ICONS 2017 : The Twelfth International Conference on Systems

Performance of Authenticated Encryption for Payment Cardswith Crypto

Co-processors

Keith Mayes

Royal Holloway, University of London
Egham, Surrey, UK
Email: keith.mayes@rhul.ac.uk

Abstract—Many security protocols rely on authentication of
communicating entities and encryption of exchanged data. ra-
ditionally, authentication and encryption have been sepaate
processes, however there are combined solutions, referrdd as
authenticated-encryption (AE). The payment card industry is
revising its protocol specifications and considering AE, haever
there has been uncertainty around performance and feasihily on
traditional issued smart cards and when loaded as applicatins on
security chips pre-installed within devices. It is difficuk to predict
performance using results from generic CPUs as typical smar
card chips used in payment, have slow CPUs yet fast crypto-
coprocessors. This report is based on a practical investigian,
commissioned by a standards body, that compared secure plat
form level (MULTOS) and low-level native implementations d
AE on crypto-coprocessor smart cards. The work also suggest
a technology independent benchmark for a CPU with crypto-
COprocessor.

there are several reasons why these results cannot be immedi
ately accepted as relevant for EMV protocols:

e The command messages in traditional smart cards are
small; the data field restricted to 255 bytes; larger
payloads accommodated by multiple messages.

e The results do not adequately address the case of a
slow CPU with a relatively fast crypto-coprocessor.

e Support for Associated Data is not required.

e Smart cards have very restricted memory sizes with
different write speeds for Random Access Memory
(RAM) and Non-Volatile Memory (NVM).

e Conventional smart card interfaces are quite slow and
S0 protocols can be communication limited rather than
processing limited.

Keywords-Authenticated encryption; EMV; OCB; GCM; ETM;
CCM; smart card; crypto-coprocessor; payment; performance;
MULTOS.

In order to gain a better appreciation of the comparative
performance of AE on realistic smart card platforms, a prac-
tical study was initiated, considering first a secure platfo
implementation (MULTOS) [17] and then a native mode
equivalent. This report describes the experimental requénts

The EMVCo organisation [4] developed the Europay, MasA" Section Il and then gives an overview of the AE modes

tercard and Visa (EMV) standards [3] that affect billions of N ?%‘fggﬂsgé dTizeSréI;tifgr:;nIsngnza\t}vree;eztélttiie?re SF)(ergtEilgrr:ts/l
payment smart cards. The cards use secured microcontrollgl:I . . . P Y.
chips, designed to be strongly tamper-resistant and indepe Iscusses how implementation security may affect perfaoea

dently evaluated to Common Criteria (CC) [2] levels of atmeasurements, and Section VII considers communication lim

least Evaluation Assurance Level (EAL)4+. Despite strond;at'ons' Cpncluspns and suggestions for future work are
defensive capabilities, the chips lag behind the statdwef- resented in Section VIII.

art in CPU performance and memory sizes. However, despite

these limitations the chips excel in cryptographic operati Il EXPERIMENTAL REQUIREMENTS

as they incorporate relatively high-speed crypto-copssce The study investigated comparative performance of AE
hardware. The EMVCo organisation is reviewing the usemodes implemented in both a secured smart card application
of Authenticated Encryption (AE) [10] for future payment platform (representative of a pre-deployed device), and as
card processing. There are a number of potential modes anthtive code on a smart card chip. The selected platform was
those originally of interest included Offset Codebook (QCB a MULTOS ML3 card, using the Infineon SLE78 chip [7],
[15], Galois Counter Mode (GCM) [20], Counter with Cipher which can be CC EAL4+ certified, and includes good defences
Block Chaining Message Authentication Code (CCM) [19]against physical, side-channel [12][13] and fault attadkse

and Encrypt-then-MAC (ETM) [10]. Within this study, GCM native mode implementation used a Samsung 16-bit smart card
was eventually substituted for OCB3 as the former requireathip (S3CC9ES8) [23], and as the crypto-coprocessor did not
binary field multiplication, which was not supported by the support AES, its performance comparisons used 3DES/DES
available crypto-coprocessors. There have been previads s [5]. The S3CC9ES is a secured microcontroller with physical
ies of AE performance, however they have generally focussedttack protection, fault sensors and some side-channatesu

on more powerful generic CPUs, without dedicated crypto-measures, however it would normally require added defensiv
coprocessors. As a starting point we take the study by Krovetmeasures in software; this is discussed further in Sectibn V
and Rogaway [14], which shows that OCB performance isThe AE modes considered in detail were OCB (OCB2 and
faster (for the given test conditions) than alternativesyéver OCB3), CCM and ETM; with some GCM experiments.

I. INTRODUCTION

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0 1

ICONS 2017 : The Twelfth International Conference on Systems

The EMV protocol would normally have a preliminary Ae-hirt¥)
Diffie Hellman key and nonce exchange, however this was not febo@ dchel) Ached) Ached) Acledd)
modelled as would be common to all AE modes and so would : -
not affect performance comparison. Associated Data is not ‘ i ‘ ‘ i ‘ i ‘ i
needed in the EMV protocol. Communicated data is required 4 4 A
to fit within one or more standard Application Data Protocol Al T P
Units (APDU) [8], and with the exception of OCB modes, '
all APDU payloads that are not multiples of the encryption E E E, E, E
block-size are padded prior to encryption. The memory in
smart card chips is very restricted and protocol/algorithm Pad Final
execution is expected to place very limited demands on it, et S e Sl S
leaving maximum space for OS and applications. For our,tests T
a working assumption was that 80-90% of the memory was ‘ G ‘ ‘ G ‘ ‘ G ‘ ‘ Q’\ T |\
unavailable. The RAM in smart cards is usually much faster T

for writing than the NVM and so critical objects/buffers are
implemented in a RAM. Our application was limited to no
more than 10% of the available RAM (so if 8k, we could

ilab _ ol] !
have 800 bytes). The application was restricted to no more
S

than 10% of the available code/data space (so if a 64k flash E,
device then 6.4kbytes was allowed). Some implementations
benefit from trading NVM space for speed using pre-computed > >

tables, which is not well suited to smart cards, but up to 10% Q q
of the NVM space was assumed available for this. In general
the imposed memory restrictions proved not to be a problem E"ﬂ E"a

for the implemented AE modes.

Test software was in ‘C’, so it could be adapted and directly W
comparable for both MULTOS and native implementations.

There is a single test application that incorporates allAke _—
modes plus test utilities that measure various core funstio

The interface is based on APDU commands and responses,

Message

—————

. e . N
with the payload data consisting of blocks of plaintext or Encrpld Das C;;‘hlgﬁ;mn
ciphertext. For message timing precision, commands weare ru)] o
1024 times before response, in order to compensate for mea- Figure 2. CCM Overview (simplified)

surement tolerance. Communication delay was removed (Vigneryption and MAC processes. It does not support Assatiate
calibration) from the test results, although it is recoesil in pata although this is not required for the study. The ertioyp

Section VII. We will now continue the discussion by provigin stage uses block encryption in counter mode with key K,

an overview of the AE modes. followed by a MAC computation on the cipher text using

Il OVERVIEW OF AUTHENTICATED ENCRYPTION a different key (K’) to that used for c_encry_ption. According

: MODES to ISO/IEC 19772[10] the MAC algo_rlthm is selected frorr_l

the ISO/IEC 9797 standards [11], in which there are six

Offset Codebook mode is defined as mechanism 1 in different MAC options, all of which have numerous variants.
ISO/IEC 19772 [10] and is also described in RFC 7253[15].The selected options for the tests are listed below.

The principles of operation are also well presented on Phil)

Rogaway’s website [21]. For convenience, we will summarise ® MAC Algorithm: 1 (usually referred to as CBC-MAC)

the basic operations of OCB2 here. In Figure 1, an inititibsa e Padding Method: 1 (zeros)

vector is first computed and then the plaintext messageils spl o Final Iteration: 1 (same as other iterations)

into blocks (M1-3, M* in example), all but the last block must Outout T f tion: 1 ity = h

be the size of the block cipher, so for AES128 we have 128 utpu } ranstormation (uru y = no change)

bit blocks. They are then encrypted (with modification from ® Truncation: - (left most 64 bits)

the inp_ut vector) to produce ciphertext blocks. The congplet gcm (see Figure 4) mode of operation is mechanism 6 in

output is the sequence of C1-3, C* plus an extra value T. Notgso/|EC 19772 [10] and also described in NIST SP800-38D

that becagse of a requirement to recompute the |nt|all$at|0[20] and [22]. The performance of this mode could not be very

vector, this AE is most optimum for a 64 block messageysefully compared using the traditional crypto-coprooess

sequence and least optimum for a single block message. ysed for the study as GCM requires support for multipliaatio
CCM is mechanism 3 in ISO/IEC19772[10] and describedover Galois Field GF (#8) with the hash key H, which is the

in NIST SP800-38C[19] and [24]. Figure 2 overviews CCM encryption of all zeros undere

operation. Whilst the simplified diagram just shows a nonce/

counter input to the stages of the MAC calculation, the gener A. Workload Estimation

standard description also specifies some flag/length bitsfiel Table | gives an indication of the underlying workload for
ETM scheme (see Figure 3) is mechanism 5 in ISO/IECeach mode when processing the representative test message

19772 [10], and is a conventional approach with separatsizes (as advised by the commissioning standards body).

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0 2

ICONS 2017 : The Twelfth International Conference on Systems

Nonce || Nonce || Nonce ||
Count 0 Inc Count 1 Inc Count 2

g=1

Truncate
= 64 Isbs

Value

Figure 3. Encrypt then MAC

Transform

[countero }—»(Ciner)}—+ counter1 }—s(Tiner }—] Counter2 |

’—.Ll
mult] [mult 4

T
4]

It 4

len(A) || len(C) W)

It

Ne | 2

D [Pamenz)
Ciphertext 1 Ciphertext 2
L]

Auth Tag

Figure 4. CCM Overview (simplified)

IV. PLATFORM MODE RESULTS

For security, certification and reliability reasons, it istn

TABLE Il. MULTOS BENCHMARK MEASUREMENTS (ms)

Function Primitive Application Used
RAM NVM RAM NVM

Block Encrypt 3.3 6.4 3.3

Block Xor 0.73 3.94 3.21 15.84 | 0.73

Block Shift 1.24 2.7 1.24

Block Copy 0.36 0.65 0.36

GF Multiply 199 199

are shown in Table II.

The time measured for a block encrypt with a 128-bit
key was 3.3ms (confirmed by MULTOS as matching in-house
results). The underlying chip crypto-engine is much fasted
the speed disparity is due to software reliability and sigur
measures. The 3.3ms is only valid when writing encrypted
data to RAM, as NVM increases the time to 6.4ms (although
reading from NVM is fast); so the outputs of all functions wer
written to RAM. In all cases where a primitive was availalite,
was considerably quicker than any equivalent implemented a
the application layer, although considerably slower thdmatw
might be imagined from a low-level native implementation

GCM requires a finite field multiply, but such a function
did not exist as a MULTOS primitive and so was provided in a
simple implementation similar télgorithm 1 in the standard
[16]. Multiplying a single block takes 199ms, even when
using primitives multosBlocksShiftRight and MultosBlockXor.
Other implementations are described in the standard, wtho
they make use of time/memory trade-offs, which is not a
strength for a memory limited smart card. For the initiatses
all the modes and the extra test utilities were built into a
single application with the following memory requirements

e Code Size (NVM): 5701 bytes
e Static Data (NVM): 498 bytes
e Session Data (RAM): 113 bytes

All the sizes are well within the realistic and practical
design targets defined at the start of the project. For aesingl
mode application the code size would be considerably less,
and the static data is mainly internally stored test-vectbat
would not normally be present. The session data could be
reduced, if required.

normal to have native code access to a smart card or simild) Initial Tests and Optimisation
security chip once deployed. Instead the chip may offer a Following the MULTOS benchmark tests, the GCM mode

secure platform where added functionality is constraireed t
tightly controlled application layer, using APIs to accessu-

was removed from the study (on request of the commissioning
standards body) and more attention given to OCB (version 2)

rity capabilities. The MULTOS card is such a secure platformpptimisation; and later OCB3 was also added. GCM requires

whereby the application execution language is abstracted f
the underlying hardware (see [18]), offering high standafl
security, but making it difficult to predict performance tiet
core AE functionality. The results of initial benchmark tes

TABLE I. ALGORITHM WORKLOAD PER MODE

Bytes | Blks | Msgs OCB GCM CCM | ETM
E Init E Mul E E
8 1 1 3 1 2 2 3 2
16 1 1 3 1 2 2 3 2
20 2 1 4 1 3 3 5 4
32 2 1 4 1 3 3 5 4
40 3 1 5 1 4 4 7 6
64 4 1 6 1 5 5 9 8
128 8 1 10 1 9 9 17 16
192 12 1 14 1 13 13 25 24

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

specialist hardware support that was not available from the
crypto-coprocessors in the test chips, whereas the other AE
modes could be implemented in a straightforward manner.
OCB2 was initially implemented from the published example
code (see Figure 5)that was critically dependent on a fancti
called two_times().

This was replaced with a version (with less shifts) more
suited to the MULTOS Platform (see Figure 6), which had a
marked improvement on performance.

Given the resulting speed-up (four/five times on larger
messages) from improving OCB2 code, it was decided to also
implement OCB3 based on the pseudo code and test vectors
in RFC7253 [14].

ICONS 2017 : The Twelfth International Conference on Systems

TABLE Ill. MULTOS PLATFORM RESULTS (ms)

//128—bit shift—left src <<= 1, XOR 0x87 if carry out
{unsigned 1: Bytes | OCB2 CCM ETM | OCB3
unsigned char carry=src[0]>>7; 8 16.59 17.78 14.27 | 28.66
// carry = high bit of src 16 16.61 17.22 13.70 29.27
for (i=0; i<sizeof(block)—1; i++) { 20 | 22.17 25.73 2221 | 34.40
dst[i]=(sre[i]<<D|(sre[i+1]>>7); } 32 | 2247 | 25.16 | 21.62 | 35.00
dst[sizeof (block)—1]=(src[sizeof (block)—1]<<I) 40 | 2772 | 33.67| 30.15] 40.12
“(carry +0x87): 64 | 33.35 | 41.09 | 3757 | 46.42
} 128 55.77 72.91 69.38 69.21
192 78.17 | 104.73 | 101.22 | 92.06

Figure 5. Published Example Code fovo_times()

120.00
static void two_times (block dst, block src)
{unsigned char carry = src[0] & 0x80; 100.00
multosBlockShiftLeft (AES_BLK_SZ, 1, src, src);
if (carry) {src[AES_BLK_SZ — 1] "= 0x87;} 20.00 |
} O ocs2
Figure 6. MULTOS Code fotwo_times() o 6000 B com
E W ETv
1) OCB3 Memory considerations: At the beginning of the 40.00 B oce3
OCB3 encrypt pseudo code, a number of bit arrays need to
be set-up, see Figure 7, noting thaf is used to indicate 20.00
subscript in the pseudo code and tldauble() is the same
as thetwo_times() function used in OCB2. The array_Lto 0.00 -
use in block processing, varies per message block using inde 8 16 20 32 40 64 128192
L_[ntz(i)]. L_i: If we allow for processing 64 blocks of 128 Message Size (bytes)
I_% = ENCIPHER(K, zeros(128)) Figure 9. AE Comparative Performance on MULTOS Platform
L_$ = double(L_x) . . i . . i .
L_0 = double(L_S) previously, application level bit-shifts are inefficienh dhe
L_i = double(L_{i—1}) for every integer i > 0 MULTOS test platform, however the primitivesultosBlock-
ShiftLeft/Right are much quicker. Unfortunately, the primitives
Figure 7. OCB3 Key-dependent Variable Set-up require a fixed constant value for the number of places ta. shif

bits then it might appear that we need 64 of the hrrays. Although the operation is only carried out once per message i
However thentz(i) index means we only need 662 64) could adversely affect efficiency, especially of small nages
L_i arrays, as well as I*, L_$ and L 0. Therefore we need 9 and so effort was directed towards optimisation. The firsp st

blocks (144 bytes), rather than 67 blocks; which is well with Was to splitbottominto a number of byte shifts plus a smaller
our target RAM limit. number (up to seven) bit shifts. Byte shifts are easy as we

can just change the array index. The bit-shifts were used in

X . , ; .~ “Va switch/case to reach primitive calls with the appropriate
}‘unctlon. I3||t/bytedman_|pulat|9r|1(s at the 'IV'ULTOi anllcqitlo number of shifts. More code was needed, but the overall code
ayer are slow and so it is quicker to implement the functisn a space requirements are small.

a look up table. For a maximum 64 block message we require
a 64 byte array that can be precomputed and stored in NVMB. MULTOS Platform Results

;hSIrSnESi:TtI%L%mOUHI of memory is easily accommodated within The results from testing OCB2, CCM, ETM and OCB3 are
: shown in Table Ill.

_2) OCBS Functional Aspects. OCB3 defines a hash func- prom the MULTOS results we can see OCB2 is the
tion for use with Associated Data, however this is not neede%I

ntz(): Another memory requirement arises from the ntz()

) . , uickest mode for message sizes beyond 32bytes. OCB3’s
in the EMV experiments. OCB3 has a preparation stage whergiia| processing makes it slower than OCB2, and OCB3 only
key and nonce related data is readied prior to processing me

dvertakes ETM for messages larger than 128 bytes. CCM is
sage blocks. The key data was described earlier (compuiatio ¢ g y

. ; ; always a little slower than ETM due to the extra encryption
relatively straight forward) and nonce related data issttated |5k and both are less efficient when working on input data
in Figure 8. This is mostly straightforward apart from the ¢ réquires padding.
innocuous looking line showing the calculation Offset_O. .

The variablebottom will have a value between 0 and 63; and __Although OCB2 seems the faster option for the MULTOS

it is effectively used as a bit-wise left shift. As discovgre Platform (for messages 32+bytes) the relative difference i
processing time is not enormous. OCB2 benefited from some

Nonce — num2str (TAGLEN mod 128.7) pptimisation, however there is Iittlg scope for improvemen
|| zeros (120 bitlen (N))[|1]|N in ETM and CCM as much of their time is spent encrypt-
bottom = str2num(Nonce[123..128]) ing, which is only possible via a MULTOS API call. The
Ktop = ENCIPHER(K, Nonce[l..122][]zeros (6)) MULTOS platform (and platforms in general) add abstraction
g)tt}'fztecthoiKgllﬁilff[*fft[)l)&fli] l><2°8f+1§(§ftpogn9]~72]> between the application layer and the underlying hardware,
Cheeksim 0 — Zert)s(ug; o and so there is considerable uncertainty that the comparati
- results of Table Il would be similar in a native mode smart

Figure 8. OCB3 Nonce and Pre-encrypt Variables card implementation. Furthermore, the absolute perfooman

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0 4

ICONS 2017 : The Twelfth International Conference on Systems

TABLE IV. TDES MASKED MODE AE TIMES (ms) TABLE V. OPTIMISATION OF CORE FUNCTION EXECUTION (ms)
Bytes | OCB2 | CCM ETM | OCB3 Function Original | Optimised
8 3.04 2.16 1.53 5.75 Block Xor 0.161 0.071
16 3.07 2.12 1.49 5.81 Block Copy 0.114 0.064
20 4.19 3.48 2.85 6.73 ECB TDES]|| TDES + mask 0.608 0.381
32 4.24 3.43 2.80 6.81 Fixed Block Shift Left 0.330 0.073
40 5.37 4.77 4.15 7.76
64 | 657/ | 604 | 542 | 881]]]]
128 | 1123 [11.28 | 10.65 | 12.82 was considered in this part of the study as all versions of the
192 | 1589] 1651] 1589 | 16.82 native code were well within our target memory bounds.

) Data Block Copy and XOR: The algorithm modes make
times on the MULTOS platform, would be expected to beyse of simple byte manipulation functions including XOR and
at least one order of magnitude slower than a simple nativggpy. In the MULTOS implementation these functions were
implementation. Therefore, the AE modes were next tested Oprovided by MULTOS primitives, which in the native code
a hardware emulator for an older, but still relevant 16-tnibg \yere initially replaced by simple equivalents that assumed

card chip (Samsung S3CC9E8). variable sized fields and handled data byte-by-byte. Honyeve
within the authentication modes, very few operations use
V. NATIVE MODE variable sized fields, with the majority working on 16 byte

Obtaining a native mode hardware emulator for a "real’memory blocks. Knowing the field size, means that we can
smart card with crypto-coprocessor (for use in academic reavoid loop counters, and by ensuring that the blocks areeatig
search) is not trivial and only the S3CC9E8 emulator/chip wa on 4-byte boundaries we can perform operations on unsigned
suitable and used in payment cards; although because it dldng integer types rather than bytes. Referring to Table V we
not support AES, substitute 16 byte block encryption func-see that as a result, BlockXor and BlockCopy have almost
tions were needed. To ensure that comparative performanckubled in speed, which has also improved the overall block
results would be relevant to standards, the commissioningipher performance. Note that functional calls are sti#diat
standards body was consulted on the substitutes. The AESis stage rather than in-line code.
16byte data block was considered as a pair of 8byte data pBjock Shifts: The OCB modes use Copy and XOR op-
blocks (M1 and M2) to be coded with DES or triple DES erations, but also rely on the functiawo_times() (discussed
(TDES), i.e., TDES(M1)(M2) or DES(M1)|(M2). Clearly earlier), which in turn makes use of a function for shifting
these functions were for performance evaluation onlycalfh the contents of a block to the left. The function from the
TDES(M1)|TDES(M2) was also coded as a more secure, bufirst tests, BlockShiftLeft() was a direct replacement for the
overly co-processor intensive alternative. MULTOS primitive that supported variable shifts on variabl
i , sized blocks, referred to by pointer parameters. However, i
A. Initial Implementation and Measurement practice two_times() can be constrained to always use shifts of

This stage was focussed on porting the MULTOS codeone place in a 16 byte global variable block. It was therefore
to the native emulator and generating early raw results fopossible to create a simplefixBlockShiftLeft() function to
functional checking. They derive from non-optimised code,use instead. The resulting speed improvement for the shift
simply replacing the MULTOS primitive calls with equivalsn functions was very significant, as shown in Table V.

The performance of the AE modes (including OCB3) was pyrther Refinement: When implementing the block ci-

measured in a similar way to the MULTOS work. The first hher functions, further optimisation removed calls to core
tests used the dual TDES(MI)DES(M2) block encryption gnctions involving variable length arguments, and in some
option (hardest to compute) and the results are in Table IV. 5505 replaced them with simple in-line code. The block

From these initial native results, we observe that the proencryption function no longer called the core functionst bu
cessing time for a single message was under 17ms, regardldssd faster in-line equivalents. The different block fuons
of the AE mode. Although the block ciphers were of courseare handled by compile-time switches. Note that when using
different, the overall native execution times were sigaifity = a crypto-coprocessor an input may be masked to reduce side-
faster than those from the MULTOS experiments, even withouthannel leakage and so a dummy mask was included in the
optimisation. ETM was the best option for single APDU test modes. An option was also added to clear the keys after
messages, although in absolute terms there was not much t&e, however this was not used in the main measurements.
choose between any of the modes. For smaller messages, ETMe extended set of benchmarked measurements is shown in
and CCM still seemed to have the advantage over the OCBable VI, however now that operations are speed optimised
modes. Common to both native and MULTOS implementationshe absolute figures are significantly influenced by the mea-
ETM is always a little better than CCM and OCB3 does notsurement command handling. It is more useful to consider the
seem to improve on OCB?2. relative measurements, e.g., by subtracting the FixBlogyC

time from the others.

B. Optimisations

The original source code used within the initial tests wasC- Native Mode Results
very similar to the MULTOS code. The scope for optimisation Following the additional optimisations, the message tests
on the MULTOS platform was limited as core functions werewere repeated for the substitute block cipher function
most efficiently carried out using platform primitives tveére ~ TDES(M1)|M2. The functions are clearly intended to assess
abstracted from the underlying hardware. Native mode properformance, rather than to ensure security of the data. The
gramming generally offers more opportunity for optimieati results are provided in Table VII and shown graphically in
as there is less hardware abstraction. Only speed optiorisat Figure 10.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0 5

ICONS 2017 : The Twelfth International Conference on Systems

TABLE VI. OPTIMISED CORE PERFORMANCE BENCHMARKS (ms)

Functionality Time
FixBlockXor 0.071 2t =t(TDES(M1)||M2) —t(DES(M1)||M2)
FixBlockCopy 0.064 _
FixBlocKShiftLeft 0.073 = 0.140 — 0.128 @
DES(M1)[M2 0.128 = 0.012ms
DES(M1)|DES(M2) 0.141
DES(M1)|DES(M2) + mask XOR 0.146 : :
BES(VIT) [DES(M2) + mask XOR + key clear | 0.154 Th_ere were two extra DES runs in the TDES version SO
TOES(ML|[M2 0.140 we might suppose that each was about 6us. We can check this
TDES(ML)|TDES(M2) 0.163 by calculating the following.
TDES(MI)[[TDES(M2) + mask XOR 0.169
TDES(M1)|TDES(M2) + mask XOR + key clea 0.178 dtg =t(TDES(M1)||TDES(M2))
—t(DES(M1)||DES(M?2))
TABLE VII. TDES(M1)||M2 AE TIMES (ms) (2)
=0.163 — 0.141
Bytes | OCB2 | CCM ETM OCB3
8| 054| 034 | 027 | 083 = 0.022ms
16 | 057 | 030] 023] 0.79)
20 | 065| 050 043| 002 The four extra DES runs take 22us, about 5.5us each; which
ig 8-;8 8-22 8-23 2-3% is close to our earlier estimate. We can also see from Table
e e T BT VI that the dummy XOR on a 16byte block using in-line code
128 | 146 | 1.35| 128 | 165 takes about the same time, 5-6us. The key-clear, which is a 24
192] 19| 195] 18] 214 byte write, takes about 8-9us, so a 16byte block copy should

be in a similar 5-6us range. The optimisations improved the

speed of all AE modes.
D. Observations on the Native Tests P

E. Technology Independent Gain Assessment

Considering Table VI we have significantly improved the Genperally the native mode results demonstrated that for
performance of core functions. We can also use these results e particular chip, the crypto-coprocessor could exedtste
estimate the achievable raw speed of the crypto-coprocessenain plock cipher in about the same time as the simplest of
by cancelling out the software manipulations. For both DEScpy functions (XOR) on a similar sized block. This could be
and TDES operations we set-up the same keys (two argefined as say the Technology Independent Gain Assessment
redundant for DES, but help our timing comparison), Wrote(T|GA) for any CPU with a crypto-coprocessor. It could be
in_the input data once and read out the result once. Thgypressed as the percentage of the block encryption that can
DES crypto-engine overwrites its input data with its outputpg completed by the crypto-coprocessor in the time it would
and so for TDES the CPU does not need to move datgyke the CPU to compute a block XOR; in our native case this
between the sequence of DES executions; it just refers t0 goyid be 100% and 33% respectively for DES and TDES. In
different pre-stored key for each execution. Thereforayéf ihe case of a platform, the benchmark would be computed from
look at the times for an equivalent DES and TDES operatiofne Ap| measurements as we are restricted to the application
the difference should be the time taken for the extra DESeye|. Referring back to the MULTOS measurements in Table
executions. This time is largely dependent on the hardwar§ then the TIGA benchmark figure would be approximately
although the execution has to be started and checked faryo, ~ Although we are not comparing like-with-like block
completion by the CPU. We can estimate the core DES rugiphers due to practical experimental restrictions, TIGAat
time tq using the following example, whetéf) is the time to |45t a means to make comparison. A high figure would suggest

execute functiorf. that a designer could use block encryptions as readily assOR
and so algorithm optimisation and performance would besquit
250 different to conventional (non crypro-coprocessor) CPUs.

At this point it should be recalled that cards/chips of
interest are security sensitive and likely to be attackedtu~
2.00 A nately countermeasures are quite well understood by thk car
industry, but they can potentially impact on performance a
so in the next section we consider how our results might be

1.50 M affected.

JoCcB2
Ocem VI. |MPLEMENTATION SECURITY AND PERFORMANCE

W ETM Payment cards safeguard financial transactions of signifi-
W ocB3 cant value and so are required to strongly resist a wide range
050 of attacks. EMV cards rely on the protection of various siore
assets including cryptographic keys, account details dNg,P

as well as on the integrity of critical functionality Adheg to

0.00 - information security best practice guidelines for designg.,

8 16 20 32 40 64 128 192 for algorithms, keys and random number generation) is not at
all sufficient as many of the attacks target the implemeonati
rather than the design. In smart cards, the attack resistaitic
Figure 10. Optimised TDES(MIM2 AE Times (ms) be provided by a mix of hardware and software measures and

(ms)

1.00

Message Size (bytes)

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0 6

ICONS 2017 : The Twelfth International Conference on Systems

so there is potential for performance impact. We can considegechniques are well known (see [12] [13]) and can be very
such attacks under the following three categories. powerful against unprotected implementations, includiegt-
practice algorithm designs such as AES. Fortunately, noder

* Physical smart cards are well protected against such attacks, with
o Fault a range of countermeasures that mainly impede statistical
e Side-Channel averaging of signals (used to detect signals in noise) araed
the source generation of the leakage. Attack countermesasur
A. Physical Attack Resistance include:

Physical attack generally requires considerable exgertis o Power smoothing
equipment and time. It may for example involve decapsulat-
ing a chip, hardware reverse engineering, probing buses and T)
memories and modifying tracks. However smart card chips ® Randomisation of execution
have numerous defences against such intrusions, including e Timing equalisation

Noise insertion

e Passive and active shields - to prevent access to a e Dual-rail logic (or Dual CPUSs)

working chip) _) The SLE78 chip used in the MULTOS card has a so-
e Encrypted buses and memories - to impede direcphisticated dual processing arrangement known as “Irgegri
probing Guard” that is believed to be effective at suppressing lgaka
e Light sensors - to detect decapsulation at source, and this coupled with the Common Criteria ceditifie
e Scrambled circuit layout - to make hardware reverseVlULTOS secured OS would suggest that no significant further
: : e performance degradation would be incurred from applicatio
engineering difficult
_ o _ level countermeasures.
Both the chips used in this study incorporate these protec- The S3CCOES used in the native implementation is a

t|vedmeastures,da{]ddbeca(ljse they afre mherentt |r][the Ttardwatfgditional secured microcontroller chip with a single CPU
We do not need to degrade our performance test resulls. — gng so it will include some noise smoothing and execution

. randomisation, but will not suppress the leakage signals at
B. Fault Attack Resistance source. Given the age of the chip one would expect some
Fault attacks are active, in that they use means to disrupixira side-channel leakage protection to be required fitwen t
the normal operation of the target device (chip); but withou software, which will have a performance impact. Our tests
damaging it. The faults can, for example, be generated fromaiready included a dummy XOR to represent masking the
voltage glitches, radiation pulses and operating the targejata used in the crypto-coprocessor, however for this tfpe o
outside of its operational specification. Under fault céiods chip more help would be needed. One technique used for fast,
the Chlp may reveal all kinds of information that it would not but perhaps “|eaky" Crypro-processors is to run the a|gmit
do when working normally and there are some very elegangultiple times, so that an attacker does not know which run
attacks including extraction of RSA keys [1]. The hardwareysed the correct data rather than a dummy pattern. Clearly
sensors in traditional tamper-resistant smart cards @ilee if you hide your data in a 10 algorithm sequence, you would
S3CCIE8) are intended to detect the likely means of faulkxpect to lose an order of magnitude in performance. Hamming
insertion and prevent a response useful to the attacker; sgeight equalisation is another technique (used in nonfsecu
there may be no significant added overhead for the softwarespus) that seeks to reduce information leakage by ensuring
A sophisticated attack might possibly bypass the sensorshat for each bit transition there is a complementary ttansi
however by adopting openly peer-reviewed algorithms andgo as a ‘1’ changes to ‘0’ there is also a ‘0’ changing to
using diversified card keys, we remove motivation for sucht1’. In principle this should reduce leakage, however due to
effort. Added countermeasures could be to verify a result oglectrical, timing and physical layout factors, registés lslo
to run an algorithm twice and only output a response if thenot contribute equally to leakage, so the reduction is iofe¢o
result is valid/consistent, however both strategies relytfee hardware measures and may not justify the effort. In a prakti
correct outcomes of flag tests and loop counts. It is theeeforimplementation this could for example be a 16-bit processor
good practice to add defensive coding of loop and flag testsyhere the lower 8-bits of a register handle the normal datk an
at the cost of some additional processing overhead, the upper 8-bits handle the complementary data. This alone
The SLE78 chip works very differently to a traditional is not sufficient as it is necessary to also clear the register
smart card chip as it has two CPUs working in tandem and &efore and after use and so rather than a two-fold reduction
fault is detected if their processing does not agree. Thisis in performance, at least an order of magnitude should be
innovative and effective approach, which would make it veryanticipated.
difficult to succeed with a fault attack. As the protection is
inherent in the chip hardware it should not noticeably inipacD. Observations

our test results. It is likely that physical and fault attack protection can
,) be handled by the smart card hardware without significantly
C. Sde-Channel Attack Resistance degrading performance. For the MULTOS card based on the

Side-channel leakage implies the leakage of sensitive-info SLE78 we have sophisticated hardware coupled to an OS de-
mation (especially keys) via an unintentional channelsTain signed for the highest levels of security, and Common Gaiter
take the form of key/data-dependent timing variations, @ow evaluation checks for strong protection against side-cabn
supply fluctuations or electromagnetic emissions. Analysileakage. For the native implementation in the S3CC9E8 we

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0 7

ICONS 2017 : The Twelfth International Conference on Systems

TABLE VIII. CARD INTERFACE TRANSMISSION TIMES (ms)

that are communications limited, but only when running at

Bytes Contact (bits/s) Contactless (bits/s)| . P .
T3AA1 78125 | 312500 106000 | 424000 the lowest default speeql, which is impractically slow. If we
8| 476 082 0.20 0.60 0.15 now recall the raw native mode results (Table VII), then
16| 952]| 164 0.41 1.21 0.30 in practice we have a communications limited solution. At

20 11.90 2.05 0.51 1.51 0.38

e i 53 55G the fastest interface speeds this may not be quite the case,
0 2381 410 102 3.02 075 however we would not normally assume that the fastest rates
64 | 28.09 | 655 1.64 4.83 121 would be available from cards and POS terminals; and so
128 | 7619] 1311] 3.28 9.66 242 the 78,125 bps and 106,000 bps for contact and contactless

192 | 114.28 | 19.66 4.92 14.49 3.62

interfaces respectively would be more reasonable expeatat

o N)) The future outlook is that the communication rates will get

would anticipate additional side-channel countermeasime faster and the contact interface will eventually be disptaioy

software and if we consider the techniques in the earliefig®c contactless, which suggests that transactions will begssing

then losing an order of magnitude in performance should b@mited. EMV implementations in mobile phones will of coars

expected. have access to much faster wireless technologies such as
The motivation for a side-channel attack just to capture802.11ac that can run at 1.3 Gbits/s, however the scope of

the EMV session keys is questionable, however discovery dthis study is restricted to conventional smart card devices

the keys might expose other assets or assist with sophéestica

attack strategies. Therefore, it would be prudent to cansad VIIl. CONCLUSIONS

order of magnitude speed degradation when considering the

results in Table VII; although processing would still betfas

with the worst case time for a 192 byte payload being just ove

21ms for the slowest mode. However, to know whether this

processing is fast enough, or the bottleneck for the prd),tocop

we need to also consider the communication speed via th

smart card to Point of Sale (POS) interface.

The study investigated AE modes on existing available
mart chips/platforms using conventional crypto-copssoes.

CM was not analysed in detail as thaultH function (or

arts of it) would need to be implemented within more spe-
jalist crypto-coprocessor hardware. All the other AE nmede
onsidered, were feasible both in terms of speed and memory
usage. The native mode implementation was much faster than
the MULTOS platform and in the final tests all the modes for
all single APDU test message sizes took no more than 2.14ms.

The new results differ markedly from previous comparisons
éhat have focussed on general processors, larger mesgage si
and the inclusion of Associated Data. The native ETM/CCM
modes were quicker than OCB for the single APDU test
messages although OCB modes would be expected to claw
back the advantage for multi-APDU messages. In our native
implementation, and for a single APDU, ETM was always
A. Payment Card Interfaces slightly ahead of CCM and OCB2 led OCB3.

The interfaces for payment cards fall into two main cate- At first glance the_ results may seem counter-intuitive due
gories. The contact interface is the oldest and has dontinatd® the extra encryptions required in ETM/CCM compared
payment card transactions using Chip & PIN, however many® ©CB2/OCB3, however they arise because the chip has
cards now support the contactless interface for touch agd pa$|gn|f|cant Crypto-coprocessor gain. T_he hative measunesne
(no PIN). Within the standards (contact [8] and contactles$OW that the core DES encryption time is comparable with
[9]) a range of interface speeds are defined, however thié 16 Pyte block XOR executed by the CPU. We suggested a
does not mean the fastest modes are supported in all deploy w benchmark, the Technology IndependgntGam Assessment
cards, or POS terminals. Table VIl shows an example range dfl|GA) for CPUs with crypto-coprocessors; as the perceatag
transmission speeds and an estimation of the time to transnﬁ’f the block encryption th_at can be completed by the crypto-
the data associated with the different sized test message%c_)processor in the time it would take the CPU to compute
Note that the working interface speed is negotiated anceagre & PIOck XOR. We estimated 'f)hat the MUOLTOSOpIatform and
between the smart card and the POS terminal as part of tHative thp had TIGAs of 22% and 100% (33% for TDES)
pre-transaction protocol and by varying clock speed as Weﬁespectl_vely. The_new TIGA measure could be _valuable when
as divider parameters the full range would be closer to 9600 S0MParing algorithm implementations on various platform
38400 bits/s. For example the contact rates in Table VIII ardyPes, as may increasingly be the case in Internet of Things
computed in accordance with standards, as a clock frequenwplementatlons.

(5 MHz) f divided by factoD (372, 512 and 512 respectively) The performance gain from the crypto-coprocessor can be
and multiplied by a factoF (1, 8 and 32 respectively). eroded if more time is spent conditioning the data into ard ou

The speed range is very wide especially in the contact cas@ It: Such processing may be required for security prosecti
as the default rates maintain compatibility with very oldcsa ({0 mask data and/or to reduce leakage), although it shauld b
and POS terminals. The command processing and transmissi&} ted tha.t any part of an f%'go“thm running in the CPU may
can be considered as separate activities; and whicheves tak2/SC require similar protection.
longer is considered the bottleneck limit. Recalling the IMU The processing time comparison was independent of the
TOS platform performance (Table Ill) we have a processingcommunications interface speed, however both affect tiee-ov
limited solution. There are some message/mode combirsatiorall protocol performance. The MULTOS platform is primarily

VIl. COMMUNICATION EFFECTS ONPERFORMANCE

Performance tests of AE, normally just focus on the
processing aspects, as communication in an Internet-ctethe
world is generally fast enough (e.g., 25-100Mbps) to caus
negligible delay. However, for payment card use of AE we
are dealing with interfaces that may lmuch slower and
so transactions might hit communication limits before card
processing limits.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0 8

ICONS 2017 : The Twelfth International Conference on Systems

processing limited, whereas the simple native implementafio]
tion is mainly communications limited. If we degrade the
native performance by an order of magnitude in anticipatiori11]
of overheads to reduce side-channel leakage (e.g., repeate
operations or hamming weight equalisation in softwarepthe [12]
we approach the optimum around the 78,125bps rate; any
lower than this and the protocol performance will degrade du [13]
to communication delays.

The crypto-coprocessor gain, coupled with small message
sizes, means that there is not much to choose between OCB24]
OCB3, ETM and CCM performance. It might be argued that
ETM could be chosen for speed and efficiency of small-
/medium messages or OCB if medium/large messages are the!
norm. It is also possible for GCM to be usable in future if [16]
supported by a specialist co-processor, however it is alylik
to be much quicker than the other modes. As performance is
unlikely to be a great differentiator for the AE modes, ari@pt
could be to standardise an AE framework around a defaulil7]
mode and define a negotiation process for a card and PO$8]
terminal to agree alternative AE modes. This would provide
a useful mechanism if vulnerabilities were discovered ig an [19]
particular AE mode, as well as a means for interworking and
migration of smart cards and POS terminals having differeanO]
capabilities.

A. Future Work (21]

It would be interesting to implement the AE modes in ay
similar manner on other secured microcontrollers with twyp
coprocessors (although this may be difficult due to puliicat
restrictions required by device vendors). In the first ins&a
this should help prove the generality of the results, buf24]
also provide more evidence on the usefulness of the TIGA
benchmark, which is easily determined on any processor. It
is hoped that a secured smart card microcontroller chipdcoul
become available (for academic research) offering natiwdam
programming and crypto-coprocessor support for GCM, sb tha
a full-set of AE mode results could be generated and pulilishe
A Java Card platform has become available that would permit
direct comparison with the MULTOS platform, as both are
based on the SLE78 secured microcontroller.

(23]

REFERENCES

[1] D. Boneh, R. Demillo, and R. Lipton, “On the importanceabfecking
computations”, inAdvances in Cryptography - Eurocrypt 97, volume
1233, pp. 37-51, Springer Verlag, 2013.

[2] CC, "Common criteria for information technology sedyrevaluation
partl: Introduction and general model,” version 3.1 redegsSeptember
2012.

[8] EMV, “Books 1-4,” Version 4.3, 2011.

[4] EMVCo, http://www.emvco.com/ [retrieved: March, 2417

[5] FIPS, “Federal information Processing Standards,
Data Encryption Standard (DES), publication 46-3"
http://csrc.nist.gov/publications/fips/fips46-3/fips3@df [retrieved:
March, 2017].

[6] FIPS, “Federal Information Processing Standards, Amoing
the Advanced Encryption Standard (AES), Publication 197
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.1eif [retrieved:
March, 2017].

[7] Infineon, "SLE78CAFX4000P(M) short product overview/11.12,
2012.

[8] ISO/IEC, “7816 identification cards - integrated ciri{g) cards with
contacts,” parts 1-4, 1999.

[9] ISO/IEC, “14443 identification cards - contactless graed circuit
cards - proximity cards,” parts 1-4, 2008.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ISO/IEC, *“19772 Information technology - Security bedques -
Authenticated encryption,” 2009.

ISO/IEC, “9797 Information technology - Security tedtjues - Mes-
sage Authentication Codes (MACs),” parts 1-3, 2011.

P. Kocher, “Timing attacks on implementations of diffiellman RSA
DSS and other systems,” iAdvances in Cryptology - CRYPTO ’'96
Proceedings LNCS, volume 1109, pp. 104-113 Springer Verlag, 1996.

P. Kocher, J. Jaffe, and B. Jun, “Differential power lgai,” in
Advances in Cryptology - Crypto 99 Proceedings LNCS, volume 1666,
pp. 388-397, Springer Verlag, 1999.

T. Krovetz and P. Rogaway, “The software performancauthenticated
encryption modes, fast software encryption, RFC 7253, F8& 2011
Proceedings, pp. 306-327, Springer verlag, 2011.

T. Krovetz and P. Rogaway, “The OCB authenticated-guiion
algorithm, IETF RFC 7253,” May 2014.

D. McGrew and J. Viega, “The galois/counter
mode of operaton (GCM),” parts 1-3, May 2005,
http://csrc.nist.gov/groups/ST/toolkit/BCM/documgiproposedmodes/
gecm/gem-spec.pdf [retrieved: March, 2017].

MULTOS, http:/iwww.multos.com/ [retrieved: MarchP27].
MULTQOS, “The MULTOS developer’s reference manual,” \@ADOC-
TEC-006 v1.49, 2013.

NIST, “Recommendation for block cipher modes of operat The
CCM mode for authentication and confidentiality, SP800-38Cay
2004.

NIST, “Recommendation for block cipher modes of operat Galois/-
counter mode (GCM) and GMAC, SP800-38D,” November 2007.
P. Rogaway, “OCB mode,” http://web.cs.ucdavis.eaigaway/ocb/
[retrieved: March, 2017].

J. Salowey, A. Choudhury, and D. McGrew, "AES galois ictan mode
(GCM) cipher suites for TLS, IETF RFC 5288,” August 2008.
Samsung, “S3CC9E4/8: 16-bit CMOS microcontroller &mnart card
user’s manual,” rev 0, 2004.

D. Whiting, R. Housley, and N. Ferguson, "Counter witBG-MAC
(CCM), IETF RFC 3610,” September 2003.

