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Abstract—This paper proposes a new weight assignment method
for Haar-like features. The method uses principal component
analysis (PCA) over the positive training instances to assign new
weights to the features. Together with the method, a particular
Haar-like feature that uses statistics extracted from positive
training instances is employed. The method and the Haar-like
feature were designed to verify if the distribution of points
produced from the negative instances in the single rectangle
feature space (SRFS) of each Haar-like feature could be modeled
as an uniform distribution. Although negative instances may
spread themselves in very different and chaotic ways through
the SRFS, experiment with the method and the Haar-like feature
has shown that the negative instance cannot be properly modeled
as an uniform distribution.
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Haar wavelet; principal component analysis

I. INTRODUCTION

Object detection is the task of automatically discovering
the presence and location of a particular object in an image.
It is usually the first step for additional processing over the
target object. The detection of human faces in complex scenes,
required for several applications, is a complex problem and
has been the main subject of several researches, many of them
surveyed by Zhang and Zhang [1]. The Viola-Jones framework
[2] is probably the most known method to deal with this
problem. The use of Haar-like features to develop an accurate
frontal face classifier makes the process fast enough to detect
objects in real time video. Some researches tried to improve the
speed, accuracy and robustness of such approach [3] [4] [5] [6].
For instance, Pavani et al. [7] established that it is possible to
assign better weights to Haar-like features by interpreting them
as the inner product of the weights versus the rectangular areas
average values. Their experiments showed superior results if
compared to many other relevant works.

This paper, based on the approach of Pavani and colleagues,
presents a new method for assigning weights to Haar-like
features. PCA is used to find a vector of weights that befittingly
identifies the positive training instances. This simple and fast
method may be complementary to Pavani’s approach and has
the advantage that it can be applied on a step preceding the
classifier boosting. This provides some relief to the boosting
process, known as a lengthy phase. During the PCA process-
ing, some statistics are extracted from the positive instance
dataset in order to be employed in a new classifier similar to
the one suggested by Landesa-Vazquez and Alba-Castro [5].

In this paper, Section II introduces the processes and
frameworks used in the development of a face detector as
shown in [2]. Section III reviews some recent researches that
brought interesting ideas and enhancements to such detectors.
Section IV details the main contributions of this paper. In
Section V some experiments using the proposed method are
detailed. Section VI concludes this paper and presents some
future works.

II. THE VIOLA-JONES FACE DETECTOR

In this section, Viola-Jones’ face detector building blocks
are described. Notions of boosting and the structure of the face
detector along with the functions used to extract features are
also presented.

A. Boosting

Boosting is a machine learning technique based on the
idea that it is possible to form an accurate classification rule
(named strong classifier) by merging many inaccurate classi-
fication rules (the weak classifiers). The most known boosting
algorithm is Adaboost [8]. Roughly, a boosting algorithm must
show the input, a labeled dataset with positive and negative in-
stances, to another algorithm (generically named weak learner)
pointing out that some instances are more important to be
accurately classified than others. With this information, the
weak learner must choose a weak classifier that best labels
the input dataset while considering the importance of each
instance. After that, the importance of each instance is updated
with aid of the recently produced weak classifier, which is
then pushed into the strong classifier along with a rating of its
classification capability. This whole loop then is repeated for
a certain amount of iterations until the strong classifier with
its boosted weak classifiers reaches some stop criteria.

A boosting algorithm usually receives as input a set of
m labeled instances (x1, y1), . . . , (xm, ym) where xi ∈ X
represents the objects to be classified; and yi ∈ Y = {−1,+1}
is the set of possible classes, where +1 indicates that the
object belongs to the desired class and −1 the opposite. The
main objective of a boosting algorithm is to generate a strong
classifier H : X 7→ Y composed by some weak classifiers
ht(x), where t = 1, . . . , T means the iteration in which the
weak classifier was generated. For each iteration the boosting
algorithm invokes another algorithm, generically referred as
weak learner, that is responsible to produce the weak classifiers
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Figure 1. The Adaboost algorithm used to boost a set of weak classifiers
into a strong classifier.

ht(x) which will be added to the strong classifier. Figure 1
shows Adaboost, slightly adapted from [9].

B. Face detector

The goal of a face detector is to determine the presence
and location of faces in an arbitrary image. If they exist, then
the detector should also be able to determine the region they
occupy in the image [1]. This has been seen as a challenging
task for a machine due to the enormous variety of human skin,
hair, eye colors, texture, facial features, accessories, expres-
sions, rotations, and even environment lighting conditions.

The powerfull and fast face detector proposed by Viola and
Jones in [2], and revised in [10], operates by classifying the
contents found inside a window positioned over the image.
This window slides in the vertical and horizontal directions
until the whole image has been scrutinized. This process may
repeat with windows having different sizes as first shown by
Rowley et al. [11]. Such “sub-windows” form an overcomplete
set of the examined image, but very few of them contain a
face. Therefore, a detector that thoroughly inspects every sub-
window consumes a lot of time evaluating background scenes
in order to find a single face. To deal with this problem, Viola
and Jones proposed that the final classifier should be built like
a chain of increasingly complex strong classifiers. Each node in
this chain should reject many background objects (around 50%
or more) while rejecting very few faces (preferably none). This
“rejection cascade”, originally proposed by Baker and Nayar
[12], allows the quick discarding of uninteresting sub-windows
because it is enough that a single node rejects the input for it
to be classified as background (Figure 2).

The whole chain is the result of a bootstrapping process.
To each node a threshold of maximum false positive and true
positive rates are set. Similarly, a maximum false positive rate
is also set to the whole chain. Positive and negative training
instances are provided to Adaboost that will iterate as much
as needed to reach the node thresholds. Once a node is ready

it is added to the chain that is then tested for its maximum
false positive threshold. If the threshold of the chain has not
yet been reached, a number of false detections made by the
chain over the negative instance set are then used to boost
the next node. The set of positive instances always remains
the same. Through this process the nodes closer to the end
of the classifier will be trained with “harder” instances, hence
they will be more complex, i.e., they will have more weak
classifiers and be more precise.

C. Haar wavelets as a weak classifiers

A Haar wavelet is a function proposed be Alfred Haar
[13] to transform a signal in a simpler (or more meaningful)
representation to certain analysis procedures. Papageorgiou et
al. [14] created a feature extractor that uses Haar wavelets to
encode local differences of pixels in images. This Haar-like
feature is a value in R obtained from the weighted sum of
pixel intensities contained in the d rectangular regions of the
Haar wavelet, where each region is associated with a weight
v ∈ R, v 6= 0. Usually, the weights of a Haar-like feature
add up to 0, and are proportional to the amount of pixels
contained in the rectangle that they refer to. Considering w
a Haar wavelet, r a rectangular region of w, and l the pixels
contained in r, it is possible to establish:

f(w) =

d∑
i=1

vi(
∑
l∈ri

l). (1)

The weak classifiers proposed by Viola and Jones [2] use
such features. In fact, they are a function h(x, f(w), p, θ) 7→
{−1,+1}, where the value +1 means that the object belongs
to the class of interest, and −1 the opposite. Considering p ∈
{−1,+1} the polarity (or parity), θ a threshold, and x an image
sub-window, [2] established:

h(x, f, p, θ) =

{
+1 if pf(x) < pθ
−1 otherwise . (2)

p simply affects the orientation of the comparison. Some-
times, h(x, f, p, θ) is defined to return 0 instead of −1. The
value used in this paper keeps (2) consistent with Algorithm
1.

Since its proposition, researchers are trying to improve
the Haar-like features. Besides extending Papageorgiou and

Figure 2. Rejection cascade composed of strong classifiers Hi(x) (above)
compared with a monolithic classifier (below).
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colleagues set of features, Viola and Jones [2] developed a
method to calculate any Haar-like feature value in constant
time. Lienhart and Maydt [15] proposed 45◦ rotated features,
also calculated in constant time. Disjoint rectangles, a more
general way to produce features, were introduced by Li et al.
[16]. Later, Viola and Jones [17] showed a set of “diagonal
features”. Figure 3 shows some examples of such features. A
collection of other researches about this topic can be found in
[1].

III. RELATED WORKS

This section presents a review of some researches dealing
with accuracy, performance and training time of strong classi-
fiers through manipulation of Haar-like features.

Dembski [3] presents the result of some experiments car-
ried out with the Lienhart and Maydt’s extended feature set
[15]. The main goal of this research was to verify if there
is some pattern in the contribution of the features found in a
strong classifier, i.e., to find if there is a set of features more
useful than others. He demonstrated that the line features (ro-
tated or upright) provide a better generalization error than both
the center-surround and the border ones. Dembski compared
the horizontal and rotated features and established that the
latter generalize better than the former. He observed that larger
features perform better than the smaller ones. Nevertheless, the
generalization differences among the compared features are
small, so it is possible that Dembski’s results do not hold in
other experiments.

In Baumann’s work [4], a modification in the Adaboost
algorithm to explore the human face symmetry was proposed.
In their experiments, the time taken to boost a strong classifier
was reduced by almost 40%, due to the selection of two weak
classifiers per round instead of just one as usually occurs. The
first classifier is chosen using the normal procedure [8] and a
second symmetric feature is chosen and placed in a symmetric
region of the sub-window, but its final position will still be
target of a search in the close neighbouring area.

Landesa-Vázquez and Alba-Castro [5] developed a weak
classifier slightly different from the one proposed by Viola
and Jones [2]. Motivated by physiological studies on human
vision, they modeled an apolar weak classifier that considers
the Haar-like feature’s absolute value. They compared their
strong classifier with Viola and Jones and, although they did
not observe any change in the detector precision, their final
cascade had much less weak classifiers.

Figure 3. Examples of Haar-like features: (a) border; (b) line; (c) 4-
dimensional feature proposed in [14]; (d) disjoint rectangles proposed in [16];
(e) e (f) center-surround features. Darker regions have different weight than
the lighter ones.

Vural and colleagues [6] proposed a new set of Haar-like
features with a very different composition of rectangular re-
gions, and able to rotate in six angles. The upright features that
serve as template for the rotated versions, were automatically
generated through an iterative procedure that first adds a single
rectangle and then evaluates the feature performance. Only
those with the smallest error rate participated on the classifier
boosting rounds. As a result, only a quite small amount of
features, if compared to other researches, was used in the
boosting rounds. This not only sped up the boosting procedure
but also reduced the amount of features found in the final
detector.

Pavani et al. [7] argued that the weights typically assigned
to rectangles of a feature are suboptimal. They demonstrated
this through the introduction of the SRFS, where vectors s
of d dimensions contain the averages si, i = {1, . . . , d} of
the pixels contained in each one of the Haar-like feature’s
rectangles. This is the linear algebra interpretation of the
feature value calculation, as shown in (3):

f(w) =

d∑
i=1

vi(
∑
l∈ri

l) =
∑
i∈w

visi. (3)

Therefore, f(w) is the result of the inner product of s by
the weights vector v, i.e., a Haar-like feature projects s in the
direction of v.

Pavani evaluated the distribution of vectors in the SRFS.
For some Haar-like features w they generated a set of vectors
S+
w using only the positive training instances, and did the same

to the negative instances, creating the set S−w . He established
that S+

w results in a very concentrated point cloud, while
S−w shows a much more varied spread. Since those classes
spread over the SRFS in very particular ways, Pavani and
collaborators observed that the projections made with typical
values of v may not help to discern between classes as they
should. For instance, consider a Haar-like feature w′ with
two rectangles (d = 2) and weight vector v′ = {−1, 1},
and assume that the SRFS S+

w′ of w′ spreads like a bivariate
Gaussian distribution, with the highest variance axis parallel
to v′, as seen in Figure 4. In this case, points in S+

w′ are
projected in the direction of v′ mixing themselves more often
with the S−w′ set. If v′ is perpendicular to the highest variance
axis formed by S+

w′ distribution, then this mixture will be less
frequent, and the Haar-like feature will be more discriminative.
Pavani proposed then the optimization of vector v of all can-
didate Haar-like features, and used three different methods to
this effect: brute-force search, genetic algorithms and Fisher’s
linear discriminant analysis (FLDA). These methods not only
optimize v, but also select during boosting the parameters p
and θ with the smallest classification error.

The three resulting detectors were tested and compared
among themselves and with the ones of [2] [18] [19] [20].
The most accurate (given by the area over the ROC curve)
was the genetic algorithm optimized one, although it took 20
days to be trained [7]. This detector was also considered the
fastest since, in average, rejects more negative samples using
less nodes of the classifier cascade.
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Figure 4. The left image shows a set of points in the SRFS formed only by faces. Projecting a point in the SRFS in a parallel direction to the optimal v yields
a higher concentration of points.The application of the classifier threshold θ splits the SRFS in very distinct ways, as the remaining images show.

IV. A NEW OPTIMIZATION METHOD

In this section, an optimization method complementary to
those shown in [7] is proposed. Additionally, Pavani’s results
are discussed in order to properly motivate the ideas used in
the new method.

As shown in Section III, Pavani’s results suggest that (a)
the distribution formed by the face and background feature
points in the SRFS do not have the same covariance; or (b)
the spread of S+ or S− is not properly described by the
Gaussian distribution. It is possible to reach such conclusions
by recalling that FLDA is particularly effective when both
classes it tries to separate behave as Gaussian distributions
with the same covariance [21, p. 120]. In addition, through the
analysis of data shown in [7], even though it looks like that S+

spread can be modeled through the Gaussian distribution, the
same seems hard to be stated about S−. These observations
were described in [7]. In fact, up to the moment this paper
is written, only a few other researches considered Pavani’s
findings [22] [23]. Therefore, it is hard to state for sure how
face and background feature values produced from the most
used Haar-like features are spread over their respective SRFSs.

This research aims to provide some additional information
about how features values are laid out in the SRFS. Admitting
that a Gaussian distribution befittingly models S+

w distribu-
tions, it is intended to verify if a uniform distribution better
models the S− spread. This assumption might seem naive, but
it should be verified because a simpler and faster Haar-like
feature weight assignment procedure could be employed if the
assumption holds true. Hence, the method proposed here uses
PCA to assign weights to each Haar-like feature w from S+

w ’s
principal component of least variance. To explore even further
the fact that S+

w is highly concentrated around its mean, a
weak classifier similar to the one proposed in [5] is used. The
method and the classifier are detailed in Section IV-A.

The proposed method indeed reduces the total training
time. While FLDA is a fast method if compared to brute-force
search or genetic algorithms, it needs to estimate the average
and variance of both sets S+

w e S−w in order to obtain the inter
and intra-class spread. PCA is less complex than FLDA and,
in this case, is applied only over S+

w . Another important aspect
that would also reduce the total training time is the moment

when v optimization occurs. In [7], an optimization method
must be invoked at least once per node of the chain of classi-
fiers, after all, as shown in Section II-B, the negative instances
set change between each cascade node boosting run. In the
particular case of the FLDA optimization, each feature must
be optimized once per node. The method proposed here allows
the pre-optimization of the weak classifiers prior to boosting
them. This is possible because the set of positive instances
remains the same throughout the whole chain of classifiers
construction process, so it is unnecessary to recalculate each
feature’s weight when the construction of a new cascade node
begins.

Vural et al. [6] described an iterative construction technique
of features. In the method proposed here, the features are
chosen following Pavani’s rules, as described in Section V-B.
Through these rules, neither the rotated features, neither the
center-surround are used, what conforms with Dembski’s [3]
considerations (see Section III).

A. The proposed feature

Let µ be S+ mean. The following feature is proposed:

f ′(w) = |
∑
i∈w

vi(si − µi)|. (4)

Combined with Viola-Jones’ weak classifier threshold, this
feature effectively creates a “band” over the SRFS perpendic-
ular to v, that passes through µ, and has 2θ width. Figure 5
illustrates this.

The insight behind this features and classifier combination
is very simple: the “band” should cover the maximum amount
of points of S+ and the minimum of S−. It is important to
note that S− is assumed to be uniformly distributed, and S+

spreads like a multivariate Gaussian distribution (Section IV).
Hence, by projecting S+ in the direction parallel to its axis of
smallest variance, it is possible to get the highest concentration
of projections of points of this set, therefore the smallest
possible θ value. µ’s value is set during the PCA execution
together with v. Similarly to [10], p and θ is assigned by the
weak learner during the boosting phase.
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Figure 5. Representation of the effect caused by the proposed feature when combined with a weak classifier in an hypothetical SRFS. To the left, it is represented
by a point cloud S+, its mean µ, and θ. To the right, the effect of the classifier creates on that space if p = +1.

B. Feature parameters selection

While running PCA, both v and µ are set for each Haar
wavelet. To achieve this, the first step is to produce the SRFS
S+
k for each Haar-like feature k. Then, for each feature, the

mean and the covariance matrix Σ+
k are estimated. While

the mean is attributed to µ, Σ+
k ’s eigenvector of smallest

eigenvalue is calculated and assigned to vk. vk must be
normalized. This procedure is shown in Figure 6.

V. EXPERIMENTS

This research hypothesis was experimentally verified. In
order to do this, three monolithic strong classifiers (each
one with 200 weak classifiers) were boosted. The first of
them is similar to Viola and Jones’ classifier; the second
had only its weights assigned via PCA; and the third used
the feature proposed in this paper, as seen in Section IV-A,
with the relevant parameters set with the procedure shown
in Section IV-B. Although the weights must be different, the
rectangle templates used for each Haar wavelet were the same.
Additionally, the same face and background images were used
to boost all classifiers.

Figure 6. Assignment of vk and µk to Haar-like feature k using PCA.

A. Positive and negative instances

Four different available face databases were used to create
the positive instances dataset needed for all training proce-
dures: the MIT-CBCL Face Database #1 [24]; the BioId face
database [25]; the FEI Face Database [26]; and the AR Face
Database [27]. A total of 4,938 faces were automatically
extracted with programs especially designed to adequate each
image to this requirements of the proposed method. Figure 7
shows some faces present in the trainning dataset.

The MIT-CBCL Face Database #1 contains 2,429 images
in grayscale and width and height of 19 pixels of faces looking
straight forward. It is the dataset that best fits this requirements
for the present experiments because it only needed to be
rescaled to 20 pixels.

The BioID Face Database contains 1,521 grayscale images
with 384 pixels wide and 284 high. In general, subjects in this
database are looking to the camera, but show some variations
in facial expressions and face rotation, tilt and yaw. A file
describing the position of the eyes accompanies each image.
By using such descriptor, a program automatically estimated
the position and rotation of the face and then aligned it with
the horizontal, cut and rescaled the face region.

The original version of FEI Face Database contains color
photographs of 640 × 480 pixels of 200 people (100 of each

Figure 7. Excerpt from the positive instances dataset mixing faces extracted
from publicly available datasets.
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Figure 8. Excerpt of 200 samples from the negative instances dataset used
to boost the three strong classifiers.

sex) in 14 different poses and lighting conditions looking
straight to the camera in a controlled environment. Some other
works were already made over FEI’s images, so there are
derivations of the original database. For the present experi-
ments, the chosen version contains images in grayscale 250
pixels wide and 300 high of the same 200 individuals looking
straight forward but in two poses: relaxed and smiling. The
eyes were already aligned as described in [28].

The AR Face Database contains pictures of 126 faces taken
on two different days and in controlled conditions. From a
single person in a single day, 13 different photographs were
taken, each with a particular facial expression, or with the
subject wearing a particular accessory, or under certain lighting
conditions. All subjects were looking straight forward. Only
the subsets 1, 2, 3, 4, 7 and 8 were used. The extraction process
is very similar to the one employed in the FEI Database, since
these images from the dataset also had the eyes aligned.

Concerning the negative instances, a total of 114,865 sam-
ples were taken from around 2,000 digital colored pictures of
nature, animals, landscapes, buildings, architecture, paintings,
sculptures and people. From those samples, 6,000 were ran-
domly chosen to be used in the classifier boosting procedure.
Many of the original pictures had faces which were manually
removed with the aid of an application specially designed for
this purpose. Other parts of the human body, including hands,
hair, feet, clothing and accessories, were not removed. Samples
from rough artistic reproductions of the human face were also
left in this dataset. Examples of the negative instances can be
seen in Figure 8.

B. Haar wavelet set

The Haar wavelets rectangles size and position were chosen
according to the same rules mentioned in [7]:

1) only 2 to 4 rectangles can be combined in a Haar
wavelet;

2) the template of each Haar wavelet must fit in 20×20
pixels window;

3) rotated features like those proposed in [15] must not
be used;

4) distances dx and dy between rectangles, as described
in [16], are integer numbers multiples of the rectangle
size in the respective directions;

5) all rectangles of a Haar wavelet have the same height
and width;

6) the minimum sizes of any rectangle is 3× 3 pixels.

By strictly following these rules, a total of 1,641,107 Haar
wavelets were generated. From this set, only 218,544 were
selected through the application of some additional rules.

C. The face detector operation

The face detector examines the test images, as shown in
[10]: moving [∆s] pixels in the vertical or horizontal direction,
where s is a factor that scales the size of the detector itself.
After scanning the whole image, the detector window size is
increased by 25%, and the image is scanned again. This repeats
until the detector is bigger than one of the image’s sides. The
initial value of those parameters are: ∆ = 1.5 and the initial
scale is 1.5. The initial detector sub-window size is 20 × 20
pixels.

There are some ways to determine if a sub-window had
been correctly classified. In [29], a face is considered correctly
detected if the detected region contains all face annotations
(eyes, nose and mouth) and the size of the detector is smaller
than four times the distance between the eyes. In [7], a
detection is considered correct when the size of the detected
region is ±10% of the annotated face, and when the distance
from the center of the detected region to the center of the
annotated region is at most 10% of the size of the annotation.
In the method proposed here, Pavani’s approach is applied. The
face region is calculated from the annotated eyes that comes
with the test dataset. The height and width of a face region
is 1.9402 times the annotated distance between the eyes. The
region’s top left point was positioned 0.2423 times the region
width to the right of the annotated right eye, and 0.25 times
the width of the window above the right eye. These were the
same parameters used to extract faces from the BioId database.
No detection sub-window integration was made.

The detector also does some pre-processing of the image.
Viola and Jones’ detector performed variance normalization
on the image sub-window prior to evaluating them [10],
but the authors did not clearly mention the parameters they
used. Hence, the normalization implemented for the traditional
Viola-Jones’ detector was based in [15]. In [7], the images
were intensity normalized, i.e., each pixel value was divided
by the maximum value they could admit. The detectors that
had their v vectors assigned through PCA employed this
normalization procedure.

D. Results

The tools, training and testing software developed for
this research were written in C++. All image manipulation
operations were made with OpenCV [30], although certain
image loading procedures were written with OpenImageIO
[31]. Some algorithms were easily parallelized with the Intel
Threading Building Blocks library [32]. The PCA optimiza-
tion uses a slightly modified version of libpca [33] and the
Armadillo [34] library. Some modules of Boost C++ Libraries
[35] were also used for many different tasks.

Three monolithic detectors with 200 features were trained
with the same datasets and under very similar conditions. The
Haar wavelets rectangles’ layouts were all the same, even
though its weights were different. More specifically:
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1) the first detector used the typical weights assigned to
rectangles and was trained and operated exactly as
described in [10];

2) the second detector had its weighs set via PCA, but
did not use S+ means for any purpose. Also, the
images it scanned were intensity normalized;

3) the third detector was trained as proposed here, with
every weight of the Haar-like features set as shown in
the Algorithm 6. The feature values were calculated
as described in Section IV-A) and images were also
intensity normalized.

Detector (1) works as the control experiment while de-
tectors (2) and (3) serve as means to verify the hypothesis.
Monolithic classifiers were used instead of a cascade because
they suffice to the present research’s intention to further
investigate the SRFS.

It took 4 minutes to run Algorithm 6 for all the 218,544
Haar-like features, each one consuming the 4,938 positive
instances on a Intel Core i7 machine with 4 GiB of RAM
memory. This algorithm ran in parallel using all the processor’s
cores. In the same machine, each boosting procedure took from
9 to 10 hours with the weak learner also running in parallel.

The detectors were tested against the MIT + CMU A,
B and C datasets [18] [36], which contain pictures of many
subjects whose faces are generally looking forward. A total
of 19,024,094 sub-windows were scanned, and the detection
acceptance criteria turned the 511 face annotations in 2,571
possible true positive sub-windows. Section V-C describes in
details both the scanning method and the acceptance criteria.

The 200 feature detector ROC curve created by altering
the detector threshold from −∞ to +∞, as shown in [37],
is plotted in Figure 9. Considering the following: a) the three
detectors performances; b) all weak classifiers were candidates
to be part of the strong classifier in every iteration round; and c)
the assumption that the Gaussian distribution is a good model
for S+’s distribution; then it is reasonable to conclude that
the uniform distribution does not model adequately how S−

spread over the SRFS. This is an interesting observation since
the data available about S− suggest that it can spread itself in
very different and chaotic ways.

The detectors using the proposed method have overfitted:
their ROC curves near the perfect classification when tested
against the training dataset. An exception to this occurs if the
detector had its weights set via PCA and used the proposed
weak classifier. In this case, the weak classifiers θ parameter
was set to very small values, causing the “band” to be too
thin, and allowing too many misclassifications to occur. The
main cause of this problem is probably the lack of information
about the negative instances in the weak classifiers. Indeed,
when assuming that the negative instances behave as uniform
distributions in the SRFS, one makes it impossible to use any
additional information about the negative instances. On the
other hand, the simplicity and speed of the training method
proposed here are surely too compelling to be left untested.
These observations points future researches towards the usage
of weak classifiers that carries with them more information
about the distributions of both classes in the SRFS.

It also seems that the rotations made in the BioId dataset
and the choice of the AR datasets made the positive instances

be too similar to each other, aggravating the overfitting. It
is possible that the background instances used to boost the
classifiers was relatively small. This observation comes from
the comparison of the performance of the original Viola-
Jones monolithic detector with the one produced in this work.
Additional evaluations are being made in order to create a more
diverse face database and to fine-tune the boosting parameters.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new weight adjustment method for Haar-
like features (complementary to the ones shown by Pavani and
collaborator’s [7]) was proposed. This method uses PCA over
the positive training instances to assign new weights to the
features. It was also proposed the employment of a Haar-like
feature that operates with parameters estimated from the same
positive instances.

Both the weight assignment method and the Haar-like
feature were designed to verify if the distribution of points
produced from the negative instances in the SRFS of each
Haar-like feature could be modeled as an uniform distribution.
The motivation behind this, besides shedding light in a some-
what still unexplored concept, was the simplicity and speed of
the proposed weight assignment method.

The weight adjustment method as well as the Haar-like
feature were tested in the face detection task and compared
with the Viola-Jones detector. Although the negative instances
may spread themselves in very different and chaotic ways
through the SRFS, the obtained results suggest that they
cannot be properly modeled as an uniform distribution. This
interesting finding is the most important contribution of this
paper.

The future works concern to evolve the methods and
classifiers to more complex ones while still exploring and
bringing understanding about the SRFS. Experiments with
other processes of feature weight adjustments using infor-
mation of both positive and negative training instances are
ongoing.

Figure 9. ROC curves of the detectors when tested with the MIT + CMU
dataset. The vertical axis shows the true positive rate and the horizontal axis
shows the false negative rate.
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