
Towards Interoperability to the Implementation of RESTful Web Services:

 A Model Driven Approach

Nírondes Tavares and Samyr Vale

Department of Computer Science

Federal University of Maranhão

São Luis – MA – Brazil

nirondes@gmail.com, samyr@deinf.ufma.br

Abstract — Nowadays, a issue that has been gaining relevance

is the RESTful Web services technology. RESTful has been

more prominent than SOAP due to the interoperability gained

by the Web support. Nevertheless, the implementation tier of

the RESTful Web Services can be developed with various

programming languages and with different specifications,

frameworks, and plugins. This diversity of ways to implement

RESTful Web services reduces the interoperability proposed

by this technology and prevents reuse. In this paper, we

present a model-driven approach to implement RESTful Web

Services. By the use of concerns separation, modeling on

different abstraction levels and by the use of transformation

rules we solve the interoperability lack.

Keywords-Web service; RESTful; modeling; transformation;

MDE;

I. INTRODUCTION

The development of the Web has transformed the
exchange of organizational information. The information that
was previously accessed and presented only via browser
could, with the advent of Web services, also be accessed by
other ways. This allows that besides humans, computer
programs could also make use of this information [1].

Among the existing Web service architectures, the
Representational State Transfer (REST) [2] has been gaining
space especially for the lightweight and convenience in the
use and dissemination of information.

RESTful Web services aims to be interoperable, because
a client, that uses a specific platform, can establish
communication with a server that uses a different platform.
But, the interoperability feature is just at the communication
level, because both parts communicate through the Hypertext
Transfer Protocol (HTTP) layer, which is the standard for the
Internet communication. However, RESTful Web services,
as well as SOAP ones, need to be implemented with a
specific programming language.

Today, there exist numerous of programming languages
(e.g., Java, C++, C #, etc) that support the development of
such services, and within these languages, there is still a
significant amount of different specifications, Application
Programming Interfaces (APIs), frameworks, and plugins.
Face of this variety of ways, the problem of interoperability
arises in the implementation tier of RESTful Web services.
To be interoperable, the programming languages must

conform to a certain degree of compatibility with the others
[3].

Model Driven Development has been applied in different
issues as an approach which provides, by concerns
separation, the development of business logic independent of
technologies and programming languages. Model driven
approaches, such as Model Driven Engineering (MDE) and
Model Driven Architecture (MDA) provide interoperability
by metamodeling and transformation techniques.

MDE uses the model as the main artifact and the
transformation as the principal activity in system modeling
and development.

In [4], we have presented the use of MDE to the
development of the syntactic and the semantic description of
Semantic RESTful Web Services. In this paper, we propose a
MDE-based approach to solve the problem of the lack of
interoperability in the Application tier of the RESTful Web
Services technology. Thus, we present the WSSR metamodel
proposed for the implementation of interoperable RESTful
Web Services. We also present a target platform metamodel
and the transformation rules to the implementation of the
RESTful Web Service in the chosen target language.

This paper is organized as follows. Section 2 presents an
overview of the main technologies used in the proposed
solution. Section 3 presents our model-driven approach for
implementing RESTful Web services. Section 4 presents a
case study with a sample implementation of a RESTful Web
service. Finally, Section 5 concludes the paper.

II. TECHNOLOGICAL CONTEXT

A. RESTful Web Services

Web Services can be defined as a way to let applications
exchange information with Web servers [5]. In this
interaction, the information exchanged may be contained
inside documents written in a machine-readable format. The
most used formats are Extensible Markup Language (XML)
and JavaScript Object Notation (JSON) [6].

Currently, the main architecture of Web services is the
Remote Procedure Call/Simple Object Access Protocol
(RPC/SOAP), which is a World Wide Web Consortium
(W3C) standard for the information exchange between Web
services. The RPC/SOAP architecture is XML based, which
ensures interoperability regardless of the technology used by
the parts [7]. This is the central advantage of this architecture

234Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

front of its predecessors, like Distributed Component Model
(DCOM), Common Object Request Broker Architecture
(CORBA) and Java Remove Method Invocation (RMI). Its
predecessors were developed in specific technologies which
difficult the communication between parts of services [5].
The RPC/SOAP, must be encapsulated within a standard
format package named as SOAP envelope and must define a
contract containing the communication rules. This contract is
is defined in the Web Services Description Language
(WSDL) document [8], which performs, among other
functions, the syntactic description of the Web service
elements. However, the RPC/SOAP architecture also has
drawbacks. The excessive use of envelopes difficult the
traffic and bring the addition of unnecessary computations,
low performance and poor scalability [9].

In this context, the REST architecture is gaining
importance, especially in the era we live in, the Web 2.0
[6][9]-[12]. This architecture was created by Roy Fields [2],
one of the HTTP protocol creators. The main advantage of
the REST architecture is the fact that communication occurs
directly on the HTTP layer, without encapsulation need or
use of envelopes, and it uses the basic elements of the
protocol, like verbs and status codes. REST architecture
focuses on resources, not on procedure calls or services, and
it is an interesting approach for applications where the focus
on interoperability is more important than the formal contract
between parts.

Richardson and Ruby [13] have created the term
RESTful to describe Web services that follow the REST
paradigm and also created the Resource-Oriented
Architecture (ROA) to define the architecture that faithfully
follow the concepts and properties, defined by [2].

A resource is any real-world entity exposed on the
internet and accessible by a Uniform Resource Identifier
(URI). The URI is responsible for distinguish a resource
from other. The resource can be a text, image, or even a
device. The representation is the state of a resource at a given
moment, in other words, representations are some data that
represents a resource and are serialized to a machine-
readable document like XML or JSON [12]. The
representations are stateless, which means that each
transaction does not keep information related to the previous
transaction. This issue is solved using the concept of
connectivity, which means that each representation has a link
to the subsequent representation. The resources must provide
a uniform interface for its handling, in other words, must
always be accessed through the same URI, changing only the
HTTP verbs. The most used verbs are POST, GET, PUT and
DELETE, respectively associated to Create, Read, Update
and Delete operations (also known as CRUD operations).

The syntactic description of RESTful Web service is
optional and there still no consensus about what language
should be standard [11][14]. The Web Application
Description Language (WADL) is gaining notoriety despite
the new 2.0 version of WSDL, which can also be used to
syntactically describe this kind of service. According to
Richardson et al. [13], WADL is “the most simple and
elegant solution” to solve this problem.

B. RESTful Implementation

RESTful provides a multi-tier Web architecture
composed by the Client, Application and Data tiers. The
independence of these tiers provides flexibility to these
dynamic Web applications. Divers programming languages,
frameworks and styles can be used for developing each tier
[13]. In addition, the Services can be developed in a specific
language, such as Java, Python, PHP, Perl or Ruby and be
consumed by an application written in a different language.

 The Application tier provides a Presentation layer, a
Business Logic layer and a Database Connector layer. The
Business Logic intermediates between Presentation and
Database Connector. Data is provided to the Presentation
layer in the structure of objects. For example, in the Rails
technology, services send and accept representations of
active objects. These services map URIs to Rails controllers,
Rails controllers to resources and resources to active objects.
Despite the diversity of technologies available to develop
RESTful Web Services, few of them are interoperable.

The Java platform has been the most powerful, flexible
and user friendly platform for implementing the RESTful
Web Services Application tier [15]. The development of
RESTful Web services with Java is possible since 2008,
when a new specification known as JAX-RS (The Java API
for RESTful Web Services) [16] was defined to facilitate the
implementation of such services. JAX-RS is based on
metadata grammar of JDK 5, supporting the standardization
of the RESTful services implementation. Today, JAX-RS is
part of JavaEE 6 [17].

However, there exist several frameworks and APIs to
implement RESTful services in Java as RESTEasy, Restlet,
Struts2, Grails, Axis2, Certia4, sqlREST, REST-art [15].

The variety of programming languages also prevents
reuse of the Business Logic implementation and reduces the
interoperability due to the different formats and
specifications used to implement the services.

C. Model Driven Approach

Model-Driven Engineering (MDE) is a software
engineering approach that has gained significance in recent
years. In MDE, the model is the central figure in the
development of applications. The source-code is
automatically generated since the application of
transformation rules on pre-defined models [1].

By definition, the models are abstract entities that
represent various aspects presented in the software, such as
structure, behavior and graphical user interface [18]. MDE
has two main approaches: MDA from the Object
Management Group (OMG) and Eclipse Modeling
Framework (EMF) from the Eclipse Foundation. The EMF
provides a development framework which supports the
MDA-based approach. We have been using concepts and
resources of both approaches.

Figure 1 shows how the MDA approach involves the use
of modeling languages, abstraction levels and independence
of platform and programming languages. The M0 layer
represents the real-world objects. The M1 layer is a model
representation of the previous layer, represented by a
modeling language. The models in M1 layer are defined

235Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

using concepts described by metamodels in M2 layer. Each
metamodel of M2 layer determines how expressive models
can be. Analogously, metamodels are defined using concepts
described by meta-metamodels in the M3 layer [19].

The Unified Modeling Language (UML) and Enterprise
Distributed Object Computing (EDOC) are examples of
modeling languages. At the M2 level UML and EDOC are
defined by their metamodels which represent the elements of
the structure of the modeling language. At the M3 level, we
can use the OMG’s Meta Object Facility (MOF) language or
the Ecore language defined by the EMF, as depicted by the
Figure 1.

Figure 1. MDA’s Abstraction Levels

In MDA, transformations are performed from source
models to target models according to mappings, which are
created by the identification of semantic correspondences
between elements present in both models. The
transformations rules are defined based on these mappings,
executed by a transformation engine (e.g., the EMF engine)
and written using transformation languages, such as Atlas
Transformation Language (ATL) or OMG’s Query View and
Transform Language (QVT).

The ATL language (chosen in this study) provides a
simple Object Constraint Language (OCL) based declarative
language that facilitates the definition of transformation rules
and it is available in a toolkit format to be used together with
Eclipse [20].

The Eclipse Modeling Framework is an integration tool
that uses class diagrams to represent metamodels and
supports creation, storing, changing and opening model
instances in XML Metadata Interchange (XMI) format. EMF
unifies three important technologies: Java, XML and Unified
Modeling Language (UML) with the Eclipse Integrated
Development Environment (IDE) [19].

The main advantages of the MDA approach are
portability, interoperability, reusability and technology
independence, acting on the architectural concepts of
separation between specification and implementation of
software [21]. Thus, software engineers no longer need to
worry about details of implementation language, focusing on
the business rules and minimizing the occurrence of errors.
The development of models containing only the business
logic independent of technological details (platform,
programming languages, and architectures) makes the
software more portable. These business models can be

mapped to many platforms only by the creation of new
transformation rules [1].

III. MODEL DRIVEN RESTFUL WEB SERVICES

Fokaefs et al. [22] discuss the interoperability issue
raised when two services using different architectures, like
RPC/SOAP and REST, need to exchange information. The
proposed solution was a metamodel, that abstracts
architecture details and focuses only on the service elements.

We have discussed in [4] the problem of interoperability
between syntactic and semantic description of RESTful
Semantic Web services against the various existing
languages. We have presented a model-driven approach,
specifically on the creation of a metamodel and
transformation rules in order to generate automatically the
required documents that make the description of such
services independently of the chosen language.

We have presented a metamodel named as RESTful
Semantic Web Service (WSSR), which abstracts information
present in the RESTful Web services and, to exemplify, we
defined transformation rules that generated the syntactic
description in WADL and the semantic description in
Ontology Web Language for Services (OWL-S).

This work presented a solution of interoperability
between syntactic and semantic description. However, it was
not addressed the problem of interoperability also present in
the Application tier of RESTful Web services, due to the fact
of the wide variety of ways to implement these applications.

RPC/SOAP and RESTful Web services implemented in
different frameworks and by different languages and formats
are not interoperable and have many restrictions in their
designs.

Some efforts have been made to design interoperable
Web Services and model driven approaches have been
applied as a solution to this problem. Some works can be
found in the literature applying MDE-based techniques for
developing RPC/SOAP Web Services. By the separation of
concerns and by the development on different abstraction
levels, Web Services metamodels can represent different
tiers independent of technologies and programming
languages then mapped to a target platform.

In this paper, we present an approach for the model
driven development of the RESTful Web Service
Application tier.

Figure 2 shows the architecture of our approach. The
WSSR metamodel can be mapped to a semantic description
language (A), to a syntactic description language (B) and to
an implementation language (C). The (A) and (B) mappings
were presented in [4] and in this paper, we discuss (C).

Through the solution proposed in this paper, it is possible
to define the implementation logic of a RESTful Web
Service independent of programming language, then by
mapping rules and transformation process target different
platforms without rewriting of the service implementation
logic.

236Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Figure 2. Possible transformations from WSSR metamodel

We provide the WSSR metamodel, which is responsible
for defining the service business logic in the Application tier,
abstracting platform (technologies, programming languages,
etc) details. Then, a specific technology metamodel must be
defined as the target platform chosen by the programmer to
implement the service. Further, the identification of
correspondences, named as mapping operation, will be
defined between both metamodels. The mapping operation
provides the correspondences needed to describe the
transformation rules. The transformation rules, written in a
transformation language, define which elements from a
source metamodel will be transformed in which elements of
the target metamodel. The transformation rules are applied in
the model level, i.e., in instances of services. A source model
must be conforms to the WSSR and the target model will be
generated by the transformation engine, and it conforms to
its target metamodel.

Figure 3. UML Activity Diagram of the Approach

Figure 4 illustrates, using a UML class diagram, the
identification of semantic correspondences (mapping) of a
fragment of our WSSR metamodel with the JAX-RS
metamodel. The JAX-RS [16] specification was chosen
because it is the standard specification for developing
RESTful Web services in Java. This mapping allows the
creation of the new transformation rules that will result in the
implementation of the service in a fast and automated way.

In this figure, it is possible to see on the left side the
WSSR metamodel with its main classes. The classes destined

to do the semantic description were suppressed, because it is
not the focus of this paper. It is important to note that the
same WSSR metamodel – without any inclusion – can also
be mapped to any language that implements RESTful Web
services. The main class of the metamodel, named as
RESTService, represents a RESTful service and contains the
attributes necessary for the identification of such services,
like URI, name, description, etc. The RESTful service has
resources (Resource class), that are source of representations
(Representation class). The resources are accessed by their
methods (Method class) though HTTP methods
(HTTPMethod attribute), which can have the values
predefined in the HTTPMethods enumeration. The RESTful
service is based on the paradigm of HTTP request and
response, here represented by the Request class and
Response class. The responses may be presented as
representation format, and the requests are accessed through
parameters (Parameter class). These parameters may
previously have established values, which are the options
(Option class).

On the right side, can be seen the JAX-RS metamodel,
which is an abstraction of the JAX-RS specification. This
specification is present in the JavaEE and it is responsible for
implementing RESTful Web services. The JAX-RS uses
some Java language elements, such as packages, classes,
methods and parameters, respectively represented by the
JPackage, JClass, JMethod and JParameter classes. The
GET, POST, PUT and DELETE classes are specializations of
the JMethod class and inform which HTTP methods are
related. The JClass, JMethod and JParameter classes are
associated with the JValue class to combine Java annotations
with themselves.

Between the two metamodels, each arrow identified by a
circle represents the identification of correspondence
between elements present in both WSSR and JAX-RS
metamodel. The R2C arrow means that each Resource class
corresponds to a JClass class. The P2P arrow means that
each Parameter class corresponds to a JParameter class.
Each Method class corresponds to a distinct class in the
JAX-RS metamodel, depending on the HTTPMethod
associated with it. If the HTTPMethod is GET, so the
correspondence is between Method class and GET class,
corresponding to the element M2Ge. Analogously, when the
HTTPMethod is POST, PUT and DELETE, the Method class
will be respectively associated with POST, PUT and
DELETE classes, corresponding to elements M2Po, M2Pu
and M2De.

This paper aims to generate an automated source-code
generator related to the implementation of a RESTful Web
service in any programming language that implements such
services. To accomplish this, the WSSR metamodel must be
mapped, by the correspondence identification, to the chosen
programming language. Therefore, we chose the Java
language with JAX-RS specification to exemplify the
implementation.

237Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Figure 4. Correspondences between WSSR and JAX-RS metamodel elements

Figure 5 shows the transformation rules that were created
using the elements that have the correspondences identified.
The transformation rules where written using the ATL
language and will transform the source model (conforms to
the WSSR metamodel) to a target model (conforms to the
JAX-RS metamodel). The target model will be the source
code, i.e., the implementation of the RESTful Web service.

As can be seen, between lines 1 and 6, the code snippet
refers to the creation of the resources. The code does an

iteration over each method of the resource, calling a helper
that corresponds to the creation of the methods between the
lines 8 and 60. In this code snippet, also can be seen in lines
10, 30, 38 and 51 a condition that, according to the
HTTPMethod associated with the method in the source
model, will create a Java method with its corresponded
annotation, such as the path and parameter that belong to this
method.

Figure 5. ATL snippet code of WSSR to JAX-RS transformation

 01 helper context METAMODEL!Resource

02 def: toString(): String=

03 '@Path("/' + self.name + '") ' +
04 'public class ' + self.name + 'Resource { ' +

05 self.methods->iterate(i; acc: String='' | acc + i.Methods(self)) +

06 '}';
07

08 helper context METAMODEL!Method

09 def :Methods(resource: METAMODEL!Resource) : String =
10 if self.HTTPMethod.toString()='GET' then

11 '@GET' +

12 '@Produces("text/xml")' +
13 'public ArrayList<'+resource.name+'> get'+ resource.name +

14 'List('+self.methodRequests->iterate(i; acc : String = '' | acc +

15 i.requestQueryParameters->iterate(j; acc : String = '' | acc +
16 '@QueryParam("' + j.name + '") ' +

17 thisModule.convertDataType(j.dataType) +

18 resource.name + j.name + ', ')) + ') { } ' +
19 '@Path("{' + thisModule.defaultParameter(self, resource) +

20 ' //return code }")' +

21 '@GET' +
22 '@Produces("text/xml")' +

23 'public ' + resource.name + ' get' + resource.name + '(' +

24 '@ParamPath("{' +
25 thisModule.defaultParameter(self, resource) + '}") ' +

26 thisModule.defaultDataType(self) +

27 thisModule.defaultParameter(self, resource) + ')
28 { //return code }' else '' endif +

29

30 if self.HTTPMethod.toString()='POST' then

31 '@POST' + ' ' +

32 '@Consumes("text/xml")' +

33 '@Produces("text/xml")' +
34 'public ' + resource.name + ' post' + resource.name +

35 '(' + resource.name + ' ' + resource.name + ') ' +

36 '{ //return code }' else '' endif +
37

38 if self.HTTPMethod.toString()='PUT' then

39 '@Path("{'+thisModule.defaultParameter(self,resource)+'}")'+
40 '@PUT ' +

41 '@Consumes("text/xml")' +

42 '@Produces("text/xml")' +
43 'public ' + resource.name + ' put' + resource.name + '(' +

44 '@ParamPath("{' +

45 thisModule.defaultParameter(self, resource) + '}") ' +
46 thisModule.defaultDataType(self) +

47 thisModule.defaultParameter(self, resource) + ', ' +

48 resource.name + ' ' + resource.name + ') ' +
49 '{ //return code }' else '' endif +

50

51 if self.HTTPMethod.toString()='DELETE' then
52 '@Path("{'+thisModule.defaultParameter(self,resource)+'}")'+

53 '@DELETE' + ' ' +

54 'public void del' + resource.name + '(' +
55 '@ParamPath("{' +

56 thisModule.defaultParameter(self, resource) + '}") ' +

57 thisModule.defaultDataType(self) + '
58 thisModule.defaultParameter(self, resource) + ', '

59 resource.name + ' ' + resource.name + ') ' +

60 '{ //return code }' else '' endif;

238Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

By the specification of the correspondences between the
source and target languages, the same code can be mapped
generating different RESTful Web services implementations.

IV. CASE STUDY

As a case study, this paper proposes the implementation
of a RESTful Web service that performs a simple product
purchase order. The service must enable the order to be
created, read, updated, and deleted, according to the concepts
of the REST architecture described in the technological
context of this paper.

To apply a model-driven approach, aiming to the
implementation of the service, a model must be created
conforms to the WSSR metamodel, previously presented.
The model of the purchase order can be seen as an instance
of the metamodel WSSR.

The model is depicted in Figure 6. Note that the model
does not make use of all elements contained in the WSSR
metamodel. Elements related to server Response (Response
class) and the representation of the resource (Representation
class), referred to the HTTP return code on the operations
and the payload corresponding to representation sent and
received from the server are not covered in this paper.

Thus, between lines 2 and 26 can be seen a RESTful
Web service named Order Service, which have a resource
named as order. Between lines 3 and 12 is the GET method
and parameters that compose an application (code, product
and quantity). The methods are responsible to perform
operations on this resource. The POST method (line 13)
refers to an operation of creating a new item. Between the
Lines 14 and 19 can be found the POST method, which
accepts the code parameter related to the order code that will
be updated. Finally, between the lines 20 and 26 is depicted
the DELETE method, which excludes the item passed by
parameter.

Figure 6. A sample model conforms WSSR metamodel

The execution of the transformation rules, created in the
previous chapter, results in a source code written in Java and
using the JAX-RS specification, as shown in Figure 7.

The figure shows the orderResource class containing
methods and parameters appropriately associated with the
Java annotations that will transform these elements in
resources, methods and parameters of a RESTful Web
service.

Figure 7. ATL snippet code of WSSR to JAX-RS transformation

Figure 8 shows a use case example developed through
our approach, which is implemented in the Eclipse EMF.
EMF has been the most used framework for the development
of model driven approaches. It provides plugins for defining
models, transformation language APIs, transformation
engines and different modeling languages. In part (A) of the
figure, we present the implementation of the source model,
which conforms to the WSSR metamodel, previously
defined in the EMF. The transformation rules are defined in
the ATL language, as shown in part (B). By the
interpretation of the transformation rules, the ATL
transformation engine will generate, in a semi-automatic
way, the target code of the RESTful Web Service in the Java
language, as shown in part (C). The parts (A), (B) and (C)
represent the implementation of the source code (fragment)
depicted in the Figures 5, 6 and 7. The same source model

01 @Path("/order")

02 public class orderResource {

03 @GET
04 @Produces("text/xml")

05 public ArrayList<order> getOrderList(

06 @QueryParam("code") int orderCode,
07 @QueryParam("product") String orderProduct,

08 @QueryParam("quantity") int orderQuantity)

09 { //return code }

10

11 @Path("{order_code}")

12 @GET
13 @Produces("text/xml")

14 public order getorder(
15 @ParamPath("{order_code}") int orderCode)

16 { //return code }

17
18 @POST

19 @Consumes("text/xml")

20 @Produces("text/xml")
21 public order postOrder(Order order)

22 { //return code }

23
24 @Path("{order_code}")

25 @PUT

26 @Consumes("text/xml")
27 @Produces("text/xml")

28 public order putOrder(

29 @ParamPath("{order_code}") int orderCode, Order order)
30 { //return code }

31

32 @Path("{order_code}")
33 @DELETE

34 public void delOrder(

35 @ParamPath("{order_code}") int orderCode, Order order)
36 { //return code }

37 }

01 <wssr:RESTService name="Order Service"
02 <resources name="order" URI="order">

03 <methods name="Order-GET">

04 <methodRequests>
05 <requestQueryParameters name="code" default="true"

06 isRequired="true" style="query" dataType="xsd:int"/>

07 <requestQueryParameters name="product"
08 isRequired="true" style="query" dataType="xsd:string"/>

09 <requestQueryParameters name="quantity"

10 isRequired="true" style="query" dataType="xsd:int"/>
11 </methodRequests>

12 </methods>

13 <methods name="Order-POST" HTTPMethod="POST"/>
14 <methods name="Order-PUT" HTTPMethod="PUT">

15 <methodRequests>

16 <requestQueryParameters name="code" default="true"

17 isRequired="true" style="query" dataType="xsd:int"/>

18 </methodRequests>

19 </methods>
20 <methods name="Order-DELETE" HTTPMethod="DELETE">

21 <methodRequests>

22 <requestQueryParameters name="code" default="true"
23 isRequired="true" style="query" dataType="xsd:int"/>

24 </methodRequests>

25 </methods>
26 </resources>

30 </wssr:RESTService>

239Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

can generate different services in different languages
providing the interoperability proposed.

Figure 8. Development of the approach in EMF/Eclipse environment

V. CONCLUSION AND FUTURE WORK

The lack of interoperability between RESTful Web
services have been discussed at the architectural level,
syntactic description and semantic description. In this paper,
we have discussed this issue at the implementation level. We
have proposed a model-driven approach to solve the lack of
interoperability of the Application tier of the REST
architecture. We have presented a metamodel, mapping
specifications and the transformation rules targeting the Java
language, but the same approach can target any language that
implements RESTful Web services. Comparing to the prior
research, this approach provides some benefits beyond
interoperability such as agile development, standardization,
reuse and focus on the business rules. As future work, the
WSSR metamodel may be mapped to others languages or
specifications that are also used to implement RESTful Web
services and generate the correspondent source code.

REFERENCES

[1] I. Sommerville, “Software Engineering,” Pearson Prentice Hall, 2011.

[2] R. Fielding, “Architectural styles and the design of network-based
software architectures,” University of California, 2000.

[3] D. Chen and G. Doumeingts, "European initiatives to develop
interoperability of enterprise applications—basic concepts,
framework and roadmap," Annual Reviews in Control, v. 27, n. 2, pp.
153-162, 2003.

[4] N. Tavares and S. Vale, “A Model Driven Approach for the
Development of Semantic RESTful Web Services,” in 15th
International Conference on Information Integration and Web-based
Applications & Services (iiWAS2013), pp. 290-299, 2013.

[5] E. Cerami, “Web Services Essentials,” O’Reilly Media, 2002.

[6] O. Xavier, “Semantic Web Services based on RESTful”, Federal
University of Goiás, 2001.

[7] M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, and M. Gudgin,
“SOAP Version 1.2 Part 1: Messaging Framework,” W3C REC REC-
soap12-part1-20030624, June, 240-8491, 2003.

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
services description language (WSDL) 1.1,” W3C Note, 2001.

[9] O. Filho, “Semantic Services: A RESTful approach,” University of
São Paulo, 2009.

[10] F. Valverde and O. Pastor, "Dealing with REST Services in Model-
driven Web Engineering Methods," in V Jornadas Científico-Técnicas
en Servicios Web y SOA, JSWEB, pp. 243-250, 2009.

[11] Y. J. Lee and C. S. Kim, “Building Semantic Ontologies for RESTful
Web Services,” in Computer Information Systems and Industrial
Management Applications (CISIM), International Conference, pp.
383-386, 2010.

[12] R. Khorasgani, E. Stroulia, and O. Zaïane, “Web service matching for
RESTful web services,” in Web Systems Evolution (WSE), 13th
IEEE International Symposium, pp. 115-124, 2011.

[13] L. Richardson and S. Ruby, “RESTful Serviços Web,” O’Reilly
Media, 2007.

[14] C. Pautasso, “RESTful Web service composition with BPEL for
REST,” in Data & Knowledge Engineering, v. 68, n. 9, pp. 851-866,
2009.

[15] H. Li, "RESTful Web service frameworks in Java," in Signal
Processing, Communications and Computing (ICSPCC). IEEE
International Conference, pp. 1-4, 2011.

[16] M. Hadley and P. Sandoz, "JAX-RS: Java™ API for RESTful Web
Services," Java Specification Request (JSR) 311, 2008,
<https://jcp.org/en/jsr/detail?id=311> 23.10.2013.

[17] Java, E. E. “At a Glance,” 2006,
<http://www.oracle.com/technetwork/java/javaee> 23.10.2013.

[18] X. Qafmolla and V. C. Nguyen, “Automation of Web services
development using model driven techniques,” in Computer and
Automation Engineering (ICCAE), The 2nd International Conference
on. IEEE International Conference, vol. 3, pp. 190-194, 2010.

[19] S. Staab, T. Walter, G. Gröner, and F. S. Parreiras, “Model driven
engineering with ontology technologies,” in Reasoning Web,
Semantic Technologies for Software Engineering. Springer Berlin
Heidelberg, pp. 62-98, 2010.

[20] A. Radjenovic and R. Paige, "Behavioural interoperability to support
model-driven systems integration," in First International Workshop
on Model-Driven Interoperability. ACM, pp. 98-107, 2010.

[21] D. Amar Bensaber and M. Malki, “Development of semantic Web
services: model driven approach,” in 8th international conference on
New technologies in distributed systems. ACM, pp. 40, 2008.

[22] M. Fokaefs and E. Stroulia, "WSMeta: a meta-model for web services
to compare service interfaces," in Proceedings of the 17th Panhellenic
Conference on Informatics. ACM, pp. 1-8, 2013.

240Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

