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Abstract—Since several decades, the pressure on organiza-
tions to swiftly adapt to their environment has been increasing.
This also applies to industry. One of the consequences is the
increasing importance of evolvability in production control
systems. Many such systems are modelled using finite state
machines. This paper presents an explorative attempt to
define design rules and constraints that should be applied
to state machines to enable evolvability. Our design of an
evolvable state machine is based on normalized systems theory.
Without loss of generality, this design is inspired by the typical
requirements of automation systems.
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I. INTRODUCTION

Current organizations need to be able to cope with
increasing change and increasing complexity in most of
their aspects and dimensions [1]. We shall call a system
evolving when changes in terms of the system’s capabilities
occur. The effort or cost required for adding or changing a
specific capability is a property of a system — the property
of evolvability. Evolvability is increasingly important for
organizations to allow them to swiftly adapt to an agile and
complex environment. This paper focuses on the evolvability
of production control and automation systems.

In general, the behaviour of any system, subsystem or
process can be categorized as static or dynamic. Static
behaviour means that the (sub)system does not experience
any internal change during its lifetime. A system is said to
have dynamic behaviour if it changes its behaviour during its
existence [2]. If dynamic reconfiguration can be achieved,
downtimes of production control and automation systems
can be reduced: a change which can be performed without
a complete shutdown is called a ‘dynamic reconfiguration’,
while a ‘static reconfiguration’ requires the complete shut-
down of a system [3].

Efforts to improve the flexibility and maintainability of
automation systems go back decades. The first approach
to implement automation control logic was based on hard-
wired relay systems. In the late 1960s, GM Hydramatic
issued a request for proposal for an electronic replacement.
The result was a Programmable Logic Controller (PLC),
built by Bedford Associates. One of the main advantages was
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that changes in control logic could now be made by changing
the program rather than changing wiring and bypassing or
adding relays. In addition, programs could be reused for
another application. The technology shift from hardware to
software provided more flexibility and an improvement of
maintainability. While this was certainly an improvement,
the characteristic of evolvability is still not totally reached.
Changing or debugging a few lines of software code is easier
than rewiring relay circuits, but the number of software
problems and bugs does not grow proportionally with the
software size. Instead, they grow out of proportion. After
reaching a certain size, software becomes a problem in its
own right [4].

Besides maintainability, reusability and flexibility, evolv-
ability is a critical non-functional requirement on software.
In their review of evolvability as a characteristic of software
architectures, Ciraci and van den Broek [5] define it as
“a system’s ability to survive changes in its environment,
requirements and implementation technologies.” However,
evolvability is hard to measure, and existing software de-
velopment methodologies focus on functional requirements
almost exclusively.

In order to better satisfy non-functional requirements,
giving software a clear, well-defined and if possible stan-
dardized structure is essential. This includes the use of
standardized programming languages. As further discussed
in Section IV of this paper, PLCs are usually programmed
in one of the languages of the IEC 61131-3 standard [6].
Another important technique is to employ formal models
wherever possible. A prime example in this context are
finite state machines. For example, the ISA-88 standard
recommends specifying elementary operations in batch man-
ufacturing processes (e.g., filling a tank) by way of state ma-
chines. In the simplest case, the state machine for a so-called
“equipment phase” contains the states “Idle”, “Running”
and “Complete”. An equipment phase specification will,
among other things, describe additional states, the conditions
for transitions between these states (e.g., after a specified
amount of time has elapsed) and the actions to take upon
such a transition (e.g., close a valve).

While state machines are a valuable tool to increase
system maintainability, they do not automatically guarantee
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Figure 1. Motor control state machine, version 1

evolvability. The research presented in this paper focuses
on the design of an evolvable state machine which can be
implemented in one or more of the IEC 61131-3 languages,
independent of vendor or CPU type. The design supports
dynamic reconfiguration wherever possible.

The remainder of the paper is structured as follows: Sec-
tion II gives an example of a state machine in an automation
system going through subsequent evolution steps. Section III
explains the basics of the normalized systems theory, which
offers a formal guideline to system evolvability. Section IV
introduces a concept for cross-vendor PLC system evolution
which supports the coexistence of different versions of
the same reusable, generic module. Section V proposes
a set of design rules for evolvable state machines in the
context of the concept presented in Section IV, derived from
normalized systems theorems. In addition, implementation
considerations are discussed. Section VI concludes the paper.

II. AN EVOLVING STATE MACHINE

A finite state machine is an abstract machine that can be in
one of a finite number of states. The machine is in only one
state at a time; the state it is in at any given time is called the
current state. The current state can change upon a triggering
event or condition. This is called a transition. A particular
state machine is defined by the list of its states, the possible
transitions between them, and the triggering condition for
each transition.

In automated production installations, the behaviour of a
large portion of the control equipment (such as valves, light
curtains, pumps, mixers or conveyers) can be — and is —
modelled using state machines. In the following, a motor
control state machine is presented as an example. As the
automation system evolves in response to new requirements
and hardware capabilities, new versions of the state machine
are introduced.

The initial version of the state machine, shown in Figure 1,
shows a very simple model. The motor has two states, ‘On’
and ‘Off’. Two conditions affect the state of the motor: the
‘Start’ and the ‘Stop’ command.

This is a very idealized and simplistic view. In an actual
industrial environment, additional conditions such as failure
conditions or interlocks must be taken into account. As an
example for such an additional condition, the second version
of the state machine considers the condition of a fuse.
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The start condition becomes ‘Start and FuseOK’ (Figure 2).
The additional state ‘Failure’ is introduced. The condition
for transitioning from the ‘Off’ state to the ‘Failure’ state
is ‘Start and not FuseOK’. The condition to go from the
‘Failure’ state to the ‘Off’ state is ‘FuseOK’. If the fuse
blows during the ‘On’ state, a transition to the ‘Failure’
state results. In addition, when entering the failure state, a
notification is made to trigger an operator to solve the issue.

The third version considers the situation that the motor can
stop due to a thermal cut out in the ‘On’ state (Figure 3).
This is modeled with a new version of the transition to the
‘Failure’ state. In addition, the operator must push a reset
button before the ‘Off’ state can be entered again after a
failure, which is reflected by a new version of this transition
as well.

III. NORMALIZED SYSTEMS THEORY

Software undergoes an aging process, as recognized by
Parnas [7]. Since there are indications that this aging process
is also happening with business processes [8], we must
consider the possibility that this phenomenon may actually
apply to all non-physical systems in general which undergo
an evolution in our society and economy.

For software systems, Manny Lehman formulated the law
of increasing complexity, expressing the degradation of a
system’s structure over time [9]:

“As an evolving program is continually changed,
its complexity, reflecting deteriorating structure,
increases unless work is done to maintain or
reduce it.”
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Figure 4. Improving software structure with a re-write [10]

In software development, this deterioration progresses
with each update or hotfix. Over time, the deficiency of
the structure renders the system unworkable. To mitigate
this problem, a re-write of the whole system can help
(Figure 4 [10]). The theory of normalized systems was
introduced to challenge Lehman’s law [11]. Other than most
previous efforts to achieve maintainability of software, the
contribution of the normalized systems theory goes beyond
heuristics; instead of only advocating guidelines such as
“low coupling and high cohesion”, it provides theorems to
derive yes/no answers to questions about evolvability.

In the context of normalized systems, an action entity shall
be defined as a module which contains functionality, and a
data entity shall be defined as a set of tags (fields). Action
entities and data entities are the two main elements from
which a system can be constructed. Action entities use data
entities as input and output parameters. States, conditions,
commands or events can be stored in a data entity. The four
core theorems of normalized systems are:

1) Separation of concerns: An action entity can only

contain a single task.

A task is functionality which can evolve indepen-
dently. If the system’s developer anticipates that two
or more parts of the core functionality can change
independently, these parts must be separated. There-
fore, normalized systems shall be constructed of action
entities dedicated to one core activity.

2) Data version transparency: Data entities that are re-
ceived as input or produced as output by action
entities must exhibit version transparency.

It must be possible to update one or more data
entities which are passed between action entities and
let multiple versions co-exist without affecting other
versions of action entities.

3) Action version transparency: Action entities that are
called by other action entities must exhibit version
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transparency.

It must be possible to update an action entity, which
is coupled with another action entity, while multiple
versions of both modules can co-exist. In other words,
introducing a new version of an action entity shall not
require changes to any other action entity.

4) Separation of states: The calling of an action entity by
another action entity must exhibit state keeping.

Every action entity must keep track of its requests to
other action entities. If the response to a request is not
as expected, the calling action entity must not block
indefinitely; rather, it shall handle the exceptional
situation as appropriate for its own state.

Two additional theorems have recently been introduced
as extensions of the theorems on data and action version
transparency [12]. They address the challenge of managing
the diversity of run-time instances of data and action entities
in an evolving system.

5) Data instance transparency: A data instance has to

keep its own instance ID and the version ID on which
it is based or constructed.

If the type definition (source code) of a data entity
is updated to a new version, instances based on the
previous version continue to exist in the system.If an
action entity receives a data instance for processing,
the action entity must have a way of knowing the ver-
sion of this data instance to be able to handle the data
instance in a version-compliant way. Therefore, every
data instance must contain a version ID reflecting the
version of the data entity it is an instance of. The
instance ID serves to tell apart multiple instances of
the same version.

6) Action instance transparency: An action instance has
to keep its own instance ID and the version ID on
which it is based or constructed.

When run-time instances of action entities interact,
they must consider the fact that the other action entity
can be based on one of various versions of its type
definition. A version ID is necessary to give the calling
action instance information about which interactions
are possible. Again, the instance ID serves to tell apart
multiple instances of the same version.

Note that there is no supersedure relationship between
versions in our context; versions may continue to exist in
parallel indefinitely to reflect variants of a type of equipment.

IV. CROSS-VENDOR PROGRAMS AND INSTANCE
VERSION DIVERSITY IN A PLC SYSTEM

When an update of a PLC project includes the intro-
duction of a new CPU type, or even a conversion of the
software to another brand, software developers often re-
engineer the whole project. Also, when a motor is replaced
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with a different one — or the update includes the introduction
of a frequency drive, which requires a vendor dependent
system function block —, engineers tend to re-write the
module which is controlling the motor.

In the following, a concept is introduced to reduce the
amount of these re-writes. A new motor should no longer
require a new software module; neither should the entire
project require re-engineering because of changing to a new
brand or PLC family. To achieve this, we propose that
programming is based on generic modules. There shall only
be one module for every core function (e.g., motor control),
with the variations between physical motors and their control
being addressed by multiple, co-existing, versions of this
module.

In this concept, the vendor independence brought about
by the IEC 61131-3 standard is an important element. In
the first decades after the introduction of the first PLC,
these controllers were programmed in vendor-dependent
languages. However, during the nineties, the need for a
more generalized way to program PLCs increased. As a
result, the IEC 61131-3 standard was introduced. It was def-
initely successful: nowadays, most common brands support
at least some of the IEC 61131-3 languages. However, the
standard does not include hardware configuration. Conse-
quently, the connection to process hardware (process 1/0)
remains vendor-dependent. In addition, the standard allows
some liberties (e.g., implementation-dependent parameters
in Annex D [6]). Commercial IEC 61131-3 programming
environments show some differences. Therefore, developers
still often re-write a whole software project in case another
brand of PLC is required.

Our approach to truly generic, vendor-independent PLC
programming is shown by way of an example in Figure 5.
A generic module, which strictly sticks to IEC 61131-
3 code, contains the core functionality of a device, for
example controlling a motor. Instances of this module rep-
resent individual motors. Before the generic module can be
downloaded to a specific brand of PLC in order to control
a specific motor, it undergoes an automatic vendor-mapping
procedure, which converts part of the module code according
to what is required by the vendor’s specific environment.
In addition, the vendor-mapping procedure adds an extra
module to the (mapped) core module: a connection entity
(CE). This connection entity is dedicated for a specific motor
(instance), and includes all the details needed to connect the
(mapped) core functionality with the process hardware (I/O).
If necessary, this connection entity can also include vendor-
specific function blocks (e.g., a scaling block for analog
values, or a system block dedicated to control a specific
frequency drive).

Each new version of the functionality is referred to as
a class version, and each individual physical motor as
an instance. Class versions correspond to the functionality
available in the PLC (potentially in several co-existing
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Figure 5. A generic software module with heterogeneous instances

versions), while instance versions correspond to the instan-
tiated functionality for controlling a specific type of motor.
Instance IDs refer to one single, specific physical motor;
they tell the connection entity which hardware addresses
an individual motor control module instance has to be
connected to.

For example, motor 1 could be controlled by an instance
of version 1 of the state machine presented in Section II,
since status feedback is not required for it. Motor 2 is
controlled by an instance of version 2 of this state machine,
since for it the fuse condition must be taken into account.
Motor 5 is also controlled by an instance of version 2 of
the state machine; while motor 2 and motor 5 thus share the
same instance version, they have different instance IDs.

V. EVOLVABLE STATE MACHINES

The previous sections discussed the benefits of version
transparency and co-existence. In the following, we propose
rules — based on normalized systems theory — that shall be
followed by state machines and the program code imple-
menting them in order to achieve these properties, and, thus,
evolvability.

S1. The functionality of a state machine shall be imple-
mented in an action entity, while the state and transition
trigger information should be stored in a separate entity
— a data entity.

When the functionality of a state machine is updated,
a new class version is introduced. We want to be able to
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deploy instances of this new version to the system without
disrupting the operation of instances of previous versions,
which may still be adequate for part of the equipment.
Thus, several instances of devices controlled by different
versions of the state machine should be able to co-exist,
and we require the logic of the state machine to change
independently of these instances. Remember that if two
parts of a module can change independently, they shall
be separated following the separation of concerns principle
(Theorem 1); from this follows the separation called for in
this rule.

Every version of the data entity contains state and condi-
tion fields. In each state, a particular state of the associated
process hardware is effected (e.g., letting the motor run in
the ‘On’ state). This is done by way of a connection entity.
Values for the condition fields are provided by other action
entities (in particular, connection entities); when the condi-
tions for a particular transition are fulfilled, the state machine
action entity changes the current state of the instance.

S2. The state machine data entity shall include an instance
ID.

The instance ID allows the connection entities to map this
instance to the correct hardware addresses. This is necessary
so that changes on hardware inputs are reflected as changes
in transition fields, which in turn will cause the state machine
action entity to perform the appropriate state transition.
Likewise, the mapping is necessary in order for the required
hardware outputs to be set to perform the action associated
with a state of the state machine.

For example, in version 1 of the state machine presented
in Section II (Figure 1), the output should be ‘TRUE’ when
in the ‘On’ state and ‘FALSE’ in the ‘Off” state.

S3. The state machine action entity shall include a class
version ID, and the state machine data entity shall
include an instance (data type) version ID.

To comply with the version transparency theorems, the
data entity must contain its own version (the version of
the state machine it is an instance of). This version ID lets
action entities recognize the class version corresponding to
the instance and act accordingly. The action entity should
store its class version on the moment of compilation as a
hard-coded constant.

Following our first rule (S1), the data and the functionality
within the system should be separated. Therefore, we have
a data entity to store the system’s data in one or more
data fields, and an action entity to perform actions based
on the data in this data entity. Several versions of both
data entities and action entities have to be able to co-exist.
When a recent action entity instance encounters an older data
entity instance, it must interpret its data fields in the way the
older action entity instance would have. If necessary, default
values need to be defined for fields not present in the older
data entity instance. When a more recent data entity instance
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is processed by an older action entity instance, only old
data fields are used, because the older action entity instance
is not aware of the recently added data field(s). To enable
proper interaction with instances of older versions, or at least
prevent version conflicts, instance version IDs are required
(Theorems 5 and 6).

For example, suppose we have an action entity version 2
(class version), which should process a data entity instance
version 1 (data type). After reading the data entity instance’s
version ID, the action entity decides to never manipulate
the ‘FuseOK’ data field, nor allows any transition to the
state ‘Failure’. These actions must be prevented because
these fields do not exist in version 1 of the data entity;
undefined behaviour would result. Instead, any information
on the fuse or thermal cut out (if available) is ignored,
corresponding to the (older) functionality of action entity
version 1. Conversely, consider an instance of action entity
version 1, which should process a younger instance of data
entity version 2. This action entity instance is not even aware
of the existence of fuse information nor the state failure, so
it will never read nor manipulate these fields.

The potential ‘ThermalCutout’ transition of version 3
from the ‘On’ state to the ‘Failure’ state will simply never
happen if not both the data entity instance and action entity
are of version 3. In addition, the action entity must include
a selection to decide whether or not a reset command from
the operator is needed for the transition from the ‘Failure’
state to the ‘Off” state (Figure 3).

S4. States or transitions shall not be deleted between ver-
sions.

The version transparency theorems (Theorems 1 and 2)
state that multiple versions of both data entities and action
entities have to be able to co-exist. If a state or a transition is
deleted during an update of a state machine, the behaviour of
instances of older versions of the action entity can become
undefined. If following the transition logic of an old version
a state should become active which does not exist any more
after an update, the older version cannot co-exist with the
recent one. Consequently, deletions of states or transitions
are violations of the version transparency theorems.

S5. State modifications shall apply transparent coding or
version wrapping.

Deletions of states can cause violations of the version
transparency theorems, so only additions and modifications
are allowed. Modifications shall adhere to the principles of
transparent coding or wrapping versions [13]. Transparent
coding is defined as the writing of internal code in a module
which is not affecting the functionality of previous versions.
When transparent coding is not possible (e.g., because of
conflicting functionality of the versions, or when the combi-
nation of the functionality of different versions requires too
complex code), version wrapping can be applied. Following
this principle, different versions of a module co-exist in
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parallel, and a wrapping module selects the desired version
based on the version ID (see Figure 6).

Summary

In summary, in order to attain the property of evolvability
for a state machine, updates must be confined to the follow-
ing set of anticipated changes:

e An additional state

o An additional transition

o A new version of a state following the principle of
transparent coding

o A new version of a transition following the principle
of transparent coding

« A new version of a state following the principle of
version wrapping

e A new version of a transition following the principle
of version wrapping

VI. CONCLUSION

The state machine is a valuable artefact for modelling sys-
tems. However, when systems evolve, it follows from Manny
Lehman’s law of increasing complexity that their further
evolution is restrained when the systems’ size increases over
time. In a rapidly changing environment, there is a need for
evolvable state machines: when production systems evolve,
corresponding changes have to be made in the automation
software.

This paper presented a design for evolvable state machines
that can be used in automation systems software. The design
is based on the normalized systems theory. Rules were
derived to constrain changes to state machines in order
to achieve the property of evolvability. In addition, case
scenarios were discussed showing how instances of different
versions of such an evolvable state machine can coexist.

The design supports dynamic reconfiguration, as called
for by Kuhl and Fay, to update a system without the need
for a complete system shutdown. Compiling an IEC 61131-3
project includes allocating memory to variables. A shutdown
is only necessary when this memory must be remapped.
Changing the value of a data field in a data instance can
be done without recompilation, so no shutdown is required.
When, for example, a motor is replaced by a new one,
this change is reflected by a change to the instance version
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ID of the data entity in our design. Therefore, dynamic
reconfiguration is supported for such a situation.

Regarding future work, state machine libraries and toolkits
should be improved by adding constraints to follow the
rules presented in this paper, increasing system evolvability
by ensuring compliance with the theorems on normalized
systems.
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