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Abstract—TUAK is a new mutual authentication and key gen-
eration algorithm proposed by the Security Algorithm Group
of Experts (SAGE) of the European Telecommunications Stan-
dards Institute (ETSI) and published by the Third Generation
Partnership Project (3GPP). TUAK is based on the Keccak
sponge function which has very different design principles to
the pre-existing 3G MILENAGE algorithm and so promises a
back-up/alternative in case algorithm vulnerabilities are discov-
ered during long-term Machine-to-Machine (M2M) deployments.
However, the practicality of implementing TUAK on currently
deployed and/or future Subscriber Identity Module (SIM) cards
is not well known. This paper describes the initial work and
findings of a study in support of SAGE and GSMA to consider
such implementation aspects.
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I. INTRODUCTION

The European Telecommunications Standards Institute
(ETSI) [1] and later the Third Generation Partnership Project
(3GPP) [2] standardised mobile networks so that Mobile
Network Operators (MNO) were able to choose/design their
own cryptographic algorithms for subscriber authentication and
session key generation. In GSM, [3] there is a proliferation of
algorithms, however for 3G most MNOs use the well-studied
and openly published MILENAGE algorithm [4]. MILENAGE
(AES [5] based) was designed and published by the ETSI
Security Algorithms Group of Experts (SAGE), and more
recently SAGE designed a second algorithm, called TUAK
[6] based on the Keccak [7] sponge function. This was
done for two main reasons. Firstly, although MILENAGE is
currently considered strong, industry should have a proven
alternative in case an advance in cryptanalysis exposes vul-
nerability. Secondly, machine-to-machine (M2M) devices will
use “embedded SIMs”, whereby a Subscriber identity Module
(SIM) chip is fitted into a device, and the assignment (or
re-assignment) to a MNO and the provisioning of security
credentials is done later, over the air. Some devices may be
deployed for at least twenty years, which is a considerable
time in the life of a technical security solution. Having
two strong algorithms (MILENAGE and TUAK) built into
the hardware, and available for selection, should give good
assurance that effective security can be maintained throughout
the SIM lifetime.

TUAK inherits most of its security characteristics from
Keccak, which is the winning SHA-3 design and has of course
been extensively studied. See [8][9] for a closer analysis
of TUAKs security. TUAK is fundamentally different from

MILENAGE in its design, so that an advance in cryptanalysis
affecting one algorithm is unlikely to affect the other. There are
very few academic publications around TUAK as the standards
are quite new, although a comprehensive security assessment
[10] of the TUAK Algorithm Set was carried out by the
University of Waterloo, Canada. It considered a wide range of
cryptanalysis techniques, and finally concluded that TUAK can
be used with confidence as message authentication functions
and key derivation functions. However, industry acceptance
and adoption of TUAK requires not just a secure design, but
also confidence that it can be implemented on limited resource
SIMs with sufficient performance.

• Is it possible to load the algorithm onto an existing
deployed or stocked smart card platform?

• If so, will the algorithm run with acceptable perfor-
mance?

• Will a new SIM require a crypto-coprocessor for
adequate performance?

• Will a new SIM need to have a high performance
processor (e.g., 32-bit type)?

• Will a new SIM require specialist low-level software
for the algorithm?

• Will the algorithm benefit from hardware security
protection?

There have been previous performance evaluation and com-
parisons [7][11][12], around the Keccak core for the SHA-
3 competition [13], however these were aimed primarily at
specialist hardware, or far more powerful and less memory
limited processors than are typically found in SIMs. Therefore,
at the request of SAGE, the evaluation described in this
paper was undertaken, in which the entire TUAK algorithm
performance was determined by experiment with the SAGE
specified settings for Keccak, using their published source code
as a starting point. The latter is important, as SIM vendors
tend to base their implementations on the published security
standards examples. In addressing the performance questions
it was necessary to define a method of experimentation that
would give relevant results yet would not be tied to a particular
processor, platform or optimised for particular chip features.
The work began with the PC example implementations, before
forking to a parallel development suited for smart card eval-
uation. For the latter, simulation was originally considered,
however it is difficult to map results to real card performance.
The use of a multi-application card platform was included as
a positive means of abstraction from any particular chip, and
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could be representative of loading the algorithm onto exist-
ing/stock SIMs. However, the performance of such platforms
(e.g., MULTOS [14]/Java Card [15]) is usually inferior to a
native card implementation and so native mode was included
as the principal benchmark.

In Section II an overview of TUAK is provided before
describing the experimental setup and software development
in Section III and Section IV. Results are presented in Section
V and analysed in Section VI. Some comments on security
defences and performance are discussed in Section VII and
finally, conclusions and future work are presented in Section
VIII.

II. TUAK OVERVIEW

In each of GSM/GPRS (2G), UMTS [16] (3G) and the
Long Term Evolution (LTE 4G), a fundamental part of the
security architecture is a set of authentication and key agree-
ment functions [17][18]. The set of functions varies between
generations, with 3G providing more security than 2G, and
4G adding some further refinements. These functions exist in
the subscriber’s SIM card (which is provided by their MNO),
and in a network node called the Authentication Centre (AuC)
that is run by the MNO. The 3G authentication and key
agreement architecture requires seven cryptographic functions.
MILENAGE [4] is a complete set of algorithms to fulfil these
functions, built from a common cryptographic core (the AES
block cipher) using a consistent construction. TUAK [6] is also
a complete set of cryptographic functions for 3G authentication
and key agreement. LTE security reuses the same set of
functions, so both MILENAGE and TUAK can also be used
for LTE. There is also a standardised method for using the 3G
authentication and key agreement functions in GSM/GPRS.

A. Algorithm Inputs and Outputs
Whereas MILENAGE was designed only with 3G in mind,

TUAK was also designed for LTE and so supports a 256 bit
subscriber-unique secret key as well as the 128 bit key size
used in 3G. Moreover, TUAK also allows for the possibility
that certain other input or output parameters might increase
in length in the future. The input and outputs of TUAK’s
seven cryptographic functions f1, f1*, f2, f3, f4, f5 and f5* are
defined in [6] and like MILENAGE, the TUAK algorithm-set
expects one additional input parameter, an “Operator Variant
Algorithm Configuration Field”. In the case of TUAK, this
field is called TOP and is 256 bits long; each mobile operator
is expected to choose its own value for this, typically the same
value for many SIMs. The 3GPP security architecture did not
require this extra parameter, but it was included for two main
purposes:

• SIMs for different MNOs are not interchangeable, ei-
ther through trivial modification of inputs and outputs
or by reprogramming of a blank SIM.

• By keeping some algorithm details secret, some at-
tacks (such as side channel attacks like power analysis)
become a little harder to carry out.

TUAK includes an algorithm to derive value TOPc from
TOP and the secret key K, and it is sufficient for the SIM card
to be programmed with TOPc rather than with TOP itself. This
means that an attacker who is able to extract TOPc from one
card does not learn TOP or TOPc for other cards.

Figure 1. A Cryptographic Sponge Function

B. Algorithm Building Blocks
The main building block from which all of the TUAK

algorithms are constructed is Keccak [7], the “cryptographic
sponge function” which was selected by NIST as the winner of
the SHA-3 hash function competition [13]. Sponge functions
work by repeated application of a fixed length transformation
or permutation f, as shown in Figure 1, which is copied from
[19]. First the input bits are “absorbed”, and then the output
bits are “squeezed out”.

TUAK uses the Keccak algorithm with permutation size n
= 1600, capacity c = 512 and rate r = 1088. This rate value
is big enough that each of the algorithms in the TUAK set
needs only a single instance of the permutation f - repeated
iteration of the permutation is not necessary.

Details of the TUAK algorithm can be found in [6],
with test data in [20][21]. The TUAK algorithm functions are
illustrated in Figure 2. In this diagram:

• The top picture shows how TOPc is derived from TOP.
• The middle picture shows how MAC-A or MAC-S is

computed (f1 and f1*)
• The bottom picture shows how RES, CK, IK and AK

are computed (functions f2, f3, f4, f5 and f5*) - note
that these functions all take exactly the same set of
input parameters, so can be computed together

• INSTANCE is an 8-bit value that takes different values
for different functions, for different input and output
parameter sizes, and to distinguish between f1 and
f1* and between f5 and f5*, providing cryptographic
separation

• ALGONAME is a 56-bit ASCII representation of the
string “TUAK1.0”

• The block labelled “Keccak” is the 1600-bit permuta-
tion, with the shaded part corresponding to the 512-bit
“capacity” input; see Figure 2.

III. THE EXPERIMENTAL SETUP

Based on the arguments presented in the introduction,
the goal was to use a combination of PC software, native
smart card chip implementations and a secure platform for
development and comparative testing. For the native imple-
mentations, we required two chips of comparable CPU power,
yet different security protection to determine if the inherent
protective measures impacted performance. Furthermore, to

39Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)



Figure 2. The TUAK Algorithm Functions

make useful comparisons with the secure platform implemen-
tations, we needed platforms based on similar chips. A solution
presented itself based around native implementations on the
Infineon SLE77 [22] and SLE78 [23]. The MULTOS platform
was selected as the secure platform primarily because test
cards (types M3 and M4) were available based on the same
Infineon chips. The smart card experiments were preceded by
measurements on a PC platform that used similar example C
code. The code could in future also be ported to Java Card
platforms, although the Java coding language would make
comparisons less clear.

A. The PC Test Platform

The initial tests used an Intel Core i5-2540M CPU @
2.60GHz, max turbo frequency 3.30GHz, 2 cores, 4 threads,
Intel Smart Cache 3Mb, Instruction set 64-bit + AVX, 4Gb
RAM, with a Windows 7 32-bit OS. The Keccak example
implementations were written in C and compiled to optimise
speed. Although the processor and the compiler supported 64-
bit integers, the resulting assembly code was limited by the OS
to 32-bit. Execution time was measured in CPU clock cycles,
although multiple runs were necessary due to the multi-tasking
OS interrupting execution. Various versions of the example
code became available during development as shown in Table I.
The smart card source code was originally modelled on version
1 and then developed in parallel.

In Keccak, f is a permutation. Keccak is a family of
algorithms, from which a particular algorithm is selected by
setting three security parameters:

• The permutation size n, which can be 25, 50, 100,
200, 400, 800 or 1600 bits.

• The “capacity” c, which is a security parameter (es-
sentially, for a given capacity c; Keccak is claimed to
stand any attack up to complexity 2c/2).

• The “rate” r = n - c, which determines how many
input and output bits can be handled by each iteration
of the permutation.

TABLE I. PC EXAMPLE CODE IMPLEMENTATION VERSIONS

Version SupportedBits ShortDescription
0 8/16/32/64 Size optimized, generic, use of % and more tables
1 8/16/32/64 Speed optimized, generic
2 64 Use of CPU 64-bit rotate instruction
3 8/32/64 Original from the specification
4 64 Similar to v2 but trying to combine more operations
5 32 Totally unrolled version, only C code
6 8/16/32 With bit-interleaving, generic, not optimized
7 32 Optimized bit-interleaving, part unrolled, 32-bit

B. The Smart Card Chips
The chips for experimentation both had 16-bit CPUs, which

is a size representative of the majority of deployed SIMs
(although there are still 8-bit CPUs around, as well as newer
32-bit CPUs). Whilst they are of similar family, horsepower
and vintage they are quite different in security aspects.

1) SLE77: The SLE77 is a traditional style security con-
troller intended for mid-range payment applications, and eval-
uated to Common Criteria [24] EAL5+. Its crypto-coprocessor
does not support TUAK/Keccak so was not used in our tests.
Details of the chip protection measures against physical, side-
channel leakage and faults are not publicised, however in a
traditional security chip one might expect protective shields,
plus power smoothing and noise insertion to counter power
analysis, and sensors/detectors to counter fault attacks. Some
protection may arise from the application and OS software e.g.,
randomised/repeated operation and dummy cycles, although
this may be optimised for the included algorithms. For a
new algorithm running on this chip, we should expect some
protection from the hardware, although the final algorithm code
will need to improve this, which would likely degrade the
performance measured in our experiments.

2) SLE78: The SLE78 is an innovative security controller
intended for high security applications. Instead of relying
mainly on shields and sensors it uses “Integrity Guard” [25],
which exploits dual CPUs working in tandem. The claimed
features include:

• Dual CPU implementation for fault detection
• Full CPU, memory, Bus and Cache encryption
• Error detection codes on all memories
• Error codes for cache protection
• Address and data scrambling of memories
• Side-channel leakage suppression
• Active Shield

Running the algorithm on the SLE78 offers a good deal
of hardware protection with less reliance on added software
countermeasures; so we would anticipate less performance
degradation when compared with the SLE77.

IV. SOFTWARE DEVELOPMENT

The starting point for the smart card software development
was the example code published in 3GPP TS 35.231 [6]. This
went through several versions during the project, based on
results/feedback and on-going optimisation work. The final
versions should be regarded as optimised to the extent that was
possible with a generic implementation avoiding chip specific
enhancements. Referring to Table I the primary template for
the smart card experiments was the generic speed optimised
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version 1 that could be built for 8, 16, 32 and 64 bits, and
made use of generic loops and macros. The 64 bit option was
discounted as being unrepresentative of current smart cards
and because legacy C compilers cannot easily cope with integer
variables beyond 32 bits. Some minor modifications were made
to the initial smart card code, but largely it remained true
to the original generic code. Later, in order to understand
performance issues relating to the algorithm running on the
MULTOS platform, a 32-bit version of the code was part-
optimised, which involved expanding the Macros and unrolling
the inner loops within the main Keccak functions. The final
MULTOS version also used fixed pointers for buffer manipu-
lation. Note that in all versions of the code, the calculation of
TOPc was removed from each function. Within a smart card,
this value would be pre-calculated and loaded into protected
memory and so there is no need to recalculate it; and doing
so could halve a TUAK function’s speed.

A. Software Functional Testing
To test TUAK functionality, we used the six test data sets

published in 3GPP TS 35.232 V12.0.1 [20]. The data sets
were designed to vary all inputs and internal values, and assure
correctness of an implementation; they thus also serve well for
performance tests. To simplify testing the test data sets were
included within the card application. This added an extra static
data requirement, but meant that tests could be run by simply
specifying the test set within the card test command, or by
supplementing the test set with command data. Each command
had an execution count so the targeted function could be run
from 0 to 255 times (on the same input data). Typically the
count would be ’1’, although ’0’ was useful for estimating
round trip delays and higher counts improved measurement
precision.

V. RESULTS

In this section, we present the experimental results, based
on the 3GPP test data. The results were obtained via a scripting
tool that would send a command message to the card in the
form of an Application Protocol Data Unit (APDU) and then
time the response. Although card processing time should be
consistent and repeatable, scripting tools have tolerances. To
compensate, the test commands instruct the card to execute a
function multiple times before returning a result. A calibration
was also carried out using a protocol analyser.

A. PC Results
The initial performance experiments used to refine the

public example code were PC based, with results (in clock
cycles) from the various versions (see Table I) summarised in
Table II. Note that the cycle number includes pre, post data
processing and overheads for a single run of Keccak-1600 (24
rounds).

Variation between minimum and average results arises from
the OS. The minimum values are representative of the CPU
capability. Generally, speed increased with the target build size.

B. Smart Card Performance
Native card performance was mainly measured on the

SLE77; only the 32-bit algorithm was run on the SEL78. The
MULTOS results used both chip types for all tests. The results
are shown in Tables III and IV.

TABLE II. PC VERSION PERFORMANCE COMPARISON

Versions Minimum Cycles (average cycles)
8-bit 16-bit 32-bit

0 (size opt) 168652(380066) 85988(215250)
1 (speed opt) 49688(116200) 22496(55343) 7152(9024)
2 (N/A)
3 (original) 202140(221564) 87350(193371)
4 (N/A)
5 (unrolled) 6368(10391)
6 (bit-interl) 73120(185217) 59307(131112)
7 (bit-interl opt) 10216(25570)

TABLE III. NATIVE MODE PERFORMANCE (ms)

Test Mode/Chip SLE77 SLE78
Data f1f1s f2345 f5s f1f1s f2345 f5s

8-bit 18.11 18.17 18.11
1 16-bit 15.17 15.23 15.17

32-bit 19.58 19.64 19.51 19.58 19.70 19.51
8-bit 18.17 18.17 18.17

2 16-bit 15.23 15.23 15.17
32-bit 19.64 19.76 19.58 19.64 19.82 19.58
8-bit 18.23 18.17 18.17

3 16-bit 15.23 15.29 15.17
32-bit 19.70 19.82 19.58 19.70 19.88 19.58
8-bit 18.17 18.23 18.17

4 16-bit 15.17 15.23 15.17
32-bit 19.58 19.76 19.45 19.58 19.76 19.51
8-bit 18.17 18.23 18.17

5 16-bit 15.17 15.36 15.17
32-bit 19.58 20.01 19.58 19.58 20.00 19.58
8-bit 36.22 36.27 36.19

6 16-bit 30.16 30.28 30.10
32-bit 38.85 39.15 38.67 38.79 39.15 38.60

Normally, when the MULTOS organisation specifies a
new function for the Virtual Machine (VM) it would be
coded in low-level software and invoked from an Application
Programming Interface (API). The API performance should
be closer to that of Table III; however as this is currently
not the case, the Table IV figures apply. All versions of the
application benefit from a typical memory optimisation i.e.,
the Keccak main buffer (INOUT) was forced into a reserved
section of RAM. Using non-volatile memory (NVM) instead
made the 8-bit and 16-bit versions three times slower and the
32-bit version five times slower. The “32x” rows represent the

TABLE IV. MULTOS PERFORMANCE (ms)

Test Mode/Chip ML4 = SLE77 ML3 = SLE78
Data f1f1s f2345 f5s f1f1s f2345 f5s

8-bit 19882 19952 19796 23837 23947 23962
16-bit 10749 10826 10702 12824 12917 12838

1 32-bit 6396 6505 6350 7239 7348 7192
32x 3104 3214 3073 3432 3557 3400
32p 1529 1575 1529 1623 1654 1622
32-bit 6474 6568 6396 7332 7441 7254

2 32x 3198 3276 3120 3526 3619 3463
32p 1544 1576 1529 1638 1669 1623
32-bit 6537 6615 6396 7379 7504 7254

3 32x 3245 3339 3120 3603 3681 3463
32p 1560 1592 1529 1654 1670 1623
32-bit 6427 6552 6349 7269 7410 7191

4 32x 3151 3261 3089 3478 3603 3401
32p 1544 1591 1529 1623 1669 1622
32-bit 6443 6708 6412 7301 7597 7254

5 32x 3166 3432 3120 3494 3791 3463
32p 1544 1622 1529 1638 1700 1622
32-bit 12543 12808 12402 14211 14492 14071

6 32x 5990 6224 5866 6614 6879 6474
32p 2980 3057 2949 3135 3198 3105
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TABLE V. TEST DATA PARAMETER SIZES

Test Data K MAC RES CK IK Keccak
Iterations

1 128 64 32 128 128 1
2 256 128 64 128 128 1
3 256 256 64 128 256 1
4 128 128 128 128 128 1
5 256 64 256 256 128 1
6 256 256 256 256 256 2

“unrolled” version of Keccak, which is a removal of inner
loops and macros in the C code, and the “32p” version also
uses fixed pointers rather than array index calculations. The
smart card test results are further described and analysed in
Section VI.

VI. ANALYSIS OF THE SMART CARD RESULTS

To consider the experimental results, it is necessary to be
aware of the parameter sizes (bits) inherent in the standardised
test-sets, which are summarised in Table V. The test data
parameters are designed to exercise TUAK in representative
modes of use. Note that for the first five test sets (single
iteration) the Keccak core has very similar execution time,
with TUAK variations arising from the differing amounts of
data to absorb or squeeze out of the sponge (working buffer).

Note that the common/fixed parameters sizes (bits) for the
TUAK algorithm are: RAND = 128, SQN = 48, AK = 48,
AMF = 16.

A. Performance Target

We need to define an appropriate performance target, so
we can start by recalling the target used for the MILENAGE
design [4].

...“The functions f1-f5 and f1* shall be designed so
that they can be implemented on an IC card equipped
with an 8-bit microprocessor running at 3.25 MHz
with 8 kbyte ROM and 300byte RAM and produce
AK, XMAC-A, RES, CK and IK in less than 500
ms execution time.”...

Technology has advanced since this target was created and
it might be difficult to find a SIM chip with these minimal
capabilities, and indeed many do not have ROM. Furthermore,
the target is ambiguous and could be interpreted that if you
ran the functions in sequence each could take 500ms. It is also
unclear how much of the ROM and RAM can be used. A more
appropriate and modern target was defined during the study.

...“The functions f1-f5 and f1* shall be designed
so that they can be implemented on a mid-range
microprocessor IC card (typically 16-bit CPU), oc-
cupying no more than 8kbytes non-volatile-memory
(NVM), reserving no more than 300bytes of RAM
and producing AK, XMAC-A, RES, CK and IK in
less than 500 ms total execution time.”...

This revised target definition has been proposed to 3GPP for
inclusion in future versions of the standard documents.

Figure 3. Comparison of Native Mode Execution Times

B. Native Mode
If we consider the results from the native implementation

on the SLE77, the function execution times for the various
test data sets are quite similar with the exception of test set
6. The latter uses a double iteration of Keccak, which roughly
doubles the execution time. As can be seen from Figure 3,
compiling the generic code for the different target bit widths
affects the execution time, but not by an enormous margin.
The most efficient version is the 16-bit target, which provides
the best fit for the underlying processor.

Due to practical constraints we only have SLE78 mea-
surements for the 32-bit target, which show similar speed to
the SLE77 (native). The extra security features of the SLE78
seem not to penalise performance although there may be added
financial cost. The striking observation is that native mode per-
formance satisfies our target by a very comfortable margin. It
is therefore reasonable to conclude that provided the algorithm
is custom-coded on a typical (rather than highest performance)
SIM chip there is no need for a crypto-coprocessor.

This study focussed more on performance than code-size
minimisation, however, all native implementations fitted within
our memory targets.

C. Platform Mode
Within the study we only considered the MULTOS plat-

form; although a Java Card would make an interesting compar-
ison. The results here were disappointing, although a signifi-
cant overhead had been expected due to the operation of the
secure Virtual Machine and the MULTOS Execution Language
(MEL) [26] abstraction. In practice, the best results were
around two orders of magnitude slower than native; see Figure
4. Furthermore, the performance improved with increasing
compiled bit-size, which suggests that the compilation and
MEL interpretation does not map closely to the underlying
CPU size for the processing in TUAK.

On inspection of the generic Keccak function one saw
extensive use of macros and loops. To determine if they were
causing problems for MULTOS, an “unrolled” 32-bit version
of Keccak was created, removing macros and inner loops. The
results are in the Table IV rows marked “32x” and in Figure 4,
showing a doubling of speed. A further improvement was to
adapt the algorithm to use fixed location buffer pointers rather
than indexed arrays; and the corresponding “32p” version
shows a further speed doubling. However, a single function
still takes around 1.5s.
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Figure 4. MULTOS f1() Execution Times

If we consider the unrolled Keccak there are many shifts
on array contents, however MEL does not have a core shift
instruction, but uses shift primitives. The unrolled Keccak is
twice as fast as the generic version, partly due to the way that
MULTOS handles shifts. The amount of shift on a buffer m
can be known at compile time or run time, as shown below.

m = m << 3 or m = m << n

The first example is handled as a single use of the shift
primitive, whereas the second will loop n times shifting 1 bit at
a time. This still leaves a big question mark over the efficiency
of the primitive itself (and other bitwise operations).

If we consider the x2 speed-up from pre-computing TOPc,
the x2 from removing loops/macros and the x2 from using
pointers, the application is x8 faster than the generic version.
However the conclusion is still that the algorithm cannot meet
the target performance if loaded as an application on a card
platform (MULTOS at least). This suggets it is not practical
to add the algorithm to deployed or existing stock cards. To
use a card platform, an API would need to be added so that
an efficient native implementation could be called.

VII. SECURITY DEFENCES AND PERFORMANCE

Modern SIM cards are normally based on tamper-resistant
secure microcontrollers, which inherently have a range of de-
fences against physical, side-channel and fault attacks. There-
fore, a TUAK implementation on a SIM platform should be
much better protected than an implementation on a general
purpose microcontroller, with the latter incurring significant
performance overhead to achieve modest attack resistance. If
we consider the chips used in our tests then the SLE78 would
be expected to offer significant protection against physical,
side channel and fault attacks [24] due to the innovative
underlying hardware; requiring less software countermeasures
(and performance degradation) than a conventional secure
microcontroller. The SLE77 would also offer hardware based
protection, particularly against physical and fault attacks, but
adequately preventing side-channel leakage will require addi-
tional measures in software. Fortunately, the SLE77 is quite
fast and even if the performance was degraded by an order of

magnitude, we could still run f1, f2345 and f5s and meet the
overall performance target. MULTOS platforms are known and
marketed for their high security and had they been fast enough
they would have been expected to offer added OS security
to compliment the underlying chip hardware. However, the
current view is that a new MULTOS primitive will be needed
for the algorithm and so the issues are similar to the SLE77/78.

A. Fault Attack Defences and Performance Impact
The faults used in attacks are normally achieved by volt-

age glitches, radiation pulses and operating the target device
beyond tolerance. The hardware sensors in tamper-resistant
smart cards are intended to detect the likely means of fault
insertion and prevent a response useful to the attacker; so
there is no significant added overhead for the software. A
very sophisticated and skillful attack might bypass the sensors,
however by adopting TUAK as an openly published algo-
rithm, with diversified card keys, we are avoiding proprietary
secret algorithms that might motivate such effort. An added
countermeasure could be to run the algorithm twice and only
output a response if the results agree; this would counter
attacks that analyse correct and faulty results from algorithms.
The added countermeasure is probably unnecessary for the
chips considered in this work, although halving the speed of
operation would still keep it well within specification. Note that
an attacker will seek to insert a fault at the most opportune
moment, which may be determined from side-channel leakage.

B. Side-Channel Attack Defences and Performance Impact
Timing leakage attacks [27] can be possible when there

are observable data dependent delays in the application; in
which case added redundancy is needed in the implementation.
Timing variations can be sufficiently large that they can be
detected despite low level measures to disguise side-channel
leakage that might be subject to power analysis. The leakage
generation principle is quite simple, e.g., if a variable is true
do something time-consuming else do something quick. The
variable could represent a value that is tested at the application
layer, or just a low-level bit test. A brief inspection of Keccak
does not show obvious high-level timing leakage, as there are
no conditional branches in the code. However, there could
be lower level leakage if bit rotates are used. For example
a processor may effect a rotate by shifting the contents of a
register up one place and then testing the value that falls out of
the register. If the value is ’1’ then this has to be added back
in as the LSB, so unless the designer adds dummy operations,
processing a ’1’ is going to take longer than a ’0’.

The Keccak example code has macro names that imply
rotate, but on inspection they are buffer shift operations rather
than register rotates. However, there could be a timing effects
when the compiled target size (8/16/32 bit) does not match the
underlying register size. For example if we compile for 16-
bits, but the CPU registers are 8-bits then our shift may need
to modify the least significant bit of the upper byte based on
the bit value shifted out of the lower byte. In the case of native
code implementation, developers would be expected to take the
CPU size/shift/rotate into account. In the platform approach
the mapping between application variables and underlying
registers is unclear.

We have assumed that the chips have hardware counter-
measures to prevent bit-level side-channel leakage, as software
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measures are inferior and significantly impact performance.
For example, Hamming-weight equalisation is a technique that
seeks to reduce leakage by ensuring that for each bit transition
there is a complementary transition; so as a ‘1’changes to
‘0’ there is also a ‘0’ changing to ‘1’. In a practical im-
plementation this could for example be a 16-bit processor
where the lower 8-bits of a register handle the normal data
and the upper 8-bits handle the complementary data. However,
at the physical/electrical level, the register bits are unlikely to
have equal contribution to the leakage and so Hamming-weight
equalisation may not deliver a sufficient reduction. The impact
on execution speed is also significant, as it is necessary to clear
registers before and after use, and so a ten-fold rather two-fold
reduction in performance should be anticipated.

VIII. CONCLUSIONS AND FUTURE WORK

The main conclusion is that it is feasible to implement
TUAK in software on typical smart card/SIM chips and meet
the performance target for 3G/4G authentication algorithms,
without the need for a cryptocoprocessor. Native mode imple-
mentation is required and so for a card platform (such as MUL-
TOS) this should be supported via API calls. Processor and
memory requirements are very modest suggesting that TUAK
could meet performance targets even when implemented on
simpler legacy CPUs. Although there is no high-level data
dependent timing in TUAK, there is some potential for data
dependent side-channel leakage due to shift operations, which
will require countermeasures. Whilst high-end smart card
chips (like the SLE78) may offer significant hardware-based
resistance to side-channel analysis, other chips will require
help from software countermeasures. Such measures may
significantly impact performance; however the SLE77 results
show that function execution time could be reduced by an
order of magnitude and still satisfy the performance target. The
primary impact of the work is that by showing TUAK to be a
practical back-up or alterative to MILENAGE for typical SIM
platforms, it will be adopted as a preferred public algorithm
(initially in M2M systems); displacing proprietary solutions
that are often the target and motivation for attack.

On-going work is considering a less advanced/legacy smart
card chip (S3CCE9E4/8), side-channel leakage, and whether
TUAK could be re-used in other applications. Preliminary
results indicate that TUAK is sufficiently fast for use on more
limited chip platforms, and this suggests it might also be a
candidate for Internet of Things protocols. In fact re-using a
3G algorithm is not a new idea as MILENAGE has already
been reused outside of mobile communications.

An initial collection of power traces from the original
SLE77 TUAK implementation, shows the rounds and the round
structure, although more traces and detailed analysis are still
required to clearly determine data dependent leakage.
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