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Abstract— In order to manage the increasing complexity and 
heterogeneity of the distributed embedded systems, the system level 
performance evaluation must be performed at an early design phase 
using abstract models of the platforms and applications. Thus, the 
system level performance simulation techniques for embedded systems 
play a key role in the architectural exploration phase. The salient 
performance evaluation methodologies are developed around some key 
concepts and employ a variety of modelling styles, models of 
computation and programming languages for performance modelling 
of embedded systems. The aspects of a performance evaluation 
methodology might limit it to certain domain(s) of embedded systems 
and therefore must be investigated. In order to span different domains 
of distributed systems, a methodology must provide the models for 
technologies, such as communication protocols and middleware 
technologies, which are employed in different domains of distributed 
embedded systems. Once achieved, the methodology will be able to 
provide an estimate of the contribution of these technologies in the 
non-functional properties of the distributed system.  The goal of this 
survey is to shortlist the performance modeling methodologies feasible 
for the performance evaluation of different domains of distributed 
systems. The abstraction level used to model these protocols is 
investigated since the accuracy of the related performance numbers 
depend on the used abstraction level. After comparing the salient 
methodologies on the basis of modeling style, tools and languages, 
targeted domain etc., we shortlisted the feasible contributions for 
performance evaluation of different domains of distributed systems. 
Afterwards, we describe the models and tools needed by the shortlisted 
methodologies in order to span the different domain of distributed 
systems. The article acts as a reference for researchers and industries 
involved in developing methods and tools for system level performance 
simulation.  

Keywords-Performance Model; Application Model; Platform 
Mode;, Kahn Process Networks; Y-Char; UML; SystemC 

I.  INTRODUCTION 
Distributed systems are used in diverse market segments 

including consumer electronics, medical devices, 
environment monitoring, industrial control, automotive and 
office automation. The complexity of these systems has 
increased enormously in all these industrial domains. 
Therefore, these systems are accompanied with various 
design challenges [1].  

Firstly, the design space is huge not only due to many 
alternatives for datalink, transport and middleware 
technologies (for example, specialized MAC (media access 
control) protocols in WSN (wireless sensor networks) and 

multitude of middleware technologies in multimedia 
applications domain) but also in terms of available platforms 
and various application implementation alternatives. 
Secondly, due to computational complexity of many 
distributed applications and the strict design constraints 
(non-functional properties), the designer has to make critical 
design decisions at an early stage in order to compare a 
particular system design with other possible alternatives 
before the actual implementation and integration of the 
system proceeds [1]. 

Moreover, both the functional and non-functional 
properties of the overall distributed system not only depends 
on the computations performed within the network nodes but 
also  on  the  interaction  of  the  various  data  streams  on  the  
common communication media [1].  

Therefore, in order to span different domains of 
distributed systems, a methodology must provide models of 
MAC, Transport protocols and middleware technologies. 
This is important because in case of distributed applications, 
MAC, Transport and Middleware technologies also 
contribute to the non-functional properties of the system. 
These non-functional properties include for example end-to-
end packet delays and packet loss rate. Also, the increasing 
complexity of distributed applications demands that the 
application design phase shall act as a starting point for the 
application workload modelling phase to reduce the time and 
effort in the performance simulation and architectural 
exploration phase [1]. 

The main contribution of this article is to provide a 
literature review of the existing performance simulation 
methodologies in order to evaluate their feasibility for the 
performance evaluation of multiple domains of distributed 
systems. The survey first defines important features which 
must be investigated in order to evaluate the feasibility of 
performance evaluation methodologies in various domains of 
distributed embedded systems. Afterwards, the availability of 
the models and tools which provide these features are 
highlighted in salient performance evaluation approaches. 
Based on this information, the methodologies which fulfil 
these requirements are shortlisted.   
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The rest of the paper is organized as follows: in Section 
2, a comparison of the salient system level performance 
evaluation (SLPE) methodologies is provided in order to 
investigate their feasibility for the performance evaluation of 
(different domains of) distributed systems. In Section 3, the 
requirements for the SLPE methodology to span different 
domains of distributed embedded systems are listed. In 
Section 4, the methodologies which fulfil these requirements 
are shortlisted on the basis of the information provided in 
Section 2. Section 5 evaluates the feasibility of ABSOLUT 
for the performance evaluation of distributed systems in 
different domains. The conclusions drawn by the survey are 
presented in Section 6. This is followed by 
acknowledgements and list of references. 

II. COMPARISON OF METHODS AND TOOLS 
The main concepts employed by different SLPE 

methodologies have been described in detail in [2] and [3] 
and are therefore not presented in this article. The objective 
of this case study is to investigate the methods and models 
employed by the salient performance evaluation 
methodologies to assess their feasibility for performance 
evaluation of different domains of distributed systems.  

Therefore, in this section, we first classify the SLPE 
methodologies on the bases of four salient features. These 
features include the modelling style, used languages and 
frameworks, non-functional properties validation and 
targeted system and application domains. In Section 3, we 
use this information to identify the SLPE methodologies 
which can span different domains of distributed systems.  

A. Modelling style 
Different design space exploration methodologies 

employ either static (analytical) or dynamic (simulation) 
estimation methods.  Usually, the static estimation methods 
shrink the vast design space briskly but the models 
employed are very coarse. The models used by dynamic 
estimation methods are more accurate and detailed but are 
slow  at  pruning  the  vast  design  space.  In  other  words,  the  
static estimation favour speed instead of accuracy for design 
space exploration while the dynamic exploration methods 
favour accuracy instead of speed. Some methods utilize a 
combination of static and dynamic simulation for exploiting 
the advantages of both methods. Static methods employ 
analytical or highly abstract models of applications and 
usually ignore the dynamic behaviour of the application 
which depends on the input data. As a result, the static 
methods do not offer the level of accuracy for exploration 
and communication scheduling as the dynamic simulation 
methods. Most of the salient performance simulation 
approaches utilize the dynamic estimation approach while 
ARTEMIS, MESH and KOSKI use both static and dynamic 
estimation methods as shown in Table I. It was observed 
that different methodologies model the applications and 
platforms at various levels of abstraction and refinement. 
ABSOLUT employs layered application and platform 
models. The platform models operate at the transaction level 

while the lowest layer of application models comprise of 
abstract instructions. Detailed description of ABSOLUT 
modelling methodology is provided in [4]. 

Some methodologies, for example SPADE, TAPES, 
ARTEMIS and KOSKI, model applications as KPN (Kahn 
Process Network) MOC (Model of Computation) [5]. 
Platform models in SPADE are instantiated via a library of 
generic building blocks which model different resources in 
the platform. The processing elements in the platform are 
modelled as TDEUs (trace driven execution unit). Each 
process of the modelled application is mapped to a TDEU in 
the platform [6]. TAPES abstracts the processing of tasks by 
their execution latencies on the corresponding resources in 
the platform [7].  Further details of platform modelling in 
TAPES are mentioned in [7]. 

The architecture models in ARTEMIS operate at 
transaction level, which simulate the computation and 
communication events that are generated by the application 
model [8]. An architecture model is made from a library of 
generic building blocks which contains templates of 
performance models for different platform elements [8]. 
KOSKI employs UML (unified modeling language) for 
modelling platform which is later on transformed to an 
abstract model via UML interfaces [9]. 

ARTS employs static data flow graphs (SDFG) MOC to 
model the applications while the architecture models operate 
at transaction level and simulate the performance 
consequences of the computation and communication events 
generated by the platform [10][11].  

Baghdadi et al. (2000) [12] describes the system-level 
specifications in SDL (specification and description 
language) which results in heterogeneous multi-processor 
architectures consisting of both hardware and software 
components. SDL can model a variety of embedded 
software applications (both real time and non-real time). 

Fornaciari et al., (2001,2002) [13], [14] uses software 
execution profiler for the cycle accurate simulation of the 
application while the data and address bus streams are 
generated via a dynamic tracer.  

Jabber et al., (2009) [15] model applications via 
DIPLODOCUS tool. A DIPLODOCUS application 
comprises of a network of tasks which communicate via 
communication semantics defined by the methodology. The 
architecture comprises of a network of physical resources 
which are abstracted by one of three types of architecture 
nodes, .i.e., the computation nodes (for example CPUs, 
DSPs, and hardware accelerators etc.), the communication 
nodes (for example busses, routers and switches etc.) and 
the storage nodes (for example memories) [15].  

Lahiri et al., [16], [17] uses highly abstract application 
models and only targets the domain of custom 
communication architectures for on chip communication 
architectures.  

Mesh models applications as dynamic threads made on 
top of physical threads [18] which model the platform. 
MILAN [19] uses HiPerE rapid performance estimation 
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tools for estimating the performance of designs (SoC 
architectures) at the system level. Applications are modelled 
as  trace  files  in  HiPerE  which  contain  an  ordered  list  of  
communication and computation tasks. HiPerE uses a 
generic model (GenM) for modelling SoC architectures 
[19].   

Posadas [24] et al., aims at system level estimation of 
execution time from a system level performance description 
written in SystemC. It uses a C++ library for this purpose 
and therefore does not require any change to the source code 
of the description. The way different methodologies model 
the application and platforms are summarised in Table I. 

Furthermore, some methodologies are capable of 
exploiting third party tools for different modelling and 
refining purposes, for example ABSOLUT’s workload 
generation tool called ABSINTH-2 and SAKE [20] use 
Valgrind [32] for workload extraction of external libraries. 
KOSKI employs existing compilers and code generators in 
order to refine the application to the final processing 
elements [21]. ARTEMIS [25] uses Laura tool-set for the 
generation of synthesizable VHDL code from the KPN 
application description. Furthermore, it was found that all 
the landmark contributions considered in Table I employ 
simulation for computing performance numbers. 

B. Languaged, standards and frameworks 
The landmark performance evaluation methodologies 

described in Table I use a variety of widely used modelling, 
scripting and Programming languages such as C, C++, Perl, 
UML and XML for various modelling purposes.  

Some methodologies use specification languages such as 
SDL or LOTOS OSI specification language for system-level 
specifications.  Some methodologies such as MILAN use 
other tools such as HiPerE and DESERT for modelling and 
simulation purposes [19]. Lahiri et al. [16] [22] uses POLIS 
and PTOLEMY frameworks for designing communication 
architectures of SOCs.   

It was observed that some methodologies use modelling 
languages and simulation frameworks such as SystemC 
which is widely used for the system-level modelling, 
architectural exploration, performance modelling etc., of 
electronic systems. The programing and modelling 
languages used by the landmark methodologies are shown 
in Table I. 

C. Non-functional properties validation 
The distributed embedded systems support applications 

which consist of many components running on different 
networked devices. In such cases, the application 
components communicate via transport, data link and 
(possibly) middleware technologies. These distributed 
applications are generally message based or streaming 
applications which satisfy the end-user requests by (in turn) 
requesting one or more services provided by different 
devices which implement these services. Therefore, the end-
user experience is not merely a consequence of the 

application implementation since the transport protocols, 
data link protocols as well as physical layer plays a key role 
in the end-user experience since the end-end delays and 
packet/frame errors at these layers can deteriorate the end-
user experience. Therefore, for a methodology to be able to 
estimate reliable performance numbers for distributed 
applications, it must model these OSI model layers with 
sufficient level of detail. These models must preserve the 
functionality to a level that the estimated delays show a 
close correlation with delays estimated by network 
simulators such as OMNeT++ and ns-2. 

It has been noticed that some methodologies are totally 
focused on one particular domain of applications and 
systems.  The methodologies such as ARTEMIS, KOSKI, 
SPADE and TAPES which model applications via KPN 
MOC are limited to the performance estimation of 
streaming applications since KPN models only model 
streaming applications very well. Therefore a wide variety 
of message based distributed applications cannot be 
modelled via these methodologies. Some methodologies 
such  as  Lahiri  et  al.  and  ARTS  use  other  models  of  
computations such as CAG (communication analysis graph) 
and SDFG (static data flow graph) for modelling 
applications. It was also observed that some methodologies 
use their own model of computation for describing 
applications  while  the  others  such as  ABSOLUT employ a  
layered application model [4].  

In all the methodologies which employ a model of 
computation to describe the applications, we observe that 
the functionality of the transport and datalink layer has been 
abstracted by the communication paradigm employed by the 
MOC. This means that the non-functional properties of a 
distributed application (such as end-end delays and 
packet/frame loss rate) cannot be reliably estimated since 
the functionality of transport and datalink layers have been 
swapped by that of the communication means defined by the 
employed MOC. All the MOCs use simple channels for 
communication among processes for example KPN MOC 
use simple FIFO (first-in first-out) channels for passing 
synchronization tokens among processes. On the other hand 
in networked devices, datalink layer MAC protocols resolve 
the contentions for occupancy of the common channel 
(wired or wireless).  The level of abstraction used to model 
channels should be comparable to the abstraction level 
employed by network simulators such as OMNeT++ and ns-
2 [23]. The MOCs, targeted application domain and the 
availability of models for transport, datalink and 
Middleware technologies models are highlighted in Table I 
for the landmark performance simulation methodologies. In 
short, the emphasis is on the model of computation 
employed by the methodologies, since it can potentially 
restrict an approach to a specific domain of applications. 
Also, the models of transport and MAC protocols employed 
by different approaches are investigated since they play an 
important role in determining the non-functional properties 
such as end-end message delays in distributed applications. 
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These non-functional properties can play an important role 
in end-user experience and must be estimated with 
reasonable accuracy. 

D. Targeted system and application domains 
The use of multiprocessor based platforms is increasing 

in high-end mobile handheld devices such as smart phones 
and internet tablets. On the other hand, in case of wireless 
sensor networks very low power single processor based 
systems are commonly used. Hence, for the performance 
simulation of a wide variety of distributed embedded 
systems, it is important that the methodology is not 
restricted to a certain type of platforms (single or 
multiprocessor based). Also, it should not be strictly 
targeted at the performance evaluation of a particular 
subsystem or components of a platform such as performance 
evaluation of on-chip communication architectures. The 
system and application domains (of embedded systems) 
targeted by salient performance evaluation methodologies 
are listed in Table I. In Table I, we add the domain of 

distributed networked systems to the three domains of 
embedded systems elaborated in [21].   

Some methodologies are totally focused at the 
performance evaluation of a particular domain of systems, 
for example TAPES and Fornaciari et al. target single 
processor based systems, SPADE and Baghdadi et al. only 
target Multi-Processor based systems while Lahiri et al. is 
only focused on the performance evaluation of on-chip 
communication architectures. The other landmark 
methodologies are also focused on only two out of the three 
performance simulation objectives, .i.e., performance 
evaluation of single processor based SoC, multi-processor 
based SoC and on-chip communication architectures [21]. 
Only three methodologies .i.e.; ABSOLUT, ARTEMIS and 
KOSKI have no such restriction.  
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ABSOLUT D X11 X12 X13 C/C++/SystemC2.2/T
LM2.0/UML 

 TLM 
 

A X X X 

ARTEMIS D/S X21 X22 X23 PEARL, SystemC, 
RTL 

SPADE, 
SESAME 

KPN ST X X X 

ARTS D X31 

 
X32  SRTS Scripting 

Language, SystemC 
 SDFG ST  X X 

Baghdadi 
et al 

D X41 X42  
 

C,RTL,SDL, MUSIC, 
CODESIM 

N X42  X   

Fornaciari 
et al 

D X51 X52  C/C++ MEX, 
Shade, X53 

N 
 

ST X54   

Jaber et al D X61 X62  UML, SystemC, 
LOTOS OSI 
Specification 
Language 

DIPLODO-
CUS 

N X63 X X   

Koski D/S   X71 TUT UML Profile, 
XML 

Existing 
Code 
Generators 
and 
Compilers 

KPN A X X X 
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Lahiri et al D  X  Languages/Tools used 
by  POLIS  &  
PTOLEMY 

POLIS, 
PTOLEMY 

CAG  X81   X  

MESH D/S  X  C  X91 A X X   
MILAN D X101 X  Languages/ 

Tools used by 
DESERT & HiPerE 

DESERT, 
HiPerE, 
X102 

X103 A    

Posadas et 
al 

D X111   C++/SystemC  X112 X113 X X   

SPADE D X X  C/C++ YAPI, TSS KPN ST  X   
TAPES D  X  SytemC, XML  KPN ST X   

Abbreviations 
A No restriction as per our assessment. Also no mention of a particular application domain by the authors. 

ST Streaming Applications. 

D   Dynamic 

S   Static 

N   No MOC (Model of Computation) such as KPN, CAG, TLM and CDFG used or affectively adapted/employed by the methodology. 
The modelling of applications is elaborated in the corresponding reference in the second column. 

TML Transaction Level Modelling 

 

E. Methodology specific information used in Table I 
 

1) ABSOLUT: (X11) ABSOLUT uses layered workload 
models consisting of application, process and Function 
workload layers. The function workloads consist of abstract 
instructions and control. 

(X12) The platform model is layered and consists of three 
layers, .i.e. component, subsystem and platform architecture 
layer. 

(X32) The ABSINTH-2 tool uses Valgrind for workload 
extraction of external libraries. 

2) ARTEMIS: (X21) Applications are modelled as KPNs 
which are either generated by a framework called Compaan 
or derived manually from sequential C/C++ code.  

(X22) Architecture models operate at the transaction level 
and an architecture model is made from a library of generic 
building blocks containing template performance models for 
processing cores, communication media, and various types of 
memory. 

(X23) ARTEMIS uses Laura tool set for automatic 
generation of VHDL code from KPN based application 
model. 

3) ARTS: (X31) Applications are modelled using static 
dataflow task graphs. 

(X32) Platform consists of multi-processor models, 
memories, communications and other platform resources. 

4) Baghadi et al.: (X41) Information related to 
application and architecture modelling and tool coupling is 
mentioned in Section 2 A (modelling style).  

(X42) The system-level specifications are described in 
SDL. This results in heterogeneous multi-processor 
architectures comprising of both hardware and software. 
SDL does not explicitly specify any particular domain or 

restriction as far as its ability to model software (both real 
time and non-real time) is concerned. 

5) Fornaciari et al: (X51) The simulation framework is 
based on a software execution profiler for cycle-accurate 
instruction set simulation of the application and a dynamic 
tracer to generate data and address bus streams.   

(X52) Design space exploration is focused on the 
processor to memory communication through the memory 
hierarchy and includes configurable bus and memory 
models, with the latter having behavioural models of on and 
off-chip level 1 and 2 caches and main memory. The bus 
and memory models use the bus traces from the software 
execution profiler as input. 

(X53) The architecture exploration is done by using a tool 
called MEX. It simulates the execution of a program 
compiled for the Sparc V8 architecture with configurable 
memory architecture. MEX exploits the Shade [14] library 
to trace the memory accesses made by a SPARC V8 
program and consequently simulates the target memory 
architecture to obtain accurate memory access statistics. The 
MEX tool developed by authors uses Shade tool which is 
based on C/C++ [14] [13].  

(X54) Design space exploration is focused on the 
processor to memory communication through the memory 
hierarchy. The technique aims at finding the best platform 
configuration for the application without an exhaustive 
search of the parameter space. The parameters for the 
exploration include cache size; block size and instruction 
cache associativity. 

6) Jaber et al.: (X61) Applications are modelled via 
DIPLODOCUS tool. A  DIPLODOCUS application 
consists of a network of communicating tasks which can 
communicate via three communication elements .i.e., the 
channels, events and requests. The channels exchange the 
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abstract data samples, events exchange signals and the 
requests  ask  for  and  thus  trigger  the  execution  of  another  
task. 

(X62) The architecture is modelled as a network of 
physical resources, including computation, communication 
and storage nodes. All resources have parameters like 
processing capacity in millions of cycles per second or 
memory size in bytes. 

(X63) A variety of real-time and embedded applications 
can be modelled with sufficient accuracy by using the data 
and functional abstraction described by authors in [15].  

7) KOSKI: (X71) KOSKI uses existing compilers and 
code generators for refining the application to the final 
processing element.       

8) Lahiri et al: (X81) It is only targeted at design of 
custom communication architectures of systems on chip.  

9) MESH: (X91) The framework is based on a layered 
composition of threads, with the dynamic logical threads 
made on the top of physical threads. The physical threads 
model the hardware components of a platform and represent 
their computational power. The application software is 
modelled as logical threads. The execution of a dynamic 
number of logical threads is scheduled (by the scheduling 
layer of MESH) onto a processing element (for example a 
processor modelled as a physical thread). 

10) MILAN: (X101) Applications are modelled as trace 
files by HiPerE and consist of a list of communication and 
computation tasks. 

(X102) DESERT and HiPerE are used for rapid design 
space exploration. DESERT shrinks the design space by 
shortlisting designs and HiPerE estimates the performance.  

(X103) The methodology proposed by [19] is only aimed 
at system level estimation of execution times from a system 
level performance description written in SystemC. No MOC 
is employed by this methodology. 

11) Posadas et al.: (X111) This methodology  aims at 
system level estimation of execution time from a system 
level performance description written in SystemC and 
therefore does not employ application models. It estimates 
the execution time of the application via a C++ library. 

(X112) Application is modelled as a set of Processes 
which can only interact with each other via predefined 
channels. 

(X113) Only C++ applications can be simulated. 
 

12) Summary: In this section, the important aspects of 
salient system level performance simulation methodologies 
were elaborated. We observed that these methodologies 
employ a variety of tools and modelling languages and 
mostly focus on a few modelling (targeted system domain) 
objectives shown in Table I. Different methodologies 
describe the application and platform models at different 
levels of abstraction and employ different models of 
computation for describing the application models.  

Also, some of the methodologies use third party tools for 
modelling or simulation purposes and some provide tools 
coupling for extending the usability of the methodology for 
other simulation objectives. In the next section we further 
investigate the feasibility of landmark performance 
evaluation approaches described in this section for the SLPE 
of distributed embedded systems. 

III. TOWARDS PERFORMANCE EVALUATION OF 
DISTRIBUTED EMBEDDED SYSTEMS 

After investigating the salient features of landmark 
performance evaluation approaches in Section 2, we 
conclude that in order to validate the non-functional 
properties of distributed embedded systems in different 
domains the methodology must fulfil the following salient 
requirements. 

A. MOC agnostic 
The methodology must not employ a specific model of 

computation for modelling applications since this will 
restrict the methodology to a particular domain of 
applications or systems, for example the methodologies 
which  uses  KPN  MOC  for  application  or  platform  are  
mainly targeted at performance evaluation of streaming 
applications.  

B. Multithreaded applications modelling 
In order for the methodology to evaluate the 

performance of multi-threaded applications, the 
methodology must model the multi-threading support for 
system level performance simulation of these applications. 

C. Physical and transport layer models 
Physical layer models such as channel models, coding 

and modulation techniques as well as the functional models 
of datalink and transport layer protocols must be provided 
for evaluating their contribution in non-functional properties 
[23]. Also, the methodology must be capable of evaluating 
the performance of protocols operating on a particular layer 
of the OSI model in isolation just like OMNeT++ and ns-2 
[23]. 

D. No domain restrictions 
In order to span the domain of distributed systems such 

as WSNs, the methodology must be capable of evaluating 
the percentage utilization of the platform by data link and 
transport Protocols. WSNs in particular employ highly 
efficient and specialized datalink protocols to reduce power 
consumption. 
 

E. Workload modelling of user-spacecode, libraries and 
system calls 
From an implementation perspective, all the applications 

processes use user-space code, external libraries, background 
processes and system calls. Therefore, the methodology must 
provide tools and methods for generating the workload 
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models of not only the user space code but also the external 
libraries, background processes and system calls. 

F. Workload generation of middleware technologies 
It must be capable of workload extraction of API 

functions of the various Middleware technologies such as 
NoTA (network on a terminal architecture) SOA (service 
oriented architecture). This will enable the methodology to 
span the domain of distributed streaming and context aware 
applications. 

G. Detailed as well as highly abstracted workload 
modelling 
The methodology must provide/define application 

workload modelling tools/techniques for generating the 
application workload models with varying degrees of 
refinement and detail. The more refined and detailed 
workload models result in slower simulation speed due to 
increased structure and control while the less detailed 
workload models usually result in faster simulation speed 
[29] [4] [30]at the expense of accuracy. Once this is 
achieved, the system designer can freely choose the 
workload models that will provide the right balance between 
accuracy and speed for the modelling objective. 

H. Integration of application design and performance 
evaluation 
For early phase evaluation of the distributed 

applications, the methodology must automate the workload 
extraction process by seamless integration of application 
design and performance simulation phase. This can be 
achieved if the application and workload modelling phases 
are linked such that application models act as a starting 
point for the application workload modelling. The proposed 
technique must be experimented with modern SOAs such as 
GENESYS and NoTA. 

I. Non-functional properties validation 
The non-functional properties must be carried through 

the application design phase and validated by the 
performance simulation approach. The non-functional 
properties are usually modelled and elaborated in the 
application model views [1][27][28]. 

IV. FEASIBILITY OF EXISTING SLPE APPROACHES 
As  shown  in  Table  I,  none  of  the  methodologies  is  

capable of providing reliable estimates of the non-functional 
properties of distributed applications. The reason is that in 
case of distributed embedded systems, the transport, 
datalink and (possibly) middleware technologies contribute 
to the non-functional properties such as end-end frame and 
packet delays. In order for a methodology to accurately 
estimate the effects of these protocols on non-functional 
properties; it must employ functional MAC and Transport 
Protocols. 

As shown in Table I, majority of the performance 
modelling techniques are limited to a particular domain of 

embedded systems and applications due to which they 
cannot be employed for the performance evaluation of 
different domains of distributed embedded systems. 

Only three out of all the approaches mentioned in 
Section 2, .i.e., ABSOLUT, ARTEMIS and KOSKI are not 
restricted to any particular domain of embedded systems. 
Furthermore, out of these approaches, ARTEMIS and 
KOSKI use KPN MOC for modelling applications which 
can only model streaming applications well [6]. Therefore, 
out of all the system level performance evaluation 
methodologies presented in Table I, ABSOLUT is most 
feasible for the performance evaluation of distributed 
embedded systems since it is not limited to any particular 
system or application domain. As explained before, this is 
due  to  the  fact  that  it  does  not  employ  any  MOC  for  
modelling applications or platforms. In the next section, we 
describe  the  tools  and models  employed by ABSOLUT for  
fulfilling the requirements mentioned in Section 3. 

V. EVALUATIN FEASIBILITY OF ABSOLUT 

A. MOC agnostic 
ABSOLUT uses SystemC for modelling platform 

components. ABSOLUT methodology does not employ any 
specific MOC for modelling platforms and applications. It 
employs a component library for instantiating platform 
models and ABSINTH-2 and SAKE tools for automatic 
application workload generation. 

B. Multithreaded applications modelling 
Multi-Threaded support has been modelled and 

integrated to ABSOLUT due to which it can be used for the 
performance evaluation of multithreaded applications. The 
approach has been described via a case study in [26]. 

C. Performance evaluation of protocols 
ABSOLUT provides an operating system (OS) model 

which is hosted on the processor model in the platform. The 
ABSOLUT OS model consists of a scheduler and provides 
the possibility to model different OS Services. The 
scheduler schedules the application model processes. 
Platform services can be implemented by the system 
designer as described in [23]. The implementation of 
services closely mimics the way services are scheduled by 
the widely used platforms (mostly via scheduling queues). 
Highly accurate transport, datalink and physical layer 
models have been designed and integrated to ABSOLUT 
[23] [27]. 

D. No domain restriction 
ABSOLUT does not model the application workload 

models and platform capacity models by employing a 
certain MOC. This property allows the system designers to 
employ ABSOLUT for the performance evaluation of 
different domains of embedded systems. 
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E. Workload modelling of user-space code, libraries and 
system calls 
ABSOLUT can model the workload models of user-

space code and external libraries. Furthermore, the 
automatic workload modelling of system calls for a variety 
of platforms is performed via CORRINA Error! Reference 
source not found.. 

F. Workload  modelling of middleware technologies 
The workload modelling of middleware technologies is 

performed via ABSINTH-2.  The middleware technologies 
can also be modelled as system calls. The workload 
modelling of NoTA device interconnect protocol (DIP) has 
been demonstrated in a case study aimed at the SLPE of 
distributed NoTA systems [27]. 

G. Detailed as well as highly abstract workload modelling 
ABSOLUT provides different tools for modelling 

application workloads at various abstraction levels and 
refinement. This allows the system designer to choose the 
tools which provide the right compromise between speed 
and accuracy. 

H. Integration of application design and performance 
evaluation 
ABSOLUT application workload models can be easily 

modelled by extending the application model which acts as 
a blue print for application workload models. The seamless 
integration of application design and performance 
evaluation minimizes the time and effort involved in 
performance evaluation phase. 

I. Non-functional properties validation 
For the validation of non-functional properties, the non-

functional properties must be carried through the application 
design phase and validated by the performance evaluation 
phase. The seamless integration of application design and 
ABSOLUT workload modelling has been demonstrated for 
different service oriented application architecture design 
methodologies such as GENESYS and NoTA [1] [27]. 

ABSOLUT has been successfully employed for the 
performance simulation of NoC based SOCs and distributed 
embedded systems [1] [27]. We now list the features 
mentioned in Section 3 which are provided by ABSOLUT 
and also provide the references to the research articles 
which demonstrate these features via case studies.  This 
information is presented in Table II. 

 
 
 
 
 
 
 
 

TABLE II.  FEATURES PROVIDED BY ABSOLUT FOR THE 
PERFORMANCE EVALUATION OF DISTRIBUTED EMBEDDED SYSTEMS 

Number Feature References 

I MOC Agnostic [4] 

II 
Multithreaded Applications 
Modelling [26] 

III 
Performance Evaluation of 
Protocols [23] 

IV No Domain Restriction [1][27][28] 

V 

Workload Model 
Generation of User-Space 
code, External Libraries 
and System Calls [4][20][30] 

VI 
Workload Generation of 
Middleware technologies [27][20] 

VII 

Detailed and Highly 
abstract workload 
modelling [29][4][30] 

VIII 

Integration of Application 
Design and Performance 
Evaluation [1][28][27] 

IX 
Non-functional Properties 
Validation [1][28][27] 

 
From Table II it is clear that all the features which are 
required by a SLPE methodology to evaluate the 
performance of distributed embedded systems in different 
domains are provided by ABSOLUT. 

VI. CONCLUSION AND FUTURE WORK 
We therefore conclude from the survey that many 

methodologies have been developed for the SLPE of 
distributed systems. Those methodologies which employ a 
MOC for modelling applications or platforms are restricted 
to a particular domain of embedded systems. Also, these 
methodologies cannot provide reliable performance 
numbers of certain non-functional properties of distributed 
systems since the MAC and Transport protocols models are 
absent or abstracted out. These protocols play a key role in 
the end-user experience by contributing to non-functional 
properties. These non-functional properties such as end-end 
packet delays, packet loss rate and frame loss rate must be 
taken into account for performance modelling of distributed 
embedded systems so as to ensure a good end-user 
experience after the development and deployment of the 
distributed system. 

We found that ABSOLUT can be used for the 
performance evaluation of distributed systems in different 
domains. The reason is that it does not employ any MOC for 
modelling applications and platforms. Also, ABSOLUT 
provides the models of different protocols (for example 
MAC and transport) which are important for the SLPE of 
distributed systems. Of course, all the performance 
evaluation methodologies have not been covered in this 
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survey. The main contribution of this article is to describe a 
disciplined approach for classifying the performance 
evaluation methodologies which helps to determine their 
feasibility for the performance evaluation of distributed 
embedded systems. By evaluating a methodology on the 
basis of requirements looking at the requirements we can 
evaluate its potential for SLPE of distributed embedded 
systems. If all the requirements mentioned in Section 3 are 
fulfilled by a methodology, it can be used to evaluate the 
performance of a wide range of distributed embedded 
systems. 

ABSOLUT fulfils these requirements and provides the 
tools for the workload modelling at different levels of 
abstraction and refinement. Also, the ABSOLUT 
application workload models can be obtained by extending 
application model. The extended layered application 
architecture is analysed to identify the corresponding 
ABSOLUT workload model layers. This reduces the time 
and effort in performance modelling which is important to 
consider due to increasing complexity of distributed 
applications.  

In the future, a number of widely used MAC and 
Transport protocol models will be designed and integrated 
to ABSOLUT. Currently IEEE 802.11 DCF, UDP and TCP 
models are provided. Also, a GUI front-end will be 
beneficial for easy instantiation of ABSOLUT performance 
models. It will also help to reduce the learning curve for 
SLPE via ABSOLUT toolset. 
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