
A Practical Approach to Software Continuous Delivery

Everton Gomede and Rodolfo M. Barros
Department of Computer Science

State University of Londrina
Londrina, Paraná, Brazil

e-mail: evertongomede@gmail.com, rodolfo@uel.br

Abstract—To deliver quality software continuously is a challenge
for many organizations. It is due to factors such as configuration
management, source code control, peer-review, delivery planning,
audits, compliance, continuous integration, testing, deployments,
dependency management, databases migration, creation and
management of testing and production environments, among
others. To overcome these challenges, this work-in-progress paper
presents a continuous delivery process that promotes artefacts
produced by developers, in a managed fashion, to production
environment, allowing bidirectional traceability between require-
ments and executables. As a preliminary result, we obtained an
ecosystem of tools and techniques evaluated, tested and put into
production in order to support this process.

Keywords–Continuous Delivery; Process Quality.

I. INTRODUCTION

Software Delivery Process (SDP) consists of several tasks
in order to promote artifacts created in the production environ-
ment (server(s) where an executable is installed to delivery fea-
tures to the users) [1]. These ones can occur in either environ-
ment, producer or consumer. Due to the unique characteristics
of each software product, a general process to various contexts
probably cannot be set. Therefore, we should interpret a SDP
as a framework to be customized according to the requirements
and characteristics of each product (Software Delivery Process,
in this context, is a part of Software Development Process).

This customization usually causes a manual execution of
SDP [2]. Production environment is configured in a manual
way by the infrastructure team using terminals and/or third-
party tools. Artifacts are copied from a continuous integration
server to a production environment and possibly some data
and/or metadata are adjusted before software is released for
operation.

However, this process has some weaknesses. Predictability
is the first one, because it increases risk and downtime whether
any unexpected situation occurs [3]. Additionally, the repeata-
bility factor may compromise the diagnosis of post-deployment
problems [2]. Finally, this process is not auditable and it does
not allow the recovery of information about all events that
were held to deliver a version.

There is a growing interest in practices to overcome these
problems [4]. Such practices are known as Software Continu-
ous Delivery (SCD), defined as the ability to publish software
whenever necessary. This publication may be weekly, daily or
every change sent to the code repository. The frequency is not
important, but the ability to deliver when it is necessary [2].

This approach has great importance in software devel-
opment because it helps who is in charge of delivering to
understand better their process and, consequently, improve it.

Such improvements can be in terms of automation, decrease
delivery time, rework reduction, risk reduction, or others.
Among them, the main is the ability to have a version of
software, ready for delivery, each new code added to the
repository.

In this context, this paper presents a practical approach
to address the problems of software continuous delivery.
The main objective is to contribute with a setup of servers,
process, techniques and tools that assist to deliver software
continuously. In addition, some recommendations and further
work are discussed. Architecture issues, project management
and other dimensions related to software development were
omitted. We collect these data through of a case study.

Thus, this article was divided into five sections, including
this introduction. In Section II, we present fundamental con-
cepts and related works. In Section III, we present an approach
to Software Continuous Delivery. In Section IV, we present
preliminary results. Finally, in Section V, we present conclu-
sions, recommendations and suggestions for future work.

II. FUNDAMENTAL CONCEPTS AND RELATED WORKS

There is a relation between quality of software products
and quality of the process used to build them. Implementation
of a process aims to reduce rework, delivery time and increase
product quality, productivity, traceability, predictability and
accuracy of estimates [2]. In general, a software development
process contains activities shown in Figure 1.

Figure 1. A simplified software development process [1] [2].

Configuration management tasks of deployment and oper-
ation activities, highlighted in Figure 1, are usually performed
manually [2]. This practice, according to Humble and Farley
[2], is accompanied by anti-patterns:

• Deploying software manually: there should be only
two tasks to perform manually; (1) choose a version
and (2) choose the environment. These are goals to be
achieved in process like in [5].

• Deploying after development (requirement, design,
code and tests) was complete: it is necessary to
integrate all activities of the development process and

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

put stakeholders working together since the beginning
of the project.

• Manual configuration management of production en-
vironments: All aspects of configured environments
should be applied from a version control in an auto-
mated process.

In this context, some Software Continuous Delivery Prac-
tices arises. It is a developing discipline, which builds up
software that can be released into production at any time, by
minimizing lead-time [3].

To assist this type of software delivery approach, from
construction to operation, Humble and Farley presents the De-
ployment Pipeline (DP), a standard to automate the process of
SCD. Despite each organization may have an implementation
of this standard, in general terms it consists of activities shown
in Figure 2.

Figure 2. The deployment pipeline [2].

With each change, artifacts are promoted to next instance
of pipeline through a series of automated tasks. The first step
of the pipeline is to create executables and installers from the
code repository, in a process known as Continuous Integration
(CI). Other activities perform a series of tests to ensure that the
executable can be published. If the release candidate passes all
tests and criteria, then it can be published [2].

To implement this pipeline, some approaches were pre-
sented. Among them, Krusche and Alperowitz [5] described
the implementation of a SCD process for multiple project.
Their goal was to obtain the ability to publish software to their
clients with just a few clicks. The main contribution of this
work was to show that developers who have worked on projects
with SCD, understood and applied concepts being convinced
from the benefits of it.

Bellomo et al. [6] presented an architectural framework
together with tactics to projects that address SCD. The main
contribution of this work is a collection of SCD tactics in
order to get software products performing with a higher level
of reliability and monitoring into production environment.

Fitzgerald and Stol [4] published trends and challenges
related to what the authors called ”Continuous *”, which is,
all topics related to software delivery that can be classified as
continuous. The authors addressed issues such as; Continuous
Integration (CI), Continuous Publication (PC), Continuous
Testing (CT), Continuous Compliance (CC), Continuous Se-
curity (SC), Continuous Delivery (EC), among others. An
important point of this paper is the distinction between the
Continuous Delivery and Continuous Publication. According
to the authors, Continuous Publication is ability to put into
production software products in an automated manner. This
definition is complementary to the software continuous deliv-
ery definition given above.

Although all these works have a practical nature, none of
them showed which tools were used, which recommendations
for similar scenarios and which were the techniques used

during deployment. Therefore, the work presented in this paper
seeks to fill these gaps.

III. A PRACTICAL APPROACH

A. Main Proposal
To provide an infrastructure that allows the Software Con-

tinuous Delivery is the main goal of setup shown in Figure 3.
It has 4 areas: Commit Stage (CS), Quality Assurance (QA),
Staging (ST) and Production (PD).

Figure 3. An overview of a setup of servers and areas.

B. Areas
Commit Stage (CS) has primary responsibility to imple-

ment continuous integration of all code reviews sent to the
repository. This area consists of the following services:

• Public Code Repository
◦ Purpose: to get code reviews that have not been

approved.
◦ Tool: Git (git-scm.com).
◦ Technique: it has a single branch, called mas-

ter, which receives revisions of all developers.
• Continuous Integration

◦ Purpose: to integrate all code reviews sent to
the server.

◦ Tool: Jenkins (jenkins-ci.org) and Maven
(maven.apache.org)

◦ Technique: it does integration performing unit
testing and adding first acceptance step in peer-
review server.

• Static Analysis
◦ Purpose: to make code analysis generating

quality reports.
◦ Tool: SonarQube (sonarqube.org).
◦ Technique: each integration performs a series

of tests, such as size metrics, complexity, test
coverage, dependency calculation, among oth-
ers. Creates a baseline quality of the project.

• Peer-Review
◦ Purpose: to enable promotion/rejection of

codes from public to canonical repository.

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

◦ Tool: Gerrit (code.google.com/p/gerrit).
◦ Technique: approval of two steps, the first

being carried out by continuous integration
server and the second by the configuration
manager. If the review through both sides, code
is promoted to canonical repository.

• Canonical Repository
◦ Purpose: to receive approved code reviews.
◦ Tool: Git (git-scm.com).
◦ Technique: it has a single branch, called mas-

ter, which receives revisions of peer-review
server.

• Repository Libraries.
◦ Purpose: to store libraries and components

used in integration.
◦ Tool: Nexus (sonatype.org/nexus).
◦ Technique: libraries and components are in-

stalled automatically or manually on the server
being available for use at the time of integra-
tion.

Layout and operation of Commit Area are shown in Figure
4.

Figure 4. Commit Stage (CS).

Quality Assurance Area (QA) has the main purpose of
performing all automated tests and allow Quality Manager
perform manual tests, such as exploratory testing [2]. This
area consists of the following services:

• Continuous Integration
◦ Purpose: to obtain a copy of the code and

perform integration, functional and automated
load tests.

◦ Tool: Jenkins and Maven (maven.apache.org).
◦ Technique: get a copy of canonical repository

to generate executable, install them into library
server, application servers and database server.
After that, execute integration, functional and
load tests.

• Page Servers, Application and Database
◦ Purpose: to host application to test
◦ Tools: may vary according to the technology

used; Wildfly and MSSQL are some examples.

◦ Technique: can vary depending on the technol-
ogy used (to install and configure, basically).

• Load Test
◦ Purpose: to perform a load test against the page

servers, application and database.
◦ Tool: Jmeter (jmeter.apache.org) and Vagrant

(vagrantup.com).
◦ Technique: it performs script created by quality

manager allocating hosts as required to test. It
generates a supported load from baseline.

Operation of Quality Assurance area is shown in Figure 5.

Figure 5. Quality Assurance (QA).

Staging Area aims to provide for monitoring users and
product owners an environment as close as possible to produc-
tion environment, so they perform approval tests. These ones
are related to user experience and their perception regarding
how software product meets specified requirements. This area
has a copy of operating environments, both in terms of
operating systems, tools and settings, and in terms of data.
Monitored users are the ones chosen to perform approval tests
in a monitoring way. Occasionally, they are in the product
owner role. Figure 6 shows this area.

Figure 6. Staging (ST).

100Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

Finally, configuration manager makes promotion from
Staging Area artifacts to Production Area manually by Config-
uration Manager. However, developers and infrastructure staff
are present to perform this task. Figure 7 shows this area.

Figure 7. Production (PD).

Also, the following servers were used: (1) Log Server and
(2) LDAP Server. The first has a very important function
in the setup; to get all events occurred by indexing logs.
This assists the diagnosis, providing information for reporting,
alerts and dashboard. The tool used in this case is Splunk.
The second server has a function to allow authentication and
authorization for all setup servers. This is necessary because
it is costly to maintain users across all the servers involved in
an individualized way, in addition this increase security flaws.
The tool used in this case is OpenLDAP (openldap.org).

C. Tools
Table I summarizes all tools used with its URL. These tools

are used to Configuration Management (Git, Gerrit, Nexus,
Flywaydb and Vagrant), Continuous Integration (Jenkins and
Maven), Quality Assurance (SonarQube and Jmeter), Appli-
cation Lifecycle Management (Redmine) and infrastructure
(Splunk and OpenLDAP).

TABLE I. TOOLS USED.

Goal Name URL
Continuous Integration Jenkins jenkins-ci.org
Source Repository Git git-scm.com
Build Maven maven.apache.org
Gathering Logs Splunk splunk.com
Peer-Review Gerrit code.google.com/p/gerrit
Static Analysis SonarQube sonarqube.org
Load Test Jmeter jmeter.apache.org
Library Repository Nexus sonatype.org/nexus
Application Lifecycle Management Redmine redmine.org
Database Migration Flywaydb flywaydb.org
Automated Installation Vagrant vagrantup.com
Authentication and authorization OpenLDAP openldap.org

These tools were used because they are open/free software.

IV. RESULTS

Preliminary results about this approach are related to
automation of many delivery tasks, resulting in a more pre-

dictable and managed process. Another aspect, related to
collaboration, is due to communication between developers
and infrastructure team was increased in all aspects of the
process, since planning of a feature until its publication. These
results are classified in a process maturity level [2], as shown
in Figure 8.

Figure 8. Process maturity level [2].

V. CONCLUSION

This work presents a practical approach that can be used in
similar processes. Additionally, among the contributions can
be mentioned (1) a set of tools evaluated and (2) a set of
techniques, that can be used for organizations that do not use
this type of approach, as for those which already have a higher
level of maturity.

Moreover, some further work may be developed to improve
setup provided in this article. The first one aims to get a strat-
egy for publication with less impact in terms of unavailability
of software products, including deployment across different
timezones. The second one is linked with multiple projects
scenarios. We can analyze how the artifacts, from several
projects, are promoted to production by the same team.

Finally, this article has a practical purpose. However, to
implement continuous delivery involves more than installing
some tools and automate some tasks. It depends on effective
collaboration among all of those involved in the delivery
process, senior management support and especially the desire
of stakeholders in become the changes a reality.

REFERENCES
[1] M. V. Mantyla and J. Vanhanen, “Software Deployment Activities and

Challenges - A Case Study of Four Software Product Companies,” 2011
15th European Conference on Software Maintenance and Reengineering,
Mar. 2011, pp. 131–140.

[2] J. Humble and F. David, Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. ser. Addison-
Wesley Signature Series. Pearson Education, 2010.

[3] T. Ernawati and D. R. Nugroho, “IT Risk Management Framework Based
on ISO 31000:2009,” International Conference on System Engineering
and Technology, vol. 11, 2012, pp. 1–8.

[4] B. Fitzgerald, “Continuous Software Engineering and Beyond : Trends
and Challenges Categories and Subject Descriptors,” RCoSE 14, 2014,
pp. 1–9.

[5] S. Krusche and L. Alperowitz, “Introduction of Continuous Delivery
in Multi-Customer Project Courses Categories and Subject Descriptors,”
ICSE Companion 14, 2014, pp. 335–343.

[6] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, “Toward Design
Decisions to Enable Deployability: Empirical Study of Three Projects
Reaching for the Continuous Delivery Holy Grail,” 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, Jun. 2014, pp. 702–707.

101Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

