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feature extraction based on the Generalized Hebbian Algothm
(GHA). The employment of GHA allows efficient computation of U = U — A U

principal components for subsequent clustering and clasication sﬁ?ﬁm"[ Detection H Extraction H “‘(‘;SC‘;’A“)@ ]-»
operations. The hardware implementation of GHA features hgh pe (Thresholding) (GHA)

throughput and high classification success rate. The propesi

architecture is implemented by Field Programmable Gate Aray

(FPGA). It is embedded in a System-On-Programmable-Chip
(SOPC) platform for performance measurement. Experimenta
results show that the proposed architecture is an efficientgke

sorting design with high speed computation for spike trains
corrupted by large noises.

Abstract—An efficient VLSI architecture for fast spike sorting
is presented in this paper. The architecture is able to perfon i

Figure 1: The operations of a typical spike sorting system.

brain. In addition, the high Non-Recurring Engineering &R
costs and long design and verification efforts for fabriugti
ASICs can severely limit the applicability of emerging BMI
. — : . . applications. The field programmable gate array (FPGA) is
iw{ﬁ;Splke Sorting; FPGA; Generalized Hebbian an effective alternative to ASIC for hardware implememtati
' with lower NRE costs. Moreover, the circuits in an FPGA are
| INTRODUCTION reconfigurable; thereby providing higher flexibility to ailsp
) sorting architecture for future extensions.
Spike sorting [1] is often desired for the design of brain
machine interface (BMI) [2]. It receives spike trains from
extracellular recording systems. Each spike train obthirem
the system is a mixture of the trains from neurons near th
recording electrodes. The goal of spike sorting is to sexjeeg
the spike trains of individual neurons from this mixtureikep
sorting is a difficult task due to the presence backgrouni

noise and the interferences among neurons in a local areiance evaluation. The computation time of spike sortingthas

A typical spike sorting algorithm involves computatiogall on the SOPC is measured and compared with existing works.

?:T;?S Iggt ?ﬁ sggtlgonr?ijgihtazsksf?s tg%jﬁé?‘ggﬂé Sgiis\'\ggxperimental results reveal that the proposed architeasur
external computers. Because the delivery of raw spike strainherzv\fgrepf:s%rmcée?éﬂ;eurﬁ;ggﬁt'on in real time with low

requires high bandwidth, wireless transmission may be- diffi
cult. Existing spike sorting systems may therefore be wired The remaining parts of this paper are organized as follows:
restraining patients and test subjects from free movement. Section 2 gives a brief review of the spike sorting operation

and the GHA algorithm. Section 3 describes the proposed

applications. It allows the spike sorting to be carried duha GHA architecture. Experimental results are included inti8ac

front-end so that data bandwidth can be reduced for wireles@' Finally, the concluding remarks are given in Section 5.
communication. A common approach for hardware design [3]

is based on Application Specific Integrated Circuits (ASI®@s Il. PRELIMINARIES

major drawback of ASICs is the lack of flexibility for changes . . :

With the wide range of spike sorting algorithms that aIreadyA' Spike Sorting Operations

exist and the continual design and improvement of algosthm  Figure 1 shows the operations of a typical spike sorting
the ability to easily change a spike sorting system for nge-al system, which consists of spike detection, feature extmnact
rithms is usually desired. However, the modification in ASICand clustering. The spike detection identifies and aligfilsesp

is very difficult, especially when chips are implanted in thefrom a noisy spike train. A simple spike detection technique

The objective of this paper is to present an effective FPGA-
based hardware architecture for spike sorting. The arthite
is able to perform online training for feature extraction in
fardware. The feature extraction is based on the gendlalize
Hebbian algorithm (GHA) [4]. The proposed architecture is
sed as a hardware accelerator of a spike sorting system ol
System-On-Programmable-Chip (SOPC) platform for perfor

Hardware spike sorting is an effective alternative for BMI

Copyright (c) IARIA, 2014.  ISBN: 978-1-61208-319-3 6



ICONS 2014 : The Ninth International Conference on Systems

z.1(n) z(n) Z(ji (1)
Reg. |«
w;;(n)
(The initial value of
Reg. is x(n).) l -
y;(n) ——>><\—>+/

n J_,
Y(n) SWU l v Zj (n)

wi(n+1) L (X — (X )
wj(n) l
w;;(n) b4 w;(n+1)
L =x/+\/: >
Figure 2: The hardware implementation of (10) and (12). —

Figure 3: The architecture of each module in the SWU unit.

is to perform thresholding based on the absolute value of , . .
spike samples. The feature extraction finds the featuremect C. GHA Algorithm for Spike Sorting

from the detected spikes. The GHA algorithm has been found  The GHA can be used for feature extraction of spikes. To
to be an effective technique for feature extraction. Based oyse GHA for feature extraction, the(n) in (2) is then-th

the feature vectors, the final step of the spike detection igpike in the spike train. Therefore, the vector dimensioiis
to perform clustering and classification using unsupedvise the number of samples in a spike. Let
clustering methods such as the fuzzy c-means (FCM) algorith

[5]. Detailed discussions of each step can be found in [1]. wj = [wj1,...,wim]", i =1,...,p (6)
. be the synaptic weight vectors of the GHA after the training
B. GHA Algorithm process has completed. Basedwn, j = 1,...,p, the GHA
Let feature vector extracted from training vectdm) (denoted by
, f,) is computed by
x() = @)z =1t @ £y = s fo]T -
y(n) = [yl(n)a"-ayp(n)] =11, (2
where
be then-th input and output vectors to the GHA, respectively. i
In addition,m, p and¢ are the vector dimension, the number Frg = wjiwi(n) (8)
=1

of Principal Components (PCs), and the number of input and
output vectors for the GHA, respectively. The output vectorbe the j-th element off,. The set of feature vectorg =

y(n) is related to the input vectot(n) by {f1, ..., f;} are then for subsequent classification and clustering.
y;(n) = iji(n)mi(n) (3) I1l. PROPOSEDARCHITECTURE
i=1 The proposed GHA architecture consists of three functional
where thew; (n) stands for the weight from thiath synapse Units: the memory unit, the synaptic weight updating (SWU)
to the j-th neuron at iteratiom. unit, and the principal components computing (PCC) unit.
Let A. SWU Unit of GHA
w;(n) = [wji(n), ..., wim@m)]",j=1,....p  (4) To reduce the complexity of computing implementation,

be thej-th synaptic weight vector. Each synaptic weight vector(5) can be rewritten as

w;(n) is adapted by the Hebbian learning rule: J
wji(n+1) = wjs(n) +ny;(n)[z:(n) =Y wes(n)yx(n)] (9)
k=1

J
ii 1) = wy j i(n)—y; i . . .
wji(n+1) = wy; (n) +nly;(n)zi(n) —y;(n) ;“’k (mye()] e design of SWU unit is based on (9). Although the direct
B (5) implementation of (9) is possible, it will consume largedrar
where N denotes the |earning rate. Given an input Vectorwal'e resourqes. One way to reduce_ the resource consumptiol
x(n), the GHA algorithm involves the computation gf(n) IS by observing that (9) can be rewritten as
in (3), andw;(n) in (5) for j = 1,...,p. After a large - 1) = w.. _ - 10
number of iterative computation and adaptatien,(n) will wji(n+ 1) = wi(n) +ny; (0)z5:(n), (10)
asymptotically approach to the eigenvector associateultivit. ~ where
j-th eigenvalue); of the covariance matrix of input vectors, j
whereA; > Ay > --- > \,. A more detailed discussion of 2ii(n) = x;(n) — wri(n)ye(n),j =1,...,p. (11)
GHA can be found in [4]. siln) = zin) ,; kil (n)
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Figure 4: The GHA circuit form = 64, p = 2, b= 2 andq = 32

andz;(n) = [zj1(n),...,zjm(n)]”. The z;;(n) can be ob- One way to implement the SWU unit is to produce
tained fromz(;_1);(n) by w;(n + 1) and z;(n) in one shot. Howeverm identical
, modules, individually shown in Figure 3, may be required
zi(n) = 2(-1i(n) —wsi(n)y;(n),j =2,....p (12)  pecause the dimension of vectorsis The area costs of the

Whenj = 1, from (11) and (12), it follows that SWU unit then grow linearly withm. To further reduce the
area costs, each of the output vectargn + 1) andz;(n) is
20i(n) = w4(n) (13)  separated intd blocks, where each block contaipglements.

The SWU unit only computes one block &f;(n + 1) and

Therefore, the hardware implementation of (10) and (12) ; o
is equivalent to that of (9). Figure 2 depicts the hardwargzj(n) at a time. Therefore, it will také clock cycles to produce

implementation of (10) and (12). As shown in the figure, thecompletew; (n + 1) andz; (n).
SWU unit produces one synaptic weight vector at a time .
The computation ofw;(n + 1), the j-th weight vector at B. PCC unit of GHA

the iterationn + 1, requires thez;_,(n), y(n) and w;(n) The PCC operations are based on (3). Therefore, the
as inputs. In addition tow;(n + 1), the SWU unit also PCC unit of the proposed architecture contains adders anc
producesz;(n), which will then be used for the computation multipliers. Because the number of multipliers grows wtile t

of w;i1(n + 1). Hardware resource consumption can then bevector dimensionn, the direct implementation using (3) may
effectively reduced. consume large hardware resources whenbecomes large.
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Similar to the SWU unit, the block based computation is used o

for reducing the area costs. In fact, (3) can be rewritten as Ln<=1
2. Buffer A < x(1)

3. Buffer C < initial w;(n),wa(n)

b g
yj(n) = Z Z W (k—1)q+i (M T(k—1)q1i(n).  (14)

b1 i1 State 1 *

The implementation of (14) needs onjymultipliers, ag-input
adder, and an accumulator.

Buffer B < Buffer A

A

C. Memory Unit of GHA State 2 *
The memory unit contains four buffers: Buffers A, B, C Start to fill Buffer A with x(#+1)
and D. Buffer A fetches and stores spikén) from the main
memory. Buffer B containg;(n) for the computation in PCC *
and SWU units. Buffer C consists of the synaptic weight State 3
vectorsw;(n). The feature vector, ..., f; are stored in Buffer T
D. The Buffers A, B and C are shift registers. Buffer D is a 2. Compute y;(1),+.y,(n) based on Buffer B and Buffer C

two-port RAM for the subsequent access by the FCM unit.

State 4 *

. . . . . . 1. Activate SWU Unit
In typical spike sorting implementations [8], a spike may 2. Compute wy(n+1),+,Wy(n+1) based on Buffer B and Buffer C

contain 64 samples. In addition, two PCs may suffice for
feature extraction [1]. Therefore, without loss of genigyathe
GHA unit for m = 64 (i.e., vector dimension is 64) and= 2
(i.e., number of PCs is 2) is considered in this subsection. |
the GHA unit, each vector is separated into 2 blocks. Morgove
the dimension of each block is 32. Therefore, we lset 2
andq = 32 for the circuit implementation. Figure 4 shows the
resulting GHA circuit form =64, p =2, b =2 andq = 32.

The operations of the GHA circuit can be separated into 4
states, as revealed in Figure 5. The most important opegatio
of the GHA circuit are the PCC operations in State 3 and
SWU operations in State 4. These two operations are further
elaborated below.

D. Operations of the GHA unit

Stop GHA
training ?

Stop

Has Buffer A
filled ?

Assume the input vectok(n) is available in Buffer B.
In addition, thecurrent synaptic weight vectorsr (n), wa(n)
are stored in the Buffer C. Based a&ifin) andwy(n), wa(n)
the PCC unit produces output vector(n),y2(n). The com-
putation of y,;(n) is separated into two steps. The first
step finds Ziil wj,i(n)x;(n). The second step computes
S s wj.i(n)z;(n), and then accumulate the result with that E. NOC-based GHA System
of the previous step to fingd;(n). These two steps share the
same circuit in the PCC unit.

n<=n+l

Figure 5: The training operations of the GHA circuit.

The proposed architecture is used as a custom user logic
in an NOC system consisting of softcore NIOS CPU, DMA

Upon the completion of PCC operations, the SWU unit will controller and on-chip RAM. An NOC is a new platform
be activated in State 4. Usingn), y;(n) andw;(n),j = 1,2,  for implementing advanced SOCs in an interconnection net-
the SWU unit computes the new synaptic weight vectorsvork strategy, which solves the problems of traditional bus
w;(n +1),7 = 1,2, which are then stored back to Buffer architecture, such as communication efficiency, latenoy an
C for subsequent training. Similar to the computation ofsingle clock synchronization. In a typical spike sortingtsyn,
yj(n), the computation ofw;(n + 1) consists of two steps. delivery of spike signals, feature vectors, and classificat
The first step computes the first half of;(n + 1) (i.e., results are required. The NOC therefore is beneficial for
w;1(n + 1),...w;32(n + 1)). The second step calculates the enhancing transmission speed and throughput of the prdpose
second half. These two steps also share the same circuit architecture.
the SWU unit. Moreover, the computation ef, (n + 1) also

producesz, (n), which is stored back to Buffer B In the NOC system, all the detected spikes are stored in

the on-chip RAM and then transported to the proposed GHA
After the training process of GHA circuit is completed, circuit for feature extraction. The DMA-based training alat
the Buffer C contains the synaptic weight vecters andwo. delivery is performed so that the memory access overhead car
Based on the synaptic weight vectors, the PCC unit can be usds minimized. The softcore NIOS CPU coordinates different
for feature extraction operations. The computation resate  components in the NOC. It is responsible for circuit actvat
stored in Buffer D as feature vectofs,n = 1,...,¢, for the  and control. The results of feature extraction are stored in
subsequent FCM clustering operations. the memory unit of the GHA circuit for subsequent clustering
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TABLE I: CCRs OF THE PROPOSEDARCHITECTURE FOR THE SPIKE TABLE II: CCR VALUES OF VARIOUS SPIKE SORTING ALGORITHMS.
SORTING WITH DIFFERENTSNR LEVELS.
SNR (dB)
SNR (dB) 1 4 6 8 10
1 2 4 6 8 10 GHA 84.92% 9430% 95.78% 96.74% 96.77 %
¢ 1651 1638 1621 1656 1662 1653 PCA[5] 8421% 9408% 9572% 96.69%  96.72 %
c=2 t 1644 1632 1617 1654 1660 1651
CCR  99.58% 99.63%  99.75%  99.88%  99.88%  99.88%
Feature Vectors Produced by GHA and Their Ground Truth, SNR=4dB
t 1850 1860 1842 1870 1873 1828 150 : : : ‘ : ‘ ‘ :
c=3 1571 1672 1737 1791 1812 1769 ° m:a:zg;
CCR 84.92% 89.89% 94.30% 95.78%  96.74%  96.77% 100f| s Neuron3
50
operations. . .o
S IR ORI
V. EXPERIMENTAL RESULTS sof e ;M' ¢
a 00 ©
In order to evaluate the performance of the proposed 100} e 'f‘;%:,\:..
architecture for spike sorting, the simulator developef8jris AR
adopted to generate extracellular recordings. The simulat 150l o ’
gives access to ground truth about spiking activity in the
recording and thereby facilitates a quantitative assessme 200

of architecture performance since the features of the spike 0 TR0 TR0 TED O e B e o

trains are known a priori. Various sets of spikes with difar

signal-to-noise (SNR) ratios and interference levels Haen (a)

created by the simulator for our experiments. All the spikes 150 _ Clustering Results Produced by FGM, SNR=4dB
are recorded with sampling rate 24000 samples/sec. Théhleng « Neuron1

of each spike is 2.67 ms. Therefore, each spike has 64 woll + Newen?

samples. The dimension of vectors for GHA training therefor X Centers

is m = 64. The number of PCs ig = 2 for the circuit design. sof

We first consider the classification correct rate (CCR) of
the proposed architecture. The CCR for spike sorting is ddfin
as the number of spikes which are correctly classified by the _sol ALY v P R
total number of spikes. To show the robustness of the prapose » 9% R
architecture against noise interference, various SNRgatre 100} 5 sARTE
considered, ranging from SNR=1 dB to 10 dB. Table | shows {
the resulting CCRs for the spike trains with two target nasro -150} .
(c = 2) and three target neurons £ 3). The duration of the
spike trains is 14 seconds. The spikes extracted from the spi T2 250 200 150 -100 50 o 50 100 180
trains are used for the GHA and FCM training, as well as spike A
classification. The total number of spikes used for training (b)
and classificationt§, and the number of spikes which are
correctly classified# are also included in the table. Because Figure 6: The distribution of GHA feature vectors of spikead the results
the performance of FCM training may be dependent on the °f FCM clustering for SNR=10. (a) Ground tiuth of heuron ssik(b)
selection of initial vectors, each CCR value in the tablehis t ustering resuts produced by '
average CCR values of 40 independent executions. From the
table, it can be observed that the proposed architectutglés a

to attains CCR above 84 % for= 3 when SNR=1 dB. FCM clustering. The center of each cluster produced by FCM

Table Il compares the CCRs of the GHA- and PCA- basedire also marked in the figure. By comparing Figure 6.(a) with
spike sorting algorithms. They all use the FCM method forFigure 6.(b), we see that the proposed GHA and FCM circuits
clustering. It can be observed from the table that the GHA@re able to correctly separate spikes even for large noises.

algorithm has slightly higher CCRs over the PCA for various . .
SNR levels. The hardware implementation of the PCA may 1€ Proposed NOC-based spike sorting system features fas

be difficult because it requires the covariance matrix ofitnp computation. Table Il shows the training time of the pragbs
data. Therefore, the GHA algorithm is well suited for spike CHA System for various clock rates. The design platform for

. He il : Lo the experiments is Altera Quartus Il with Qsys [9]. The targe
CeRY due to its simplicity for hardware design, and itgthi - £ 5" vice is Altera Cyclone IV EPACGX150DF31. The

training time of its software counterpart running on Intél |
To further elaborate the effectiveness of the GHA and FCMprocessor is also included in the table for the comparison
algorithms for spike sorting, Figure 6 shows the distribotof  purpose. The training set for these experiments consi0®f
GHA feature vectors of spikes for SNR=4, and the results obpikes. The number of epoches for GHA training is 100. It can

Y2
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TABLE IlIl: T HE TRAINING TIME OF THE PROPOSEDGHA CIRCUIT FORVARIOUS CLOCK RATES.

Implementation NOC-based GHA Software GHA

Processor Altera NIOS I Intel 17
Clock Rate 50 MHz 200 MHz 400 MHz 600 MHz 800 MHz 1 GHz 2.61 GHz
GHA (ms) 35.60 8.92 4.46 2.97 2.23 1.78 181.38

TABLE IV: COMPARISONS OF THEPROPOSEDGHA CIRCUIT WITH OTHER FPGA-BASED FEATURE EXTRACTION IMPLEMENTATIONS.

Arch. FPGA Logic Cells  DSP elements Embedded  Max. Clock Ughput
Devices or LEs or Multipliers Bits Rate

Proposed Altera

GHA Cyclone IV

Arch. EP4CGX150 15688 128 63488 1GHz  4.50 x 107
Xilinx

GHA Arch. Virtex 6

in [6] XC6VSX315T 12610 12 0 100M Hz  1.60 x 108
Xilinx

GHA Arch. Cyclone IV

in [7] EP4CGX150 9144 432 63448 50M Hz  2.75 x 106

be observed from Table Il that the propose NOC-based spikkigh CCR and high computation speed. For SNR=10, its CCR
sorting system is able to operate up to 1 GHz clock rate. Iris above 96 % for three target neurons. When SNR becomes
addition, the GHA training time decreases linearly with thedB, itis still able to retain CCR above 84 %. The architectare
clock rate. When clock rate becomes 1 GHz, the total trainingble to achieve 1 GHz clock rate. The speedup over its saftwar
time of the proposed NOC-based spike sorting system is onlgounterpart running on Intel 17 processor is above 97. The
1.99 ms. By contrast, the training time of the Intel I7 prames GHA circuit has higher computation speed as compared with

is 193.18 ms. The speedup of the proposed hardware systeswisting hardware implementations for GHA feature exioact

over its software counterpart is therefore 97.08.

In Table 1V, we compare the area costs and throughpu
of the proposed GHA circuit with those of other FPGA-
based hardware implementations [6], [7] for feature eximac
The throughput is defined as the number of input training [1]
vectors the circuit can process per second. It can be oliberve
from Table IV that the proposed GHA architecture attains
highest clock rate and throughput at the expense of highel[z]
area costs. In fact, the proposed architecture has thramghp 3
28.125 (.50 x 107 vs. 1.60 x 10%) and 16.3 times450 x 107 L
vs. 2.75 x 10°) higher than that of architectures in [6] and [7],
respectively. The proposed algorithm has superior peidoce [4]
because it is based on shift registers for storing weightovec
and input vectors for high speed computation. In addition, [5]
although the proposed architecture has higher area costs, i
only consumes a small fraction of the hardware resources
available in the target FPGA. In fact, there are 149760 LEs, [®]
6635520 embedded memory bits, and 360 multipliers in the
target FPGA Cyclone IV EP4CGX150DF31. The proposed
architecture utilizes only 10.78 %, 0.96 % and 35.56 % of [7;
the LEs, memory bits and multipliers of the target FPGA,
respectively. All these facts show the effectiveness of the
proposed architecture. -

V. CONCLUSION

The proposed architecture has been implemented on thég]
Altera FPGA Cyclone IV for physical performance measure-
ment. The architecture is used as an hardware accelerator to
the NIOS CPU in a NOC platform. Experimental results reveal
that the proposed spike sorting architecture has advastaige

Copyright (c) IARIA, 2014.  ISBN: 978-1-61208-319-3

These results show that the proposed system implemented b
It:PGA is an effective realtime training device for spike syt
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