
Software Integration of a Safety-critical ECU: an Experience Report

Ieroklis Symeonidis, Niklas Angebrand, Kostas Beretis, Eric Envall
ArcCore AB

Gothenburg, Sweden
e-mail: {ieroklis.symeonidis, niklas.angebrand, kostas.beretis, eric.envall}@arccore.com

Abstract—In this paper, we present a software integration
methodology in accordance to the automotive software
standard AUTOSAR. The case under examination is the active
safety electronic control unit (ECU) of the recently developed
platform, called Scalable Product Architecture, of the Volvo
Car Corporation. Particular emphasis is given in the
relationship between the supplier of the ECU and the car
manufacturer. Efficient communication between these two
parties has been a challenging issue. Therefore, specific
workflows regarding the exchange of information and the
overall way of working are presented. The need of a dedicated
integration team acting as an interface between the two
organizations is also highlighted. Finally, concrete guidelines
enabling continuous integration throughout the development
process are provided. Our approach contributed in decreasing
the software development cycles. We strongly believe that the
conclusions drawn from our work experience can be
generalized up to a certain level, affecting the automotive
industry as a whole.

Keywords- automotive software; AUTOSAR; embedded
systems; integration; ISO26262.

I. INTRODUCTION

The development of embedded software in the
automotive domain is characterized by its complexity. The
reason behind that is not only the increasing functional and
safety requirements but also the fact that a significant
number of subcontractors are involved in the development
process. Traditionally car manufacturers (or OEMs) had the
role of integrating different subsystems developed by their
suppliers (Tier-1s, Tier-2s, etc.) following a “black-box”
approach [1]. These systems used to be limited in scope and
usually resided on a single ECU. On the contrary modern
automotive systems include distributed functions with strict
timing and communication requirements between various
ECUs. Such functions can be found in active safety and
advanced driver assistance systems of premium cars.

The challenges of software engineering within the
automotive industry have been well described by Broy et al
in [2]. The increasing role of software as a source for
innovation and the multidisciplinary nature of the domain are
highlighted. Issues regarding the integration of software
components in a distributed system are presented in [3]. In
this paper, a general overview of the existing challenges as
well as possible solutions to design and analysis issues in
automotive systems are presented. AUTOSAR [4] and its
implications on the development tool-chain are analyzed in

[5]. In addition, [5] also shows how the concepts of the
AUTOSAR methodology can be brought together in a
common tool-chain leading to a higher degree of automation
in the software development. Moreover a case study
regarding a way of incorporating AUTOSAR in the
development process of an antilock braking system (ABS) is
presented in [6]. Finally, an approach for dealing with the
complexity of the development process according to specific
corporate needs is analyzed in [7]. Emphasis is being given
on the need of constructing a tool chain with high degree of
reusability and automation. A case study regarding a tool-
chain model for AUTOSAR ECU design is also presented.

Software applications produced by different vendors
need to be integrated into the final software for the ECU. The
development of such software is an iterative process,
consisting of multiple releases with parallel lifecycles. The
purpose of our work is to present a well-defined software
integration process and the way it should be aligned within
the development process. These guidelines are derived from
our experiences as a software integration partner for Volvo
Car Corporation. Detailed information about roles and
workflows as well as the flow of information between the
OEM and the ECU supplier throughout the whole process
will be provided. Our proposed workflow allows the
exchange of key information between the two partners while
at the same time it protects each side’s intellectual property.

The remainder of the paper is organized as follows. In the
following section, we provide the technical background of
our paper. Section 3 presents the software development
process and section 4 describes our approach towards
software integration. Finally, we draw our conclusions and
outline future work.

II. TECHNICAL BACKGROUND

In this section, we are going to identify the key
stakeholders that were involved in the development process.
Also, we are going to present the automotive standards that
influence the development process. In this project, there are
three interacting parties:

• OEM: The main job of the OEM is to develop
functions (e.g., Lane Keeping Aid, Collision
Warning). A software architect defines the structure
of the part of the software that will implement these
functions. The implementation is assigned to
function developers, who use Matlab/Simulink as a
development tool. The developer of each function is
responsible for his distinct part of the

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

code/functionality. The system testers are
responsible for testing and verifying that the system
conforms to a certain behavior.

• Tier-1: The responsibilities of the Tier-1 include
both the hardware and the final software (including
the OEM’s advanced functionality). In particular, the
Tier-1 designs the ECU hardware, performs OS
configuration and implements its own functions.
These functions address communication with
peripherals (e.g., sensors) and basic functionality
such as diagnostics. The same stakeholders (software
architect, function developers and system testers)
can be identified within the Tier-1.

• Software integration team: ArcCore’s software
integration team resides inside the OEM. Our team
acts as an interface between the two organizations
enabling effective communication between all the
stakeholders on the appropriate level of abstraction.
Our approach increased the efficiency of the
development leading to shorter time to delivery and
reduced cost. A major challenge of our software
integration team was also to establish a work flow
and an automated tool-chain. This tool-chain
consisted of requirements management tools, code
generation tools, AUTOSAR authoring tools,
compiler and linking tools as well as general purpose
tools like data repositories and build servers. Under
this work environment it is clear that the
responsibilities of the software integration team can
be quite broad, requiring various competencies. The
range of activities covered could span from
developing glue code or gateway functionality, up to
specifying to a component supplier the system
functionality to which the component must conform
[8].

A. AUTOSAR

AUTomotive Open System Architecture is a software
architecture standard developed jointly by automotive
manufacturers, OEMs and tool developers. This standard
was created to satisfy the need for standardization of basic
software and the interfaces to applications/bus systems [9].
The motivation behind that was to reduce system complexity
and keep the development cost feasible. Some additional
goals of AUTOSAR include the scalability across different
vehicles and platforms, maintainability throughout the
product lifecycle and the sustainable utilization of natural
resources [10].

AUTOSAR follows a layered architecture, where
hardware, basic software, runtime environment and
application software are separated from each other [11]. The
basic concepts of AUTOSAR are the Software Component
(SWC), the Runtime Environment (RTE) and the Basic
Software (BSW). Each SWC should be assigned to one ECU
and encapsulates part of the functionality of the application
[12]. The implementation of the SWC is independent of the
underlying platform, following the basic design concept of
separation between layers. The RTE provides a
communication abstraction to the SWCs connected to it,

providing the same interface and services both for inter and
intra ECU communication. Since the requirements of SWCs
running on RTE may vary, different ECUs may have
different RTEs. The BSW is essential to run the functional
part of the software. It is the standardized software layer,
which provides services to the SWCs [11]. It contains both
standard and ECU specific components.

Although this model based approach is a step forward in
reducing the complexity of the development process, there
are certain limitations. AUTOSAR methodology does not
include topics like requirements management, hardware
development and build management. Therefore, it does not
cover the complete development process lifecycle [5].
Furthermore AUTOSAR does not standardize test
procedures [5]. Finally, AUTOSAR neither defines concrete
guidelines and procedures for development strategies to be
followed nor separates distinctly the activities in the various
development phases [13]. From the above it becomes clear,
that there is not a universal way of working with the standard
but only case specific implementations like the one
addressed in this paper. The way of working can be
subjective and highly dependent on the developer’s work
experience and interpretation of the standard. Therefore, a
well-defined development process is of great importance.

B. ISO26262

ISO26262 [14] is the standard for functional safety
management of electrical and or electronic systems within
the automotive industry. It applies to all development
activities of safety-related systems (electrical, electronic and
software) and addresses possible hazards caused by
malfunctioning behavior of such systems, including their
interaction. It consists of 10 parts, each one dealing with a
specific development activity. Parts 6- “Product development
at the software level” and 9-“Automotive Safety Integrity
Level (ASIL)-oriented and safety-oriented analyses” are of
great importance for our work. Part 6 highlights the
importance of performing safety analysis at the software
level and suggests some mechanisms for error handling and
detection at a generic level. However, no clear guidelines are
provided leading to subjective implementation in industrial
practice [15]. Part 9 provides a classification mechanism for
hazards according to ASIL. The ASILs can have the
following values “QM, A, B, C, D” where D requires the
most attention and QM the least due to a combination of
potential severity, controllability and exposure of hazards
[16].

ISO26262 provides guidance to identify the level of
effort required to achieve the desired level of functional
safety [17]. It can also be viewed as a defense against
liability claims and it is not a certification requirement [17].
Furthermore AUTOSAR only provides mechanisms to
support functional safety on a software level and does not
guarantee any functional safety properties of the final system
[16]. The key notion that brings together the two standards is
“freedom of interference”. By partitioning the system into
safety related and non-safety related components it has to be
assured that there is no interference between the safety
related ones and the rest of the software, or that it is reliably

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

detected. Memory partitioning provides spatial freedom of
interference, while other techniques like implementation of a
watchdog manager provides temporal freedom of
interference. Finally, a way of guaranteeing correct exchange
of information is through end-to-end communication
protection mechanisms. However, IS026262 does not
explicitly address AUTOSAR. Therefore, the selection and
implementation of any safety mechanism is a responsibility
of the AUTOSAR vendor.

III. SOFTWARE DEVELOPMENT PROCESS

The case under examination is an active-safety ECU with
two parties involved in the development of the software.
Since both parties need to protect their intellectual property,
only the compiled version of the source code is exchanged
between them (i.e., object-code). Along with the object code
a definition of the software structure and its interfaces is
supplied in the form of ARXML files. This highlights the
importance of a dedicated software integration team, able to
combine object code from both sides with a common system
extract into unified software. The system extract contains the
software structure and the interfaces as well as all service
and integration information needed by the software
integration team, as defined by the AUTOSAR standard.

An automotive software development project consists of
several internal iterations/releases. In our case, each release
was divided into the following phases: contract, function
integration, testing and verification and short-loop phases
(Figure 1).

Figure 1. Software development process.

A. Contract

AUTOSAR defines a Composition SoftWare Component
(C-SWC) that contains one or several Atomic SoftWare
Components (A-SWCs), which we will refer to simply as
SWCs. The system has a root composition, which contains
one composition for the OEM SWCs and one for the Tier1
SWCs (Figure 2). Both sides need to define the interfaces
between their compositions and to the external signal busses
available for the ECU. This is done by exchanging contracts
in form of a preliminary system extract (Figure 3). At this
phase software architects on both sides need to provide an
initial software structure for the SWCs containing interfaces
for sending and receiving signals as well as interfaces
towards the diagnostic services. In the contract phase not all
details about the final SWC need to be defined. It is possible
to add more information in an iterative manner. Usually in
the automotive domain, external bus interfaces need to be
defined early in the design process and remain unchanged

(frozen) until the next release of the software. At a later stage
the interfaces towards services like diagnostics need to be
also frozen. In order for several parties to be able to work in
parallel it is important to freeze the composition interfaces
and the service interfaces at the same time.

Figure 2. Software composition.

In order to validate the initial software structure, an RTE
generation is performed by each party. RTE contracts are
generated for each SWC during the contract phase. At this
point the SWCs consist of a basic structure with no
functionality, we call them SWC shells. To be able to make
an RTE generation a preliminary BSW configuration is
needed. The purpose is to validate and identify
incompatibility issues in the initial structure. Depending on
the completeness of the BSW configuration there might be
errors/warnings at this phase. The cause of these
errors/warnings must be identified by the software
integration team and reported to the Tier-1. As an additional
validation step the software containing only SWC shells is
compiled. This helps to identify errors related to the source
code.

Figure 3. Contract phase.

 After the successful generation of the RTE, the SWC
shells are delivered to the function development team. In
order to enable continuous integration we produce a dummy

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

function for each SWC. This marks the beginning of the
function integration phase (Figure 4).

B. Function Integration

 At this stage the function developers introduce their
functionality in the SWC shells. Any integration issue that
might occur is resolved by the software integration team and
a new shell is generated. To be able to deliver object code,
the integration team needs a properly configured build
environment, which is the responsibility of the Tier-1. More
specifically RTE generation needs to be error-free, as well as
BSW modules like OS and COM need to be configured
properly. The key for continuous integration is that the code
always builds. This is guaranteed by the initial dummy
functions, which enable the software integration team to
successfully build software regardless of the development
state of a specific function. Functions are integrated
gradually. Successful integration of a function is indicated by
a successful build of the software. Once all the functions of
the specific release are integrated, the produced software is
delivered for testing on target. It is of great importance to
verify that both sides use the same build environment to
produce code. Therefore, the Tier-1 delivers the build
environment at the end of this phase, having incorporated all
the possible changes introduced during function integration.
An example of such a change could be the mismatch of the
linker script due to changes introduced in the memory
sections.

Figure 4. Function integration phase.

C. Testing and Verification

The testing and verification phase follows. This is not in
the main scope of the software integration team and therefore
it will not be analyzed in full detail. Dedicated teams on both
sides perform testing and verification on system level, based
on specific requirements. Prior to the system level tests it has
to be mentioned that the function developers test their
functions in simulated environments. The software
integration team performs unit tests of the SWC shells and
various configuration tests on the system extract. Also upon

the official delivery in the form of a binary (from the Tier-1
to the OEM), a series of acceptance tests are performed. If
the outcome is successful and the proper documentation is
approved, then the software is available for the test vehicles.

D. Short-loop

Due to the relative long lead time from function freeze
until the function is available in test vehicles there is a great
need for having internal engineering releases (i.e., short-
loops). This allows the OEM to speed up the function
development process and detect possible bugs at an early
stage. A short-loop can be performed once a build
environment is setup, including the Tier-1 object code. In a
short-loop build, new source code from the function team is
introduced in order to build complete new software. As long
as the internal structure changes and the border of the
compositions remains the same software with the new
functionality is produced. Any changes introduced must be
compatible with the given BSW configuration.

IV. INTEGRATION APPROACH IN THE CONTEXT OF

AUTOSAR

The abstraction of AUTOSAR can, with great benefits,
also be extended into the function development domain. This
is done by supporting the function development with SWCs
that encapsulate the pure functionality into a functional
library and adding AUTOSAR helper components that take
care of the AUTOSAR properties (Figure 5). Depending on
the implemented functionality, each SWC may require
different helper components.

This workflow comes with multiple gains. The functions
can be developed and verified in a different environment (for
example Matlab/Simulink) without any AUTOSAR
dependencies. As mentioned earlier, the SWCs can always
be provided with a dummy function, which ensures that the
system always builds. Another aspect is that the function
developers do not need to know the AUTOSAR details and
can keep their focus on function development.

Figure 5. Functional composition under AUTOSAR context.

The usage of a dedicated database for the needs of the
OEM's software architect was also introduced. All the
system design related information (e.g., signal interfaces,
diagnostic services) can be stored in this database. This

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

enables the software architect to model the system in a
lightweight fashion, thus providing a higher abstraction
level regarding AUTOSAR. Using the information stored in
this database, the software integration team can generate the
AUTOSAR definition of the system in the form of ARXML
files.

Figure 6. Exchange of information.

For the successful integration, the following rules were
established for the exchange of information between the two
sides. This is essential in order for both sides to have a
synchronized view of the overall software structure (Figure
6). The OEM defines and owns the borders of both
compositions (red boxes). Each side defines its composition
and internal SWC structure including intra connections. The
Tier-1 must make sure that its composition matches the
defined border. This information combined with the signal
database (defined by the OEM) leads to complete system
extract that can be used for the development process. The
supplier's border can only be changed by mutual agreement
(change request).

V. CONCLUSIONS AND FUTURE WORK

Throughout this case study we illustrated our approach
for reducing the complexity involved in the development
process of an automotive embedded system. The main
challenges in such a process are the interaction between the
development partners, the variety and sometimes
incompatibility of the tools involved, as well as the
subjective implementation of the dominant automotive
standards such as AUTOSAR and ISO26262. We presented
a proven-in-practice software development framework
according to the needs of the AUTOSAR standard. The
interaction between the OEM and the Tier-1 becomes much
more efficient and at the same time intellectual property is
protected. The key element for the successful interaction is
the software integration team, which has a broad variety of
responsibilities as described earlier. This team may be part of
the OEM or could alternatively be a third partner working for
the OEM like in our case.

 Furthermore concrete guidelines enabling continuous
integration in the context of AUTOSAR were provided. In

this way, the function development gets decoupled from any
AUTOSAR constraints. This leads to shorter development
cycles and consequently to a faster time-to-market for the
final vehicle. According to the “Driver Support and Software
Integration” manager of the Volvo Cars Corporation, the
time for producing a short-loop has decreased “from several
days to about an hour”. He also stated that, “the AUTOSAR
interface specification time has decreased from three months
to less than two hours”. Previously this process was manual,
involving several engineers, while now it is fully automated.

However, there is still room for improvement. Certain
adaptations of the existing tool-chain are needed, in order to
deal with incompatibilities between different tools. Ideally
this tool-chain should fit into any automotive development
environment. Finally, we also plan to implement an
AUTOSAR-compliant testing framework for function
performance measurement and debugging on target, based
on actual log data from test vehicles. In this way possible
bugs related to actual implementation that were not detected
through simulations can be recreated on a development
board with the same microprocessor. With this approach we
reduce the need to utilize test vehicles, which are limited in
number and might not be available.

ACKNOWLEDGMENTS

We would like to express our appreciation to all people at
the Active Safety department of the Volvo Car Corporation
and especially to Daniel Levin, for their collaboration
throughout this project. Furthermore we are also sincerely
grateful to Postdoc researcher Risat Pathan from Chalmers
University of Technology for his insightful advice.

REFERENCES
 [1] H. Heinecke, et al., "Software Components for Reliable

Automotive Systems," in Design, Automation and Test in
Europe, 2008. DATE '08, 2008, pp. 549-554.

[2] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann,
"Engineering Automotive Software," Proceedings of the
IEEE, vol. 95 , 2007, pp. 356-373.

[3] M. Di Natale and A. L. Sangiovanni-Vincentelli, "Moving
From Federated to Integrated Architectures in Automotive:
The Role of Standards, Methods and Tools," Proceedings of
the IEEE, vol. 98, 2010, pp. 603-620.

[4] AUTOSAR development partnership, "AUTomotive Open
System ARchitecture". [retrieved: March, 2015]. Available:
http://www.autosar.org

[5] S. Voget, "AUTOSAR and the automotive tool chain," in
Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010, 2010, pp. 259-262.

[6] T. Hermans, P. Ramaekers, J. Denil, P. D. Meulenaere, and J.
Anthonis, "Incorporation of AUTOSAR in an Embedded
Systems Development Process: A Case Study," in Software
Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on, 2011, pp. 247-250.

[7] M. Biehl, J. El-khoury, and M. Törngren, "Automated
Tailoring of Application Lifecycle Management Systems to
Existing Development Processes," International Journal on
Advances in Software, vol. 6, 2013, pp.104-116.

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

[8] P. Wallin, J. Froberg, and J. Axelsson, "Making Decisions in
Integration of Automotive Software and Electronics: A
Method Based on ATAM and AHP," in Software Engineering
for Automotive Systems, 2007. ICSE Workshops SEAS '07.
Fourth International Workshop on, 2007, pp. 5-12.

[9] S. Furst, "Challenges in the design of automotive software,"
in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010, 2010, pp. 256-258.

[10] AUTOSAR development partnership, "AUTOSAR-Technical
Overview". [retrieved: March, 2015] . Available:
http://www.autosar.org/about/technical-overview/

[11] D. Diekhoff, "AUTOSAR basic software for complex control
units," in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2010, 2010, pp. 263-266.

[12] B. Huang, H. Dong, D. Wang, and G. Zhao, "Basic Concepts
on AUTOSAR Development," in Intelligent Computation
Technology and Automation (ICICTA), 2010 International
Conference on, 2010, pp. 871-873.

[13] C. JungEun, L. DongSun, and L. Chaedeok, "Process-Based
Approach for Developing Automotive Embeded Software
Supporting Tool," in Software Engineering Advances, 2009.
ICSEA '09. Fourth International Conference on, 2009, pp.
353-358.

[14] International Organization for Standardization, "ISO 26262-
10:2012," ed, 2012. [retrieved: March, 2015]. Available:
https://www.iso.org/obp/ui/#iso:std:iso:26262:-10:ed-1:v1:en

[15] V. Bonfiglio, L. Montecchi, F. Rossi, and A. Bondavalli, "On
the Need of a Methodological Approach for the Assessment
of Software Architectures within ISO26262," presented at the
SAFECOMP 2013 - Workshop CARS (2nd Workshop on
Critical Automotive applications : Robustness \& Safety) of
the 32nd International Conference on Computer Safety,
Reliability and Security, Toulouse, France, 2013, pp. 51-56.

[16] K. Hyungju, R. Itabashi-Campbell, and K. McLaughlin,
"ISO26262 application to electric steering development with a
focus on Hazard Analysis," in Systems Conference (SysCon),
2013 IEEE International, 2013, pp. 655-661.

[17] B. Böddeker and R. Zalman, "AUTOSAR at the Cutting
Edge of Automotive Technology," in 7th International
Conference on High-Performance and Embedded
Architectures and Compilers, 2012. [retrieved: March, 2015].
Available: http://www.hipeac.net/system/files/zalman-
keynote.pdf

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

