
Towards System Level Performance Evaluation of Distributed
Embedded Systems

Jukka Saastamoinen, Subayal Khan, Jyrki Huusko,
Juha Korpi, Kari Tiensyrjä

VTT Technical Research Center of Finland,
FI-90570, Oulu, Finland

email: {jukka.saastamoinen, subayal.khan,
jyrki.huusko, juha.korpi, kari.tiensyrja}@vtt.fi

Jari Nurmi
Tampere University of Finland,

Department of Computer Systems
P.O. Box 553 (Korkeakoulunkatu 1),

lFIN-33101 Tampere, Finland
jari.nurmi@tut.fi

Abstract— In order to manage the increasing complexity and
heterogeneity of the distributed embedded systems, the system level
performance evaluation must be performed at an early design phase
using abstract models of the platforms and applications. Thus, the
system level performance simulation techniques for embedded systems
play a key role in the architectural exploration phase. The salient
performance evaluation methodologies are developed around some key
concepts and employ a variety of modelling styles, models of
computation and programming languages for performance modelling
of embedded systems. The aspects of a performance evaluation
methodology might limit it to certain domain(s) of embedded systems
and therefore must be investigated. In order to span different domains
of distributed systems, a methodology must provide the models for
technologies, such as communication protocols and middleware
technologies, which are employed in different domains of distributed
embedded systems. Once achieved, the methodology will be able to
provide an estimate of the contribution of these technologies in the
non-functional properties of the distributed system. The goal of this
survey is to shortlist the performance modeling methodologies feasible
for the performance evaluation of different domains of distributed
systems. The abstraction level used to model these protocols is
investigated since the accuracy of the related performance numbers
depend on the used abstraction level. After comparing the salient
methodologies on the basis of modeling style, tools and languages,
targeted domain etc., we shortlisted the feasible contributions for
performance evaluation of different domains of distributed systems.
Afterwards, we describe the models and tools needed by the shortlisted
methodologies in order to span the different domain of distributed
systems. The article acts as a reference for researchers and industries
involved in developing methods and tools for system level performance
simulation.

Keywords-Performance Model; Application Model; Platform
Mode;, Kahn Process Networks; Y-Char; UML; SystemC

I. INTRODUCTION
Distributed systems are used in diverse market segments

including consumer electronics, medical devices,
environment monitoring, industrial control, automotive and
office automation. The complexity of these systems has
increased enormously in all these industrial domains.
Therefore, these systems are accompanied with various
design challenges [1].

Firstly, the design space is huge not only due to many
alternatives for datalink, transport and middleware
technologies (for example, specialized MAC (media access
control) protocols in WSN (wireless sensor networks) and

multitude of middleware technologies in multimedia
applications domain) but also in terms of available platforms
and various application implementation alternatives.
Secondly, due to computational complexity of many
distributed applications and the strict design constraints
(non-functional properties), the designer has to make critical
design decisions at an early stage in order to compare a
particular system design with other possible alternatives
before the actual implementation and integration of the
system proceeds [1].

Moreover, both the functional and non-functional
properties of the overall distributed system not only depends
on the computations performed within the network nodes but
also on the interaction of the various data streams on the
common communication media [1].

Therefore, in order to span different domains of
distributed systems, a methodology must provide models of
MAC, Transport protocols and middleware technologies.
This is important because in case of distributed applications,
MAC, Transport and Middleware technologies also
contribute to the non-functional properties of the system.
These non-functional properties include for example end-to-
end packet delays and packet loss rate. Also, the increasing
complexity of distributed applications demands that the
application design phase shall act as a starting point for the
application workload modelling phase to reduce the time and
effort in the performance simulation and architectural
exploration phase [1].

The main contribution of this article is to provide a
literature review of the existing performance simulation
methodologies in order to evaluate their feasibility for the
performance evaluation of multiple domains of distributed
systems. The survey first defines important features which
must be investigated in order to evaluate the feasibility of
performance evaluation methodologies in various domains of
distributed embedded systems. Afterwards, the availability of
the models and tools which provide these features are
highlighted in salient performance evaluation approaches.
Based on this information, the methodologies which fulfil
these requirements are shortlisted.

169Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

The rest of the paper is organized as follows: in Section
2, a comparison of the salient system level performance
evaluation (SLPE) methodologies is provided in order to
investigate their feasibility for the performance evaluation of
(different domains of) distributed systems. In Section 3, the
requirements for the SLPE methodology to span different
domains of distributed embedded systems are listed. In
Section 4, the methodologies which fulfil these requirements
are shortlisted on the basis of the information provided in
Section 2. Section 5 evaluates the feasibility of ABSOLUT
for the performance evaluation of distributed systems in
different domains. The conclusions drawn by the survey are
presented in Section 6. This is followed by
acknowledgements and list of references.

II. COMPARISON OF METHODS AND TOOLS
The main concepts employed by different SLPE

methodologies have been described in detail in [2] and [3]
and are therefore not presented in this article. The objective
of this case study is to investigate the methods and models
employed by the salient performance evaluation
methodologies to assess their feasibility for performance
evaluation of different domains of distributed systems.

Therefore, in this section, we first classify the SLPE
methodologies on the bases of four salient features. These
features include the modelling style, used languages and
frameworks, non-functional properties validation and
targeted system and application domains. In Section 3, we
use this information to identify the SLPE methodologies
which can span different domains of distributed systems.

A. Modelling style
Different design space exploration methodologies

employ either static (analytical) or dynamic (simulation)
estimation methods. Usually, the static estimation methods
shrink the vast design space briskly but the models
employed are very coarse. The models used by dynamic
estimation methods are more accurate and detailed but are
slow at pruning the vast design space. In other words, the
static estimation favour speed instead of accuracy for design
space exploration while the dynamic exploration methods
favour accuracy instead of speed. Some methods utilize a
combination of static and dynamic simulation for exploiting
the advantages of both methods. Static methods employ
analytical or highly abstract models of applications and
usually ignore the dynamic behaviour of the application
which depends on the input data. As a result, the static
methods do not offer the level of accuracy for exploration
and communication scheduling as the dynamic simulation
methods. Most of the salient performance simulation
approaches utilize the dynamic estimation approach while
ARTEMIS, MESH and KOSKI use both static and dynamic
estimation methods as shown in Table I. It was observed
that different methodologies model the applications and
platforms at various levels of abstraction and refinement.
ABSOLUT employs layered application and platform
models. The platform models operate at the transaction level

while the lowest layer of application models comprise of
abstract instructions. Detailed description of ABSOLUT
modelling methodology is provided in [4].

Some methodologies, for example SPADE, TAPES,
ARTEMIS and KOSKI, model applications as KPN (Kahn
Process Network) MOC (Model of Computation) [5].
Platform models in SPADE are instantiated via a library of
generic building blocks which model different resources in
the platform. The processing elements in the platform are
modelled as TDEUs (trace driven execution unit). Each
process of the modelled application is mapped to a TDEU in
the platform [6]. TAPES abstracts the processing of tasks by
their execution latencies on the corresponding resources in
the platform [7]. Further details of platform modelling in
TAPES are mentioned in [7].

The architecture models in ARTEMIS operate at
transaction level, which simulate the computation and
communication events that are generated by the application
model [8]. An architecture model is made from a library of
generic building blocks which contains templates of
performance models for different platform elements [8].
KOSKI employs UML (unified modeling language) for
modelling platform which is later on transformed to an
abstract model via UML interfaces [9].

ARTS employs static data flow graphs (SDFG) MOC to
model the applications while the architecture models operate
at transaction level and simulate the performance
consequences of the computation and communication events
generated by the platform [10][11].

Baghdadi et al. (2000) [12] describes the system-level
specifications in SDL (specification and description
language) which results in heterogeneous multi-processor
architectures consisting of both hardware and software
components. SDL can model a variety of embedded
software applications (both real time and non-real time).

Fornaciari et al., (2001,2002) [13], [14] uses software
execution profiler for the cycle accurate simulation of the
application while the data and address bus streams are
generated via a dynamic tracer.

Jabber et al., (2009) [15] model applications via
DIPLODOCUS tool. A DIPLODOCUS application
comprises of a network of tasks which communicate via
communication semantics defined by the methodology. The
architecture comprises of a network of physical resources
which are abstracted by one of three types of architecture
nodes, .i.e., the computation nodes (for example CPUs,
DSPs, and hardware accelerators etc.), the communication
nodes (for example busses, routers and switches etc.) and
the storage nodes (for example memories) [15].

Lahiri et al., [16], [17] uses highly abstract application
models and only targets the domain of custom
communication architectures for on chip communication
architectures.

Mesh models applications as dynamic threads made on
top of physical threads [18] which model the platform.
MILAN [19] uses HiPerE rapid performance estimation

170Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

tools for estimating the performance of designs (SoC
architectures) at the system level. Applications are modelled
as trace files in HiPerE which contain an ordered list of
communication and computation tasks. HiPerE uses a
generic model (GenM) for modelling SoC architectures
[19].

Posadas [24] et al., aims at system level estimation of
execution time from a system level performance description
written in SystemC. It uses a C++ library for this purpose
and therefore does not require any change to the source code
of the description. The way different methodologies model
the application and platforms are summarised in Table I.

Furthermore, some methodologies are capable of
exploiting third party tools for different modelling and
refining purposes, for example ABSOLUT’s workload
generation tool called ABSINTH-2 and SAKE [20] use
Valgrind [32] for workload extraction of external libraries.
KOSKI employs existing compilers and code generators in
order to refine the application to the final processing
elements [21]. ARTEMIS [25] uses Laura tool-set for the
generation of synthesizable VHDL code from the KPN
application description. Furthermore, it was found that all
the landmark contributions considered in Table I employ
simulation for computing performance numbers.

B. Languaged, standards and frameworks
The landmark performance evaluation methodologies

described in Table I use a variety of widely used modelling,
scripting and Programming languages such as C, C++, Perl,
UML and XML for various modelling purposes.

Some methodologies use specification languages such as
SDL or LOTOS OSI specification language for system-level
specifications. Some methodologies such as MILAN use
other tools such as HiPerE and DESERT for modelling and
simulation purposes [19]. Lahiri et al. [16] [22] uses POLIS
and PTOLEMY frameworks for designing communication
architectures of SOCs.

It was observed that some methodologies use modelling
languages and simulation frameworks such as SystemC
which is widely used for the system-level modelling,
architectural exploration, performance modelling etc., of
electronic systems. The programing and modelling
languages used by the landmark methodologies are shown
in Table I.

C. Non-functional properties validation
The distributed embedded systems support applications

which consist of many components running on different
networked devices. In such cases, the application
components communicate via transport, data link and
(possibly) middleware technologies. These distributed
applications are generally message based or streaming
applications which satisfy the end-user requests by (in turn)
requesting one or more services provided by different
devices which implement these services. Therefore, the end-
user experience is not merely a consequence of the

application implementation since the transport protocols,
data link protocols as well as physical layer plays a key role
in the end-user experience since the end-end delays and
packet/frame errors at these layers can deteriorate the end-
user experience. Therefore, for a methodology to be able to
estimate reliable performance numbers for distributed
applications, it must model these OSI model layers with
sufficient level of detail. These models must preserve the
functionality to a level that the estimated delays show a
close correlation with delays estimated by network
simulators such as OMNeT++ and ns-2.

It has been noticed that some methodologies are totally
focused on one particular domain of applications and
systems. The methodologies such as ARTEMIS, KOSKI,
SPADE and TAPES which model applications via KPN
MOC are limited to the performance estimation of
streaming applications since KPN models only model
streaming applications very well. Therefore a wide variety
of message based distributed applications cannot be
modelled via these methodologies. Some methodologies
such as Lahiri et al. and ARTS use other models of
computations such as CAG (communication analysis graph)
and SDFG (static data flow graph) for modelling
applications. It was also observed that some methodologies
use their own model of computation for describing
applications while the others such as ABSOLUT employ a
layered application model [4].

In all the methodologies which employ a model of
computation to describe the applications, we observe that
the functionality of the transport and datalink layer has been
abstracted by the communication paradigm employed by the
MOC. This means that the non-functional properties of a
distributed application (such as end-end delays and
packet/frame loss rate) cannot be reliably estimated since
the functionality of transport and datalink layers have been
swapped by that of the communication means defined by the
employed MOC. All the MOCs use simple channels for
communication among processes for example KPN MOC
use simple FIFO (first-in first-out) channels for passing
synchronization tokens among processes. On the other hand
in networked devices, datalink layer MAC protocols resolve
the contentions for occupancy of the common channel
(wired or wireless). The level of abstraction used to model
channels should be comparable to the abstraction level
employed by network simulators such as OMNeT++ and ns-
2 [23]. The MOCs, targeted application domain and the
availability of models for transport, datalink and
Middleware technologies models are highlighted in Table I
for the landmark performance simulation methodologies. In
short, the emphasis is on the model of computation
employed by the methodologies, since it can potentially
restrict an approach to a specific domain of applications.
Also, the models of transport and MAC protocols employed
by different approaches are investigated since they play an
important role in determining the non-functional properties
such as end-end message delays in distributed applications.

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

These non-functional properties can play an important role
in end-user experience and must be estimated with
reasonable accuracy.

D. Targeted system and application domains
The use of multiprocessor based platforms is increasing

in high-end mobile handheld devices such as smart phones
and internet tablets. On the other hand, in case of wireless
sensor networks very low power single processor based
systems are commonly used. Hence, for the performance
simulation of a wide variety of distributed embedded
systems, it is important that the methodology is not
restricted to a certain type of platforms (single or
multiprocessor based). Also, it should not be strictly
targeted at the performance evaluation of a particular
subsystem or components of a platform such as performance
evaluation of on-chip communication architectures. The
system and application domains (of embedded systems)
targeted by salient performance evaluation methodologies
are listed in Table I. In Table I, we add the domain of

distributed networked systems to the three domains of
embedded systems elaborated in [21].

Some methodologies are totally focused at the
performance evaluation of a particular domain of systems,
for example TAPES and Fornaciari et al. target single
processor based systems, SPADE and Baghdadi et al. only
target Multi-Processor based systems while Lahiri et al. is
only focused on the performance evaluation of on-chip
communication architectures. The other landmark
methodologies are also focused on only two out of the three
performance simulation objectives, .i.e., performance
evaluation of single processor based SoC, multi-processor
based SoC and on-chip communication architectures [21].
Only three methodologies .i.e.; ABSOLUT, ARTEMIS and
KOSKI have no such restriction.

TABLE I. ANALYSIS OF SALIENT DESIGN SPACE EXPLORATION METHODOLOGIES

N
am

e
of

 a
pp

ro
ac

h

Modelling Styles, Tool
Coupling and Performance

Estimation

Languages, Standards
and Other Frameworks Used

Non-functional
properties validation

Targeted System
Domain

Pe
rf

or
m

an
ce

 e
st

im
at

io
n

ty
pe

 A

pp
lic

at
io

n
M

od
el

A
rc

hi
te

ct
ur

e
M

od
el

T
oo

l C
ou

pl
in

g

Si
m

ul
at

io
n

B
as

ed
 A

pp
ro

ac
he

s

Pr
og

ra
m

m
in

g/
M

od
el

lin
g

L
an

gu
ag

es

an
d

St
an

da
rd

s
Sp

an
ne

d

O
th

er
 A

pp
ro

ac
he

s/
Fr

am
ew

or
ks

 U
se

d

M
od

el
 o

f c
om

pu
ta

tio
n

T
ar

ge
te

d
A

pp
lic

at
io

n
D

om
ai

n

T
ra

ns
po

rt
 a

nd
 D

at
a-

lin
k

M
od

el

M
id

dl
ew

ar
e

L
ay

er
 W

or
kl

oa
d

M
od

el
s Non-

Distributed
Systems

D
is

tr
ib

ut
ed

 N
et

w
or

ke
d

Sy
st

em
s

Si
ng

le

Pr
oc

es
so

r
ba

se
d

sy

st
em

s

M
ul

ti-
Pr

oc
es

so
r

ba
se

d
SO

C

 O
n-

C
hi

p/
In

tr
a-

Pl
at

fo
rm

C

om
m

un
ic

at
io

n
A

rc
hi

te
ct

ur
es

ABSOLUT D X11 X12 X13 C/C++/SystemC2.2/T
LM2.0/UML

 TLM

A X X X

ARTEMIS D/S X21 X22 X23 PEARL, SystemC,
RTL

SPADE,
SESAME

KPN ST X X X

ARTS D X31

X32 SRTS Scripting

Language, SystemC
 SDFG ST X X

Baghdadi
et al

D X41 X42

C,RTL,SDL, MUSIC,
CODESIM

N X42 X

Fornaciari
et al

D X51 X52 C/C++ MEX,
Shade, X53

N

ST X54

Jaber et al D X61 X62 UML, SystemC,
LOTOS OSI
Specification
Language

DIPLODO-
CUS

N X63 X X

Koski D/S X71 TUT UML Profile,
XML

Existing
Code
Generators
and
Compilers

KPN A X X X

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

Lahiri et al D X Languages/Tools used
by POLIS &
PTOLEMY

POLIS,
PTOLEMY

CAG X81 X

MESH D/S X C X91 A X X
MILAN D X101 X Languages/

Tools used by
DESERT & HiPerE

DESERT,
HiPerE,
X102

X103 A

Posadas et
al

D X111 C++/SystemC X112 X113 X X

SPADE D X X C/C++ YAPI, TSS KPN ST X
TAPES D X SytemC, XML KPN ST X

Abbreviations
A No restriction as per our assessment. Also no mention of a particular application domain by the authors.

ST Streaming Applications.

D Dynamic

S Static

N No MOC (Model of Computation) such as KPN, CAG, TLM and CDFG used or affectively adapted/employed by the methodology.
The modelling of applications is elaborated in the corresponding reference in the second column.

TML Transaction Level Modelling

E. Methodology specific information used in Table I

1) ABSOLUT: (X11) ABSOLUT uses layered workload
models consisting of application, process and Function
workload layers. The function workloads consist of abstract
instructions and control.

(X12) The platform model is layered and consists of three
layers, .i.e. component, subsystem and platform architecture
layer.

(X32) The ABSINTH-2 tool uses Valgrind for workload
extraction of external libraries.

2) ARTEMIS: (X21) Applications are modelled as KPNs
which are either generated by a framework called Compaan
or derived manually from sequential C/C++ code.

(X22) Architecture models operate at the transaction level
and an architecture model is made from a library of generic
building blocks containing template performance models for
processing cores, communication media, and various types of
memory.

(X23) ARTEMIS uses Laura tool set for automatic
generation of VHDL code from KPN based application
model.

3) ARTS: (X31) Applications are modelled using static
dataflow task graphs.

(X32) Platform consists of multi-processor models,
memories, communications and other platform resources.

4) Baghadi et al.: (X41) Information related to
application and architecture modelling and tool coupling is
mentioned in Section 2 A (modelling style).

(X42) The system-level specifications are described in
SDL. This results in heterogeneous multi-processor
architectures comprising of both hardware and software.
SDL does not explicitly specify any particular domain or

restriction as far as its ability to model software (both real
time and non-real time) is concerned.

5) Fornaciari et al: (X51) The simulation framework is
based on a software execution profiler for cycle-accurate
instruction set simulation of the application and a dynamic
tracer to generate data and address bus streams.

(X52) Design space exploration is focused on the
processor to memory communication through the memory
hierarchy and includes configurable bus and memory
models, with the latter having behavioural models of on and
off-chip level 1 and 2 caches and main memory. The bus
and memory models use the bus traces from the software
execution profiler as input.

(X53) The architecture exploration is done by using a tool
called MEX. It simulates the execution of a program
compiled for the Sparc V8 architecture with configurable
memory architecture. MEX exploits the Shade [14] library
to trace the memory accesses made by a SPARC V8
program and consequently simulates the target memory
architecture to obtain accurate memory access statistics. The
MEX tool developed by authors uses Shade tool which is
based on C/C++ [14] [13].

(X54) Design space exploration is focused on the
processor to memory communication through the memory
hierarchy. The technique aims at finding the best platform
configuration for the application without an exhaustive
search of the parameter space. The parameters for the
exploration include cache size; block size and instruction
cache associativity.

6) Jaber et al.: (X61) Applications are modelled via
DIPLODOCUS tool. A DIPLODOCUS application
consists of a network of communicating tasks which can
communicate via three communication elements .i.e., the
channels, events and requests. The channels exchange the

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

abstract data samples, events exchange signals and the
requests ask for and thus trigger the execution of another
task.

(X62) The architecture is modelled as a network of
physical resources, including computation, communication
and storage nodes. All resources have parameters like
processing capacity in millions of cycles per second or
memory size in bytes.

(X63) A variety of real-time and embedded applications
can be modelled with sufficient accuracy by using the data
and functional abstraction described by authors in [15].

7) KOSKI: (X71) KOSKI uses existing compilers and
code generators for refining the application to the final
processing element.

8) Lahiri et al: (X81) It is only targeted at design of
custom communication architectures of systems on chip.

9) MESH: (X91) The framework is based on a layered
composition of threads, with the dynamic logical threads
made on the top of physical threads. The physical threads
model the hardware components of a platform and represent
their computational power. The application software is
modelled as logical threads. The execution of a dynamic
number of logical threads is scheduled (by the scheduling
layer of MESH) onto a processing element (for example a
processor modelled as a physical thread).

10) MILAN: (X101) Applications are modelled as trace
files by HiPerE and consist of a list of communication and
computation tasks.

(X102) DESERT and HiPerE are used for rapid design
space exploration. DESERT shrinks the design space by
shortlisting designs and HiPerE estimates the performance.

(X103) The methodology proposed by [19] is only aimed
at system level estimation of execution times from a system
level performance description written in SystemC. No MOC
is employed by this methodology.

11) Posadas et al.: (X111) This methodology aims at
system level estimation of execution time from a system
level performance description written in SystemC and
therefore does not employ application models. It estimates
the execution time of the application via a C++ library.

(X112) Application is modelled as a set of Processes
which can only interact with each other via predefined
channels.

(X113) Only C++ applications can be simulated.

12) Summary: In this section, the important aspects of
salient system level performance simulation methodologies
were elaborated. We observed that these methodologies
employ a variety of tools and modelling languages and
mostly focus on a few modelling (targeted system domain)
objectives shown in Table I. Different methodologies
describe the application and platform models at different
levels of abstraction and employ different models of
computation for describing the application models.

Also, some of the methodologies use third party tools for
modelling or simulation purposes and some provide tools
coupling for extending the usability of the methodology for
other simulation objectives. In the next section we further
investigate the feasibility of landmark performance
evaluation approaches described in this section for the SLPE
of distributed embedded systems.

III. TOWARDS PERFORMANCE EVALUATION OF
DISTRIBUTED EMBEDDED SYSTEMS

After investigating the salient features of landmark
performance evaluation approaches in Section 2, we
conclude that in order to validate the non-functional
properties of distributed embedded systems in different
domains the methodology must fulfil the following salient
requirements.

A. MOC agnostic
The methodology must not employ a specific model of

computation for modelling applications since this will
restrict the methodology to a particular domain of
applications or systems, for example the methodologies
which uses KPN MOC for application or platform are
mainly targeted at performance evaluation of streaming
applications.

B. Multithreaded applications modelling
In order for the methodology to evaluate the

performance of multi-threaded applications, the
methodology must model the multi-threading support for
system level performance simulation of these applications.

C. Physical and transport layer models
Physical layer models such as channel models, coding

and modulation techniques as well as the functional models
of datalink and transport layer protocols must be provided
for evaluating their contribution in non-functional properties
[23]. Also, the methodology must be capable of evaluating
the performance of protocols operating on a particular layer
of the OSI model in isolation just like OMNeT++ and ns-2
[23].

D. No domain restrictions
In order to span the domain of distributed systems such

as WSNs, the methodology must be capable of evaluating
the percentage utilization of the platform by data link and
transport Protocols. WSNs in particular employ highly
efficient and specialized datalink protocols to reduce power
consumption.

E. Workload modelling of user-spacecode, libraries and
system calls
From an implementation perspective, all the applications

processes use user-space code, external libraries, background
processes and system calls. Therefore, the methodology must
provide tools and methods for generating the workload

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

models of not only the user space code but also the external
libraries, background processes and system calls.

F. Workload generation of middleware technologies
It must be capable of workload extraction of API

functions of the various Middleware technologies such as
NoTA (network on a terminal architecture) SOA (service
oriented architecture). This will enable the methodology to
span the domain of distributed streaming and context aware
applications.

G. Detailed as well as highly abstracted workload
modelling
The methodology must provide/define application

workload modelling tools/techniques for generating the
application workload models with varying degrees of
refinement and detail. The more refined and detailed
workload models result in slower simulation speed due to
increased structure and control while the less detailed
workload models usually result in faster simulation speed
[29] [4] [30]at the expense of accuracy. Once this is
achieved, the system designer can freely choose the
workload models that will provide the right balance between
accuracy and speed for the modelling objective.

H. Integration of application design and performance
evaluation
For early phase evaluation of the distributed

applications, the methodology must automate the workload
extraction process by seamless integration of application
design and performance simulation phase. This can be
achieved if the application and workload modelling phases
are linked such that application models act as a starting
point for the application workload modelling. The proposed
technique must be experimented with modern SOAs such as
GENESYS and NoTA.

I. Non-functional properties validation
The non-functional properties must be carried through

the application design phase and validated by the
performance simulation approach. The non-functional
properties are usually modelled and elaborated in the
application model views [1][27][28].

IV. FEASIBILITY OF EXISTING SLPE APPROACHES
As shown in Table I, none of the methodologies is

capable of providing reliable estimates of the non-functional
properties of distributed applications. The reason is that in
case of distributed embedded systems, the transport,
datalink and (possibly) middleware technologies contribute
to the non-functional properties such as end-end frame and
packet delays. In order for a methodology to accurately
estimate the effects of these protocols on non-functional
properties; it must employ functional MAC and Transport
Protocols.

As shown in Table I, majority of the performance
modelling techniques are limited to a particular domain of

embedded systems and applications due to which they
cannot be employed for the performance evaluation of
different domains of distributed embedded systems.

Only three out of all the approaches mentioned in
Section 2, .i.e., ABSOLUT, ARTEMIS and KOSKI are not
restricted to any particular domain of embedded systems.
Furthermore, out of these approaches, ARTEMIS and
KOSKI use KPN MOC for modelling applications which
can only model streaming applications well [6]. Therefore,
out of all the system level performance evaluation
methodologies presented in Table I, ABSOLUT is most
feasible for the performance evaluation of distributed
embedded systems since it is not limited to any particular
system or application domain. As explained before, this is
due to the fact that it does not employ any MOC for
modelling applications or platforms. In the next section, we
describe the tools and models employed by ABSOLUT for
fulfilling the requirements mentioned in Section 3.

V. EVALUATIN FEASIBILITY OF ABSOLUT

A. MOC agnostic
ABSOLUT uses SystemC for modelling platform

components. ABSOLUT methodology does not employ any
specific MOC for modelling platforms and applications. It
employs a component library for instantiating platform
models and ABSINTH-2 and SAKE tools for automatic
application workload generation.

B. Multithreaded applications modelling
Multi-Threaded support has been modelled and

integrated to ABSOLUT due to which it can be used for the
performance evaluation of multithreaded applications. The
approach has been described via a case study in [26].

C. Performance evaluation of protocols
ABSOLUT provides an operating system (OS) model

which is hosted on the processor model in the platform. The
ABSOLUT OS model consists of a scheduler and provides
the possibility to model different OS Services. The
scheduler schedules the application model processes.
Platform services can be implemented by the system
designer as described in [23]. The implementation of
services closely mimics the way services are scheduled by
the widely used platforms (mostly via scheduling queues).
Highly accurate transport, datalink and physical layer
models have been designed and integrated to ABSOLUT
[23] [27].

D. No domain restriction
ABSOLUT does not model the application workload

models and platform capacity models by employing a
certain MOC. This property allows the system designers to
employ ABSOLUT for the performance evaluation of
different domains of embedded systems.

175Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

E. Workload modelling of user-space code, libraries and
system calls
ABSOLUT can model the workload models of user-

space code and external libraries. Furthermore, the
automatic workload modelling of system calls for a variety
of platforms is performed via CORRINA Error! Reference
source not found..

F. Workload modelling of middleware technologies
The workload modelling of middleware technologies is

performed via ABSINTH-2. The middleware technologies
can also be modelled as system calls. The workload
modelling of NoTA device interconnect protocol (DIP) has
been demonstrated in a case study aimed at the SLPE of
distributed NoTA systems [27].

G. Detailed as well as highly abstract workload modelling
ABSOLUT provides different tools for modelling

application workloads at various abstraction levels and
refinement. This allows the system designer to choose the
tools which provide the right compromise between speed
and accuracy.

H. Integration of application design and performance
evaluation
ABSOLUT application workload models can be easily

modelled by extending the application model which acts as
a blue print for application workload models. The seamless
integration of application design and performance
evaluation minimizes the time and effort involved in
performance evaluation phase.

I. Non-functional properties validation
For the validation of non-functional properties, the non-

functional properties must be carried through the application
design phase and validated by the performance evaluation
phase. The seamless integration of application design and
ABSOLUT workload modelling has been demonstrated for
different service oriented application architecture design
methodologies such as GENESYS and NoTA [1] [27].

ABSOLUT has been successfully employed for the
performance simulation of NoC based SOCs and distributed
embedded systems [1] [27]. We now list the features
mentioned in Section 3 which are provided by ABSOLUT
and also provide the references to the research articles
which demonstrate these features via case studies. This
information is presented in Table II.

TABLE II. FEATURES PROVIDED BY ABSOLUT FOR THE
PERFORMANCE EVALUATION OF DISTRIBUTED EMBEDDED SYSTEMS

Number Feature References

I MOC Agnostic [4]

II
Multithreaded Applications
Modelling [26]

III
Performance Evaluation of
Protocols [23]

IV No Domain Restriction [1][27][28]

V

Workload Model
Generation of User-Space
code, External Libraries
and System Calls [4][20][30]

VI
Workload Generation of
Middleware technologies [27][20]

VII

Detailed and Highly
abstract workload
modelling [29][4][30]

VIII

Integration of Application
Design and Performance
Evaluation [1][28][27]

IX
Non-functional Properties
Validation [1][28][27]

From Table II it is clear that all the features which are
required by a SLPE methodology to evaluate the
performance of distributed embedded systems in different
domains are provided by ABSOLUT.

VI. CONCLUSION AND FUTURE WORK
We therefore conclude from the survey that many

methodologies have been developed for the SLPE of
distributed systems. Those methodologies which employ a
MOC for modelling applications or platforms are restricted
to a particular domain of embedded systems. Also, these
methodologies cannot provide reliable performance
numbers of certain non-functional properties of distributed
systems since the MAC and Transport protocols models are
absent or abstracted out. These protocols play a key role in
the end-user experience by contributing to non-functional
properties. These non-functional properties such as end-end
packet delays, packet loss rate and frame loss rate must be
taken into account for performance modelling of distributed
embedded systems so as to ensure a good end-user
experience after the development and deployment of the
distributed system.

We found that ABSOLUT can be used for the
performance evaluation of distributed systems in different
domains. The reason is that it does not employ any MOC for
modelling applications and platforms. Also, ABSOLUT
provides the models of different protocols (for example
MAC and transport) which are important for the SLPE of
distributed systems. Of course, all the performance
evaluation methodologies have not been covered in this

176Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

survey. The main contribution of this article is to describe a
disciplined approach for classifying the performance
evaluation methodologies which helps to determine their
feasibility for the performance evaluation of distributed
embedded systems. By evaluating a methodology on the
basis of requirements looking at the requirements we can
evaluate its potential for SLPE of distributed embedded
systems. If all the requirements mentioned in Section 3 are
fulfilled by a methodology, it can be used to evaluate the
performance of a wide range of distributed embedded
systems.

ABSOLUT fulfils these requirements and provides the
tools for the workload modelling at different levels of
abstraction and refinement. Also, the ABSOLUT
application workload models can be obtained by extending
application model. The extended layered application
architecture is analysed to identify the corresponding
ABSOLUT workload model layers. This reduces the time
and effort in performance modelling which is important to
consider due to increasing complexity of distributed
applications.

In the future, a number of widely used MAC and
Transport protocol models will be designed and integrated
to ABSOLUT. Currently IEEE 802.11 DCF, UDP and TCP
models are provided. Also, a GUI front-end will be
beneficial for easy instantiation of ABSOLUT performance
models. It will also help to reduce the learning curve for
SLPE via ABSOLUT toolset.

ACKNOWLEDGMENT
This work was performed in the Artemis SOFIA and

SMECY projecst partially funded by Tekes – The Finnish
Funding Agency for Technology and Innovation and the
European Union. The work was performed in cooperation
with Finnish ICT SHOK research project Future Internet.
Authors would like to thank all their colleagues for valuable
discussions about the topic.

REFERENCES
[1] I. Lee, J.Y.T Leung, S. H. Son. Handbook of Real-Time and

Embedded Systems. Publisher: Chapman and Hall/CRC (July 23,
2007) .800 pages. Language: English.ISBN-10: 1584886781. ISBN-
13: 978–1584886785.

[2] S. Khan, S. Pantsar-Syväniemi, J. Kreku, K. Tiensyrjä, J.-P. Soininen,
”Linking GENESYS application architecture modelling with platform
performance simulation,” Forum on Specification and Design
Languages 2009 (FDL2009). Sophia Antipolis, France, September
22-24, 2009. ECSI. France (2009)

[3] S. Khan, E. Ovaska, K. Tiensyrjä, J. Nurmi, “From Y-chart to
seamless integration of application design and performance
simulation,” Proceedings 2010 International Symposium on System-
on-Chip - SOC. Tampere, Finland, 29-30 Sept. 2010. IEEE.
Piscataway, NJ, USA (2010), pp. 18-25.

[4] J. Kreku, M. Hoppari, T. Kestilä, Y. Qu, J.-P. Soininen, P. Andersson,
K. Tiensyrjä, “Combining UML2 application and systemc platform
modelling for performance evaluation of real-time embedded
systems,” EURASIP Journal on Embedded Systems. DOI:
10.1155/2008/712329.

[5] M. Gries, “Methods for evaluating and covering the design space
during early design development,” Integration, the VLSI journal, vol.
38, 2004, pp. 131–183.

[6] P. Lieverse, P. van der Wolf. E. Deprettere, “A trace transformation
technique for communication refinement,” Proc. 9th International
Symposium on Hardware/Software Codesign (CODES 2001), pp.
134–139.

[7] T. Wild, A. Herkersdorf, G.Y. Lee, “Tapes—trace-based architecture
performance evaluation with SystemC,” Design Automation for
Embedded Systems 10(2–3): Special Issue on SystemC-based System
Modelling, Verification and Synthesis , pp. 157–179..

[8] A.D. Pimentel, L. Hertzberger, P. Lieverse, P. van der Wolf, E.
Deprettere, “Exploring embedded systems architectures with
Artemis,” IEEE Computer 34(11), Nov 2001, pp. 57–63.

[9] T. Kangas, P. Kukkala P, H. Orsila, “UML-based multiprocessor SoC
design framework. ACM Transactions on Embedded Computing
Systems (TECS), Vol. 5 Issue 2, May 2006, pp. 281–320.

[10] S. Mahadevan, F. Angiolini, M. Storgaard, R. Olsen, J. Sparso J, J.
Madsen, “A network traffic generator model for fast network-on-chip
simulation,” Proceedings of the Design, Automation and Test in
Europe (DATE05), 2005, pp. 780–785.

[11] S.Mahadevan, M. Storgaard, J. Madsen, K. Virk, “Arts: a system-
level framework for modeling MPSoC components and analysis of
their causality,” Proceedings of the International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005, pp. 480–483.

[12] A. Baghdadi, N. Zergainoh, W. Cesario, T. Roudier T, A.A. Jerraya, “
Design space exploration for hardware/software codesign of
multiprocessor systems,” Proc. 11th International Workshop on Rapid
System Prototyping (RSP), 2002, pp. 8–13.

[13] W. Fornaciari, D. Sciuto, C. Silvano, V. Zaccaria, “A sensitivity-
based design space exploration methodology for embedded system,” .
Design Automation for Embedded Systems, 7, 2002, pp. 7-33.

[14] W. Fornaciari, D. Sciuto, C. Silvano, V. Zaccaria, “A design
framework to efficiently explore energy-delay tradeoffs,”. Proc. Ninth
International Symposium on Hardware/Software Codesign (CODES),
2001, pp. 260–265.

[15] C. Jaber, A. Kanstein, L. Apvrille, A. Baghdadi, P.L. Moenner, R.
Pacalet, “High-level system modeling for rapid hw/sw architecture
exploration,” Proc. IEEE/IFIP International Symposium on Rapid
System Prototyping (RSP ’09), Paris, France, pp. 88–94.

[16] K. Lahiri, S. Dey, A. Ragunathan,”Evaluation of the traffic-
performance characteristics of system-on-chip communication
architectures,” Proc. Proceedings of 14th International Conference on
VLSI Design, 2001, pp. 29–35.

[17] K. Lahiri K, A. Ragunathan, S. Dey, “Efficient exploration of the
SoC communication architecture design space,” Proc. IEEE/ACM
International Conference on Computer Aided Design (ICCAD), 2000,
pp. 424–430.

[18] J. Paul, A. Bobrek, J. Nelson, J. Pieper, D. Thomas, “Schedulers as
model-based design elements in programmable heterogeneous
multiprocessors,” Proc. Design Autamation Conference, 2003, pp.
408-411

[19] S. Mohanty, V. Prasanna, “Rapid system-level performance
evaluation and optimization for application mapping onto soc
architectures,”. Proc. Proceedings of the IEEE International
ASIC/SOC Conference, 2002, pp. 160–167.

[20] J. Saastamoinen, J. Kreku, ”Application workload model generation
methodologies for system-level design exploration,” Proceedings of
the 2011 Conference on Design and Architectures for Signal and
Image Processing, DASIP 2011. Tampere, Finland, 2-4 Nov.
2011. IEEE Computer Society (2011), pp. 254-260

[21] T. Kangas, "Methods and Implementations of Automated System for
a Chip Architecture Exploration", PhD Thesis, Tampere University of
Technology, Publication 616, 2006, 181 pages.

[22] K. Lahiri, A. Ragunathan, S. Dey, ”System-level performance
analysis for designing on-chip communication architectures,” IEEE

177Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

Transactions on Computer-Aided Design of Integrated Circuits and
Systems 20(6), 2001, pp. 768–783.

[23] S. Khan, J. Saastamoinen, M. Majanen, J. Huusko, J. Nurmi, ”
Analyzing transport and MAC layer in system-level performance
simulation,” 2011 International Symposium on System on Chip, SoC
2011. Tampere, Finland, 31 Oct. - 2 Nov. 2011. IEEE Computer
Society (2011), 8 p.

[24] H. Posadas, F. Herrera, P. Sanchez, E. Villar E, F. Blasco, “System-
level performance analysis in SystemC,” Proceedings of Design,
Automation and Test in Europe Conference and Exhibition (DATE
2004), Paris, France, 2004, pp. 378–383.

[25] A.D. Pimentel, P. van der Wolf, E. Deprettere, L. Herzberger, “The
Artemis Architecture Workbench,“ Proceedings of the Progress
Workshop on Embedded Systems, Utrecht, Netherlands, 2000, pp.
53-62.

[26] J. Saastamoinen, S. Khan, K. Tiensyrjä, T. Taipale, “Multi-threading
support for system-level performance simulation of multi-core
architectures,” ARCS 2011. 24th International Conference on
Architecture of Computing Systems 2011, Workshop Proceedings.
VDE Verlag Gmbh, 2011, pp. 169-177

[27] S. Khan, J. Saastamoinen J. Nurmi, “System-level performance
evaluation of distributed multi-core NoTA systems,” 2nd IEEE
International Conference on Networked Embedded Systems for

Enterprise Applications. NESEA 2011, Fremantle, Dec. 8-9, 2011.
IEEE (2011)

[28] S. Khan, J. Saastamoinen, K. Tiensyrjä, J. Nurmi, “SLPE of
distributed GENESYS applications on multi-core platforms,” The 9th
IEEE international symposium on Embedded Computing
(EmbeddedCom 2011). Sydney, Dec 12-14, 2011

[29] J. Kreku, M. Hoppari, T. Kestilä, Y. Qu, J.-P. Soininen, K. Tiensyrjä,
“Languages for Embedded Systems and their Applications” volume
36 of Lecture Notes in Electrical Engineering, chapter Application
Workload and SystemC Platform Modeling for Performance
Evaluation, pp. 131–148. Springer.

[30] J. Kreku, J. Penttilä, J. Kangas, J.-P. Soininen, ”Workload simulation
method for evaluation of application feasibility in a mobile
multiprocessor platform,” Proc. Proceedings of the Euromicro
Symposium on Digital System Design, 2004, pp. 532–539.

[31] S. Khan, J. Saastamoinen, K. Tiensyrjä, J. Nurmi, ”Application
workload modelling via run-time performance statistics,”. IJERTCS-
2012 (Submitted-Under Review)

[32] N. Nethercote, J. Seward, “Valgrind: A Framework for Heavyewight
Dynamic Binary Instrumentation, in Proceedings of ACM SIGPLAN
2007 Conference of Programming Language Design and
Implementation (PLDI2007), San Diego, California, USA, June 2007

178Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

	I. Introduction
	II. Comparison of methods and tools
	A. Modelling style
	B. Languaged, standards and frameworks
	C. Non-functional properties validation
	D. Targeted system and application domains
	E. Methodology specific information used in Table I
	1) ABSOLUT: (X11) ABSOLUT uses layered workload models consisting of application, process and Function workload layers. The function workloads consist of abstract instructions and control.
	2) ARTEMIS: (X21) Applications are modelled as KPNs which are either generated by a framework called Compaan or derived manually from sequential C/C++ code.
	3) ARTS: (X31) Applications are modelled using static dataflow task graphs.
	4) Baghadi et al.: (X41) Information related to application and architecture modelling and tool coupling is mentioned in Section 2 A (modelling style).
	5) Fornaciari et al: (X51) The simulation framework is based on a software execution profiler for cycle-accurate instruction set simulation of the application and a dynamic tracer to generate data and address bus streams.
	6) Jaber et al.: (X61) Applications are modelled via DIPLODOCUS tool. A DIPLODOCUS application consists of a network of communicating tasks which can communicate via three communication elements .i.e., the channels, events and requests. The channels exchange the abstract data samples, events exchange signals and the requests ask for and thus trigger the execution of another task.
	7) KOSKI: (X71) KOSKI uses existing compilers and code generators for refining the application to the final processing element.
	8) Lahiri et al: (X81) It is only targeted at design of custom communication architectures of systems on chip.
	9) MESH: (X91) The framework is based on a layered composition of threads, with the dynamic logical threads made on the top of physical threads. The physical threads model the hardware components of a platform and represent their computational power. The application software is modelled as logical threads. The execution of a dynamic number of logical threads is scheduled (by the scheduling layer of MESH) onto a processing element (for example a processor modelled as a physical thread).
	10) MILAN: (X101) Applications are modelled as trace files by HiPerE and consist of a list of communication and computation tasks.
	11) Posadas et al.: (X111) This methodology aims at system level estimation of execution time from a system level performance description written in SystemC and therefore does not employ application models. It estimates the execution time of the application via a C++ library.
	12) Summary: In this section, the important aspects of salient system level performance simulation methodologies were elaborated. We observed that these methodologies employ a variety of tools and modelling languages and mostly focus on a few modelling (targeted system domain) objectives shown in Table I. Different methodologies describe the application and platform models at different levels of abstraction and employ different models of computation for describing the application models.

	III. Towards performance evaluation of distributed embedded systems
	A. MOC agnostic
	B. Multithreaded applications modelling
	C. Physical and transport layer models
	D. No domain restrictions
	E. Workload modelling of user-spacecode, libraries and system calls
	F. Workload generation of middleware technologies
	G. Detailed as well as highly abstracted workload modelling
	H. Integration of application design and performance evaluation
	I. Non-functional properties validation

	IV. Feasibility of existing SLPE approaches
	V. Evaluatin Feasibility of ABSOLUT
	A. MOC agnostic
	B. Multithreaded applications modelling
	C. Performance evaluation of protocols
	D. No domain restriction
	E. Workload modelling of user-space code, libraries and system calls
	F. Workload modelling of middleware technologies
	G. Detailed as well as highly abstract workload modelling
	H. Integration of application design and performance evaluation
	I. Non-functional properties validation

	VI. Conclusion and future work
	Acknowledgment
	References

