembled
from Apache Camel technology.

Keywords-Systems Engineering; Ontologies; Behavior Model-
ing; Mediator; Network Communication.

I. I NTRODUCTION

A. Problem Statement

The modern way of life is enabled by remarkable advances
in technology (e.g., the Internet, smart mobile devices, cloud
computing) and the development of urban systems (e.g., trans-
portation, electric power, wastewater facilities and water sup-
ply networks, among others) whose operations and interactions
have superior levels of performance, extended functionality
and good economics. While end-users applaud the benefits
that these technological advances afford, model-based systems
engineers are faced with a multitude of new design challenges
that can be traced to the presence of heterogeneous con-
tent (multiple disciplines), network structures that are spatial,
multi-layer, interwoven and dynamic, and behaviors that are
distributed and concurrent. As a case in point, modern urban
infrastructure systems comprise physical, communicationand
social networks that are spatially distributed, and definedby
concurrent subsystem-level behaviors, distributed control and
decision making, and interdependencies among subsystems
that are not always well understood. In the past, engineers
have kept these difficulties in check by designing subsystems
that operate as independently as possible from one another.
Today, however, it is recognized that subsystem independence
and inferior levels of situational awareness come at a cost of
sub-optimal functionality and performance. Overcoming these
barriers makes future challenges in urban systems design and
management are a lot more difficult than they used to be.

B. Cascading Failures in Decentralized Systems

In a decentralized system structure, no decision maker
knows all of the information known to all of the other decision
makers, yet as a group, they must cooperate to achieve system-
wide objectives. Communication and information exchange
are important to the decision makers because communication
establishes common knowledge among the decision makers
which, in turn, enhances the ability of decision makers to make
decisions appropriate to their understanding, or situational
awareness, of the system state, its goals and objectives. While
each of the participating disciplines may have a preference
toward operating their domain as independently as possible
from the other disciplines, achieving target levels of perfor-
mance and correctness of functionality nearly always requires
that disciplines coordinate activities at key points in thesystem
operation. And even if the resulting cross-domain relationships
are only weakly linked, they are nonetheless, still linked.
When part of a system fails, there exists a possibility that the
failure will cascade across interdisciplinary boundariesto other
correlative infrastructures, and sometimes even back to the
originated source, thus making highly connected systems more
fragile to various kinds of disturbances than their independent
counterparts.

Experience over the past decade with major infrastruc-
ture disruptions, such as the 2011 San Diego blackout, the
2003 Northeast blackout, and Hurricane Irene in 2011, has
shown that the greatest losses from disruptive events may
be distant from where damages started. In another example,
Hurricane Katrina disrupted oil terminal operations in southern
Louisiana, not because of direct damage to port facilities,
but because workers could not reach work locations through
surface transportation routes and could not be housed locally
because of disruption to potable water supplies, housing, and
food shipments [1]. To complicate matters, until very recently
infrastructure management systems did not allow a manager
of one system to access the operations and conditions of
another system. Therefore, emergency managers would fail to
recognize this interdependence of infrastructures in responding
to an incident, a fact recognized by The National Strategy
for the Physical Protection of Critical Infrastructures and Key
Assets [2]. In such situations, where there is no information
exchange between interdependent systems, interdependencies
can lead to cascading disruptions throughout the entire system
in unexpected, undesirable and costly ways. The objectivesof

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

Transportation System

Transportation Domain

Metro System Routes

Bus RoutesUrban Business

Business / Work Domain

Mediator
Business − Trans.

Mediator

Flows of: information,
goods, energy.

Flows of: information,
goods, energy.

goods, energy.
Flows of: information, Flows of: information,

Physical Infrastructure Domain

Power Network

OptaPlanner: Real−Time Network Control and Planning for System Recovery

Infrastructure − Business
Government
Department

−− Behavior control
−− Resilience assessment
−− Planning for receovery

−− Behavior control
−− Resilience assessment
−− Planning for receovery

−− Behavior control
−− Resilience assessment
−− Planning for receovery

Utility Network

goods, energy.

Physical System Business System

Figure 1. Architecture for multi-domain behavior modelingwith many-to-many associations.

this work-in-progress paper are to explore opportunities for
overcoming these limitations.

C. Scope and Objectives

In order to understand how cascading failures might be
best managed, it is necessary to have the ability to model
information exchange at the interdependency boundaries, and
to model their consequent effect within a subsystems boundary.
This points to a strong need for new capability in modeling
and simulation of urban infrastructure systems as system-of-
systems, and the explicit capture of infrastructure interdepen-
dencies. We envision such a system having an architecture
along the lines shown in Figure 1, and eventually, tools such
as OptaPlanner [3] providing strategies for real-time control
of behaviors, assessment of domain resilience and planning
of recover actions in response to severe events. Instead of
modeling the dynamic behavior of systems with centralized
control and one large catch-all ontology, our work explores
opportunities for modeling systems as collections of discipline-
specific (or community) networks that will dynamically evolve
in response to events. Each community will have a graph
that evolves according to a set of community-specific rules,
and subject to satisfaction of constraints. Communities will
interact when then need to in order to achieve system-level
objectives. If goals are in conflict, or resources are insufficient,
then negotiation will need to take place.

This work-in-progress paper presents a model of system-
level interactions that simulates distributed system behaviors
through the use of ontologies, rules checking, and message
passing mechanisms. The architecture builds upon the frame-
work presented by Austin et al. [4], and in particular, extends

the distributed behavior modeling capability from one-to-one
association relationships among communities to many-to-many
association relationships among networked communities.

Mediator

Mediator−Enabled Communication

System−to−System Communication

Figure 2. Framework for communication among systems of typeA and B.

As illustrated in Figure 2, one-to-one association rela-
tionships can be modeled with exchange of messages in
a point-to-point communication setup. The top part of the
figure shows point-to-point communication in a one-to-one
association relationship between systems. Mediator enabled
communication in a many-to-many association relationship
among systems are shown in the bottom half of the figure.

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

Reasoner
Properties

Instances

Data
Requirement
Individual

verify

Textual Requirements
define

Classes

Relationships

Ontologies and ModelsDesign Rules and Reasoner

Design Rules

Engineering Model

System Structure

System Behavior

Remarks

System structures are
modeled as networks
and composite hierarchies
of components.

differential equations.
represented by partial

state machines.
modeled with finite
Discrete behavior will be

associated with components.
Behaviors will be

a c d

b

Continuous behavior will be

Figure 3. Framework for implementation of semantic models using ontologies, rules, and reasoning mechanisms (Adaptedfrom Delgoshaei, Austin and
Nguyen [5]).

Many-to-many association relationship among systems are
enabled by collections of mediators. Each ontology is paired
with an interface for communication and information exchange
with other ontologies. From a communications standpoint, this
architectural setup is simpler than what is commonly found in
multi-hop routing of messages in wireless sensor networks.

Section II covers the relationship of ontologies and rules to
our related work in model-based systems engineering, Section
III describes several aspects of our work in progress, including:
(1) Distributed system behavior modeling with ontologies and
rules, and (2) Use of mediators for behavior modeling of
distributed systems having many-to-many association relation-
ships among connected networks. We describe the software
architecture for an experimental platform for assembling en-
sembles of community graphs and simulating their discrete,
event-based interactions, and exercise this capability with an
application involving collections of families interacting with
multiple school systems. We conclude with ideas for scalingup
the simulations with mediators assembled from Apache Camel
technology.

II. RELATED WORK

Model-based systems engineering development is an ap-
proach to systems-level development in which the focus and
primary artifacts of development are models, as opposed
to documents. As engineering systems become increasingly
complex the need for automation arises [6]. A tenet of our
work is that methodologies for strategic approaches to design
will employ semantic descriptions of application domains,and
use ontologies and rule-based reasoning to enable validation of
requirements, automated synthesis of potentially good design
solutions, and communication (or mappings) among multiple
disciplines [7] [8] [9].

Figure 3 pulls together the different pieces of the proposed
architecture, for distributed system behavior modeling with
ontologies, rules, mediators and message passing mechanisms.
On the left-hand side, the textual requirements are defined
in terms of mathematical and logical rule expressions for

design rule checking. Engineering models will correspond to a
multitude of graph structure and composite hierarchy structures
for the system structure and system behavior. Behaviors will
be associated with components. Discrete behavior will be
modeled with finite state machines. Continuous behaviors
will be represented as the solution to ordinary and partial
differential equations. Ontology models and rules will glue the
requirements to the engineering models and provide a platform
for simulating the development of system structures, adjust-
ments to system structure over time, and system behavior. This
is a work in progress [10] [5].

III. W ORK IN PROGRESS

Topic 1. Distributed System Behavior Modeling with Ontolo-
gies and Rules

Figure 4 shows the software architecture for distributed
system behavior modeling for collections of graphs that have
dynamic behavior defined by ontology classes, relationships
among ontology classes, ontology and data properties, listen-
ers, mediators and message passing mechanisms. The abstract
ontology model class contains concepts common to all on-
tologies (e.g., the ability to receive message input). Domain-
specific ontologies are extensions of the abstract ontology
classes. They add a name space and build the ontology classes,
relationships among classes, properties of classes for the
domain. Instances (see Figure 3) are semantic objects in the
domain.

By themselves, the ontologies provide a framework for
the representation of knowledge, but otherwise, cannot do
much and really arent that interesting. This situation changes
when domain-specific rules are imported into the model and
graph transformations are enabled by formal reasoning and
event-based input from external sources. Distributed behavior
modeling involves multiple semantic models, multiple setsof
rules, mechanisms of communication among semantic models,
and data input, possibly from multiple sources. We provide
this functionality in our distributed behavior model by loosely
coupling each semantic model to a semantic interface. Each

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

listener

Semantic Model: Domain 1 Semantic Model: Domain 2

Rules for domain 1 Rules for domain 2

AbstractOntologyModel
<< abstract >>

importimport

listens for ModelChange events

message input

message input

AbstractOntologyInterface
<< abstract >>

message passing

MediatorInterface: Domain 1 Interface: Domain 2

message passing

Figure 4. System architecture for distributed system behavior modeling with ontologies, rules, mediators and messagepassing mechanisms.

semantic interface listens for changes to the semantic domain
graph and when required, forwards the essential details of
the change to other domains (interfaces) that have registered
interest in receiving notification of such changes. They also
listen for incoming messages from external semantic models.
Since changes to the graph structure are triggered by events
(e.g., the addition of an individual; an update to a data property
value; a new association relationship among objects), a central
challenge is design of the rules and ontology structure so that
the interfaces will always be notified when exchanges of data
and information need to occur. Individual messages are defined
by their type (e.g., MessageType.miscellaneous), a message
source and destination, and a reference to the value of the
data being exchanged. The receiving interface will forward
incoming messages to the semantic model, which, in turn,
may trigger an update to the graph model. Since end-points
of the basic message passing infrastructure are common to all
semantic model interfaces, it makes sense to define it in an
abstract ontology interface model.

Topic 2. Mediator Design

When the number of participating applications domains
is very small, point-to-point channel communication between
interfaces is practical. Otherwise, an efficient way of handling
domain communication is by delegating the task of sending
and receiving specific requests to a central object. In software
engineering, a common pattern used to solve this problem is
the Mediator Pattern.

As illustrated in Figures 1 and 2, the mediator pattern de-
fines a object responsible for the overall communication of the
system, which from here on out will be referred as the mediator
object. The mediator has the role of a router, it centralizes
the logic to send and receive messages. Components of the
system send messages to the mediator rather than to the other
components; likewise, they rely on the mediator to send change
notifications to them [11]. The implementation of this pattern
greatly simplifies the other classes in the system; components
are more generic since they no longer have to contain logic to
manage communication with other components. Because other
components remain generic, the mediator has to be application

specific in order to encapsulate application-specific behavior.
One can reuse all other classes for other applications, and only
need to rewrite the mediator class for the new application.

Topic 3. Apache Camel

Looking to the future, we envision a full-scale implemen-
tation of distributed behavior modeling (see Figure 1) having
to transmit a multiplicity of message types and content, with
the underlying logic needed to deliver messages possibly being
a lot more complicated than send message A in domain B to
domain C. Our present-day capability is simplified in the sense
that domain interfaces are assumed to be homogeneous. But
looking forward, this will not always be true. This situation
points to a strong need for new approaches to the construction
and operation of message passing mechanisms.

One promising approach that we will explore is Apache
Camel [12] [13], an open source Java framework that focuses
on making Enterprise Integration Patterns (EIP) accessible
through carefully designed interfaces, base objects, commonly
needed implementations, debugging tools and a configuration
system. Figure 5 shows, for example, a platform infrastructure
for behavior modeling of three connected application (net-
worked) domains. In addition to basic content-based routing,
Apache Camel provides support for filtering and transforma-
tion of messages.

IV. CASE STUDY PROBLEM

To illustrate the capabilities of our experimental architec-
ture, we now present the essential details of a simulation
framework for the behavior modeling of a multiplicity of
families and school, defined by ontologies, rules, and exchange
of information as messages. Figure 6 is an instantiation of
the concepts introduced in Figure 4 and shows the software
architecture for a family-school interaction. And Figure 7is the
network setup for three families interacting with elementary,
middle and high schools.

As every parent knows, the enrollment process involves
the exchange of specific information, such as the name, birth

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

among Networked Domains.

Mechanisms for Message Transmisson and Processing in Apache Camel.

Message

Endpoint

C
ha

nn
el

Neworked Domain 2Networked Domain 1

Message

Endpoint

C
ha

nn
el

C
ha

nn
el

Message

Endpoint

Networked Domain 3

Distributed System Behavior Modeling

Import
Intelligent Routing of Messages

Platform Infrastructure for

Message−based Routing

Content−based Routing

Message−based Translation

Message Filtering

Figure 5. Platform infrastructure for distributed behavior modeling and intelligent communication (message passing) among networked domains.

Report

Family Graph

Model Model

listen

Family Interface

Family Domain

import

Reasoner

family rules

family − school
interaction rules

School System DomainMediator Domain

school system
rules

Reasoner
Report

Enrollment Enrollment

import

Graph Model

School System

listen

School System

Interface Model
Mediator

import

Figure 6. Software architecture for distributed behavior modeling in the family-school case study.

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

date, home address and social security number of each child.
Then, once the child is accepted the school system takes over.
They figure out what grade level is appropriate for each child,
what classroom the child will be in, the schedule of learning
activities, and when school reports will be sent home.

Family Domain

Elementary School

Middle School

High School

MediatorFamily B

Family C

Family A

School Domain

Figure 7. Framework for communication among multiple families and
schools enabled by a mediator.

Communication among the family and school communities
is handled by a mediator. Every component of the system (i.e.,
families and schools) register with the mediator as listeners.
Once a family member reaches a certain age, the age rules
associated with the family system will trigger a school en-
rollment form to be sent to the mediator in the form of a
message, with source and destination properties. The mediator
logic loops through all of its registered listeners to find a match
with the message destination, and then destination listener is
notified. Similarly, once the system calendar reaches a certain
date, the reporting rules associated with the school system
will trigger a school report to be sent to the mediator. The
messaging design allows the school enrollment form to be
received only by the school of interest, and not broadcasted
to the entire school system. Likewise, this design allows the
school reports to be sent only to the students family. This
mediator logic design is known as point-to-point channel, and
it ensures that only one listener consumes any given message.
The channel can have multiple listeners that consume multiple
messages concurrently, but the design ensures that only one
of them can successfully consume a particular message. Using
this approach, listeners do not have to coordinate with each
other; coordination could be complex, create a lot of commu-
nication overhead, and increase coupling between otherwise
independent receivers.

V. CONCLUSIONS ANDFUTURE WORK

This paper has focused on the design and preliminary
implementation of a message passing infrastructure neededto
support communication in many-to-many association relation-
ships connecting domain-specific networks.

Our long-term research objective is computational sup-
port for the design, simulation, and validation of models of
distributed behavior in real-world urban environments. The
family-school distributed behavior model is merely a starting
point. We anticipate that the end-result will look something
like Figure 1, and provide strategies for real-time controlof
behaviors, assessment of domain resilience, and planning of
recovery actions in response to severe events. Models of urban
data and system state will be coupled to tools for spatial

and temporal reasoning, and will synchronize with layers of
domain-specific visualization (not shown in Figure 1). In order
to drive the design and validation of domain rules, and rules
for exchange of messages between domains, we will design
and simulate a series of progressively complicated urban case
study problems.

Our future work will investigate opportunities for using
Apache Camel technology in this context, especially as prob-
lem sizes and the number of participating domains scale up.
A second important topic for future work is linkage of our
simulation framework to tools for optimization and tradeoff
analysis. Such tools would allow decision makers to examine
the sensitivity of design outcomes to parameter choices, un-
derstand the impact of resource constraints, understand system
stability in the presence of fluctuations to modeling parameter
values, and potentially, even understand emergent interactions
among systems.

REFERENCES

[1] C. A. Myers, T. Slack, and J. Singelmann, “Social Vulnerability and
Migration in the Wake of Disaster: The case of Hurricanes Katrina and
Rita,” Population and Environment, vol. 29, 2008, pp. 271–291.

[2] White House (2003), The National Strategy for the Physical Protection
of Critical Infrastructures and Key Assets. Washington, DC.

[3] OptaPlanner (2016), A Constraint-Satisfaction Solver. For details, see:
https://www.optaplanner.org (Accessed, Jan 4., 2017).

[4] M. A. Austin, P. Delgoshaei, and A. Nguyen, “DistributedSystems
Behavior Modeling with Ontologies, Rules, and Message Passing Mech-
anisms,” in Thirteenth Annual Conference on Systems Engineering
Research (CSER 2015), Hoboken, New Jersey, March 17-19 2015, pp.
373–382.

[5] P. Delgoshaei, M. A. Austin, and A. Pertzborn, “A Semantic Framework
for Modeling and Simulation of Cyber-Physical Systems,” in Interna-
tional Journal On Advances in Systems and Measurements, Vol. 7, No.
3-4, December, 2014, pp. 223–238., 2014.

[6] M. A. Austin and J. S. Baras, An Introduction to Information-Centric
Systems Engineering. Toulouse, France: Tutorial F06, INCOSE, June
2004.

[7] M. A. Austin, V. Mayank, and N. Shmunis, “Ontology-BasedValida-
tion of Connectivity Relationships in a Home Theater System,” 21st
International Journal of Intelligent Systems, vol. 21, no.10, October
2006, pp. 1111–1125.

[8] ——, “PaladinRM: Graph-Based Visualization of Requirements Orga-
nized for Team-Based Design,” Systems Engineering: The Journal of
the International Council on Systems Engineering, vol. 9, no. 2, May
2006, pp. 129–145.

[9] N. Nassar and M. A. Austin, “Model-Based Systems Engineering
Design and Trade-Off Analysis with RDF Graphs,” in 11th Annual
Conference on Systems Engineering Research (CSER 2013), Georgia
Institute of Technology, Atlanta, GA, March 19-22 2013, pp.216–225.

[10] P. Delgoshaei, M. A. Austin, and D. A. Veronica, “A Semantic Platform
Infrastructure for Requirements Traceability and System Assessment,”
The Ninth International Conference on Systems (ICONS 2014), Febru-
ary 2014, pp. 215–219.

[11] S. Stelting and O. Maassen, Applied Java Patterns. SUN Microsystems
Press, Prentice-Hall, 2002.

[12] C. Ibsen, J. Antsey, and Z. Hadrian, Camel in Action. Manning
Publications Company, 2010.

[13] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building and Deploying Message Passing Solutions. AddisonWesley,
2004.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

