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Abstract—Missing data can be estimated by means of interpo-
lation, time series modelling, or exploiting statistically dependent
information. The limits of when one approach is preferable to the
alternatives have not been explored, but are likely to be a com-
promise between a signal autoregressive information, availability
of future observations, stationary behaviour and the strength of
the dependence with concomitant information. This paper takes
a first step towards clarifying dataset characteristics delimiting
the realm of application for each technique. In addition, this
paper introduces autoregressive Bayesian networks (AR-BN), a
variant of Dynamic Bayesian Networks for completing databases
which exploits latent variable relations while still benefitting from
autoregressive information of the variable being filled. Using
AR-BN, new estimated values are calculated using inference
in the dynamic model. Our results unveil how the interplay
between the variable autoregressive information and the variable
relationship to others in the dataset is critical to selecting the
optimal data estimation technique. AR-BN appears as a good
candidate ensuring a consistent performance across scenarios,
datasets and error metrics.

Keywords-dynamic probabilistic graphical models; incomplete
data series; value estimation; knowledge discovery; autoregres-
sive models.

I. INTRODUCTION

Instrumentation failure, human error or interferences during
data storing give rise to a number of disagreements between
the real data and the repository. A wealth of literature is
available on data validation methods for addressing any of
the more common issues; outliers [1], [2], [3], [4], [5], [6],
[7], sudden changes [8], [9], [4], [5], [6], [7], rogue values
[10] and missing data [11], [12], [13]. Moreover, full data
validation suites can be envisaged [14], [15], [16]. This paper
concentrates in estimation of missing data.

Missing data can be estimated by means of interpolation,
time series modelling, or exploiting statistically dependent
information. Arguably the most widely applied methods are
the various interpolation techniques [17] together with classi-
cal time series modelling [18] such as ARMA or ARIMA.
Interpolation and time series modelling are appropriate for
isolated time series. In isolated time series missing data
is reconstructed exploiting within-variable information. The
simplest method will replace missing data with the distribu-
tion average [12]. However, in complex databases, statistical
dependencies among variables can be further exploited to

fill information gaps. Hence a number of techniques have
been developed to make the most out of this dependent
information. Vagin and Fomina [12] proposed a method based
on nearest neighbour. This consists in the definition of a metric
that relates the similarity between different variables in a
database. Lamrini et al [11] applied self organizing maps for
reconstructing data from monitoring a water treatment process
with a complex sensor configuration. In another example, a
virtual sensor estimates the value of the fuel oil viscosity
using related variables of a combustion process in power
plants [19]. It can be argued, that these later approaches
exploit information present in adjacent variables at the cost
of ignoring any signal own information. It is yet unknown
when the dataset characteristics will favour application of one
technique over another. Moreover, it can be hypothesized that
a method that utilizes both sources of information, the signal
internal information and the related information present in the
repository, will achieve data reconstruction with high accuracy.

This paper aims at demarcating the dataset characteristics
advocating for the application of a particular approach for
estimating missing data in incomplete dataset. Towards better
exploiting the presence of both aforementioned sources of
information, we further introduce the autoregressive Bayesian
networks (AR-BN), a variant of Dynamic Bayesian Networks
(DBN) for incomplete data estimation based upon dynamic
probabilistic modelling. AR-BN exploits statistical depen-
dencies among related variables as well as the variables’
autoregressive information. The main contribution of this
work is twofold. First, a preliminary exploration of dataset
features hypothesized to guide the decision on missing data
estimation process, as well as a comparative in missing data
error reconstruction from a range of techniques. Second, the
enrichment of a static probabilistic model with previous and
posterior values of the variable set to afford an autoregressive
probabilistic model. The reconstruction capabilities of the
technique are demonstrated in two datasets from different
domains.

II. METHODS

A beautiful mathematical formulation of the problem of
incomplete data can be found in [13].
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A. Autoregressive models

Autoregressive models are linear systems for predicting
future values of a time series based on previous observations.
The general autoregressive model of order n -denoted AR(n)-
is defined as:

Xt = c+

n∑
i=1

αiXt−i + εt (1)

where αi|i=1...n are the model parameters, c is a constant and
εt is noise. In an off-line repository, future data may also be
available and can be easily incorporated:

Xt = c+

n∑
i=1

αiXt−i +

m∑
j=1

βjXt+j + εt (2)

where αi|i=1...n and βj|j=1...m are the AR(n,m) model param-
eters.

B. Probabilistic modelling

A Bayesian network is a directed acyclic graph (DAG)
representing the joint probability distribution of all variables
in a domain [20]. The topology of the network conveys di-
rect information about the dependency between the variables.
In particular, it represents which variables are conditionally
independent given another variable.

Given the knowledge represented as a Bayesian network, it
can be used to reason about the consequences of specific input
data, by what is called probabilistic reasoning. This consists of
assigning a value to the input variables, and propagating their
effect through the network to update the probability of the
hypothesis variables. The updating of the certainty measures
is consistent with probability theory, based on the application
of Bayesian calculus and the dependencies represented in the
network. Several algorithms have been proposed for this prob-
ability propagation [20]. Bayesian networks can use historical
data to acquire knowledge but may additionally assimilate
domain experts’ input.

Dynamic Bayesian Networks (DBN) are an attempt to add
temporal dimension into the BN model [21], [22]. Often a
DBN incorporates two models; an initial net B0 learned using
information at time 0, and the transition net B→ learned with
the rest of the data. Together B0 and B→ conform the DBN
[23]. An important assumption is made for DBNs; the process
is Markovian, this is, the future is conditionally independent of
the past given the present. This assumption allows the DBN to
use only the previous time stage information in order to obtain
the next stage. DBN can be unfolded over as many stages as
necessary and the horizontal structure can change from stage
to stage. The resulting network is highly expressive but often
unnecessarily complicated. Alternatives have been proposed to
reduce this complexity [24]. In datasets arising from physical
processes, statistical dependencies among variables can be
expected to be stable across time. That is, if two variables
X and Y are statistically dependent at time ti they will likely
be also statistically dependent at time ti+j for any arbitrary
samples i and j, and similar reasoning can be made for

independencies. This can be exploited to simplify the network
topology.

C. Autoregressive Bayesian Networks

Autoregressive Bayesian Networks are a simplified variant
of DBNs. They incorporate the temporal dimension by ob-
serving time-shifted versions of the variables, whether past
or future, therefore the Markovian assumption is not needed.
Conceptually they can be regarded as bringing an autoregres-
sive model AR(n,m) to the BN domain.

Suppose a time series dataset. Figure 1 illustrates the
proposed probabilistic model. Variable X represents the vari-
able to be estimated, variables Y and Z represent pieces of
Bayesian network corresponding to all the related variables
to X . X post represents the value of variable X at the time
t + 1, and X ant represents the value of variable X at the
time t− 1.

Fig. 1. Dynamic probabilistic model proposed for data estimation.

This proposed model represents a dynamic model which
provides accurate information for estimating the variable in
two senses. First, using related information identified by
automatic learning algorithms or experts in the domain, or
both. Second, using information of the previous and incoming
values. This information includes the change rate of the
variable according to the history of the signal.

In this approach the horizontal (inter-stage) topology of the
network is fixed. The persistency arcs among a variable and its
shifted versions are enforced, whereas those between different
variables at different stages are forbidden.

D. Estimating missing data from incomplete databases using
AR-BN

Summarizing, the proposed procedure for estimating miss-
ing data from incomplete databases is in Algorithm 1. The
first 4 steps build the model, the last 3 propagate knowledge
to estimate data holes.

III. EXPERIMENTS AND RESULTS

Simulations were carried out to reconstruct missing data
from 2 different industrial datasets of different nature (vari-
ables have been enumerated for confidentiality). The first
dataset comprises 10 variables. It corresponds to a manu-
facturing process. The second dataset comprises 3 variables.
It corresponds to an energy domain. Intrinsic dimensionality
of the datasets as found by Principal Component Analysis
is 7 and 1 respectively (99% of variance included). For the
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Algorithm 1 Estimation of missing data
1: Obtain a complete data set that includes information from

the widest operational conditions of the target process.
2: Clean the outliers and discretize the data set.
3: Utilize a learning algorithm that produces the static

Bayesian network relating all the variables in the process.
During the learning process a complete train set with data
from all variables is needed as indicated in step 1.

4: Modify the static model to include previous and posterior
values of every variable.

5: For all registers in an incomplete database, if one value is
missing, instantiate the rest of the nodes in the model.

6: Propagate to obtain a posterior probability distribution of
the missing value given the available evidence.

7: Return the estimated value with the value of the highest
probability interval, or calculate the expected value of the
probability distribution.

dataset 2, the scale of one of the variables is 5 orders of
magnitude larger than the remaining 2 variables. Hence, the
global intrinsic dimensionality is perceived to be 1 by PCA,
but local dimensionality of the dataset remains 3, which can
be determined by the Fukunaga and Olsen’s algorithm [25].
The pairwise Pearson correlations among variables for the
datasets in Fig. 2 hint about the dependencies among variables.
Variables autoregressive order n was estimated using the
Akaike Information Criterion [26] providing an indication of
the signal own predictability. The autoregressive orders found
with this criterion are summarised in Table I. Stationarity of
the time series was estimated using the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test for stationarity and is summarised
in Table II.

TABLE I
AUTOREGRESSIVE ORDERS AS CALCULATED WITH THE AKAIKE

INFORMATION CRITERION.

Var.# 1 2 3 4 5 6 7 8 9 10
Dataset 1 2 2 1 2 2 9 7 9 9 9
Dataset 2 25 1 25

TABLE II
KWIATKOWSKI-PHILLIPS-SCHMIDT-SHIN (KPSS) STATIONARITY TESTS.
** INDICATES A HIGHLY SIGNIFICANT VALUE (p < 0.01). * INDICATES A

SIGNIFICANT VALUE (p < 0.05).

Var.# Dataset 1 Dataset 2
1 p < 0.01** p = 0.01*
2 p < 0.01** p = 0.014*
3 p < 0.01** p = 0.01*
4 p < 0.01**
5 p < 0.01**
6 p < 0.01**
7 p = 0.04061*
8 p = 0.05843
9 p = 0.04314*

10 p = 0.02301*

(a) Dataset 1

(b) Dataset 2

Fig. 2. Pairwise Pearson correlations among variables for the datasets.
Circle size is proportional to correlation coefficient r. Circle color indicates
significance: gray, non significant; blue, p < 0.05; green, p < 0.001; red,
p < 0.0001;

From the datasets, specific samples were hidden to simulate
missing values in three different fashions:
• Random Missing Data (RMD): Ghosted samples were

chosen at random. Ghosted data accounts for 10% of each
variable.

• Random Missing Blocks (RMB): Ghosted samples were
chosen in blocks to have consecutive subseries of missing
data. Ghosted data accounts for 10% of each variable.
However, the location of the ghosted block and the
number of blocks is random.

• All Missing Data (AMD): One full variable was ghosted
at a time. Reconstruction can only occur from related
information.

For each fashion, 10 train/test pairs were prepared for
a 10-fold cross-validation. Note that the AMD has d test
for each train case where d correspond to the number of
variables in the dataset. After preparation of the ghosted
test datasets, reconstruction was attempted by means of the
following techniques:
• Static Bayesian Network (BN). Discretization was set to

5 equidistant intervals. Structure was learned using the
PC algorithm [27].

• Autoregressive Bayesian Network (AR-BN). Autoregres-
sion order was fix to < p, q >=< 1, 1 >. Vertical (intra-
stage) structure was learned using the PC algorithm.
Equidistant intervals were used at all times, with the
number of intervals being either 4 or 5 as bounded
by memory limitations. The exemplary network for the
Dataset 2 is illustrated in Fig. 3
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• Linear interpolation (LI).
• Cubic spline interpolation (CSI).
• Autoregressive Models (AR(1))
• Autoregressive Models (AR(n)). Order n was chosen ac-

cording to Table I. Notwithstanding, during the prepara-
tion of the train/test sets, some of the test sets did contain
a number of samples lower than the autoregressive order
i.e. AR order 25 for Dataset 1 variables 1 and 3. In those
cases, the highest possible order was chosen based on the
number of available samples.

Fig. 3. Autoregressive Bayesian network proposed for data estimation for
the Dataset 2.

In order to establish the accuracy of the estimation of the
missing value the following error metrics were computed [28]:

Let Ei be the relative deviation of an estimated value xesti

from an experimental value xobsi :

Ei =

[
xobsi − xesti

xobsi

]
× 100 i = 1, 2, . . . , n (3)

with n being the number of missing data.
• Root Mean Square Error:

erms =

[
1

n

n∑
i=1

E2
i

]1/2
(4)

• Average Percent Relative Error:

er =
1

n

n∑
i=1

Ei (5)

• Average Absolute Percent Relative Error:

ea =
1

n

n∑
i=1

|Ei| (6)

• Minimum and Maximum Absolute Percent Relative
Error:

emin = minni=1|Ei| (7)
emax = maxni=1|Ei| (8)

As indicated above, for each reconstruction technique and
ghosting fashion, a 10-fold validation was made. Since AMD
scenario can only be reconstructed from related information,
this scenario cannot be resolved by interpolation or autoregres-
sive models. In total, 280 simulations were executed using
MATLAB and Hugin [29]. For 3 simulations mistakes in
pipeline from training to test were detected and their results not

included for further analysis. Statistical analysis was carried
out in R. R is a language and environment for statistical
computing and graphics. See http://www.r-project.org/.

Fig. 4. Example of the missing data estimation using the different techniques.
The example corresponds to the 3 different variables of Dataset 2 respectively
for an RMD scenario. For this example, each sample of the time series is
hidden one at a time, and the missing sample is estimated using the rest of
the series as necessary by the different estimation techniques.

A. AR-BN performance

An example of the reconstruction with the different tech-
niques is illustrated in Fig. 4. Fig. 5 summarizes the errors in-
curred by each technique, and Fig. 6 provides a more detailed
view by dataset and error metric. From this detailed view, it
can be appreciated that the proposed AR-BN achieves a good
compromise in the reconstruction across different scenarios,
datasets and error metrics. Unexpectedly, linear interpolation
achieves better overall reconstruction than the more advanced
spline interpolation. Classical autoregressive models achieve
a reasonable performance but are highly unstable in their
predictions as demonstrated by the large standard deviations
coupled with disparate differences between emin and emax.

B. Limits of missing data estimation approaches

Fig. 7 relates the variable feature space given by the variable
autoregressive order and its average relation to all other
variables in its dataset (avg r) against the dominant technique.
The dominant technique is that which affords the lowest error
in a particular region of the variable feature space. Regions are
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Fig. 5. Reconstruction errors incurred by each technique across datasets,
scenarios, folds and variables. Bars and error lines correspond to average
values and standard deviation respectively.

Fig. 6. Reconstruction errors incurred by each technique across folds and
variables. Columns correspond to dataset; Left: Dataset 1; Right: Dataset 2;
Rows correspond to different error metric: From top to bottom: erms, er ,
ea, emin and emax. Bars and error lines correspond to average values and
standard deviation respectively.

calculated using the Voronoi partition. It can be appreciated
how the use of one technique over the other is subjected to
the characteristics of the variable in terms of its autoregressive
information as well as the amount of dependency that the vari-
able share with fellow variables in the dataset as hypothesized.
In particular, linear interpolation performs particularly well

in these examples when the estimated autoregressive orders
of the variables are low. When a full variable needs to be
reconstructed from related information, it is obvious that the
AR-BN dominance of the variable feature space grows as the
autoregressive information does so.

IV. CONCLUSIONS AND FUTURE WORK

We have explored the relation between a variable feature
space represented by its autoregressive order and its relation
to other variables in its dataset against different reconstruction
techniques. Our results suggest that the interplay between
the variables characteristics in the dataset dictates the most
beneficial reconstruction option.

Unfortunately, the two datasets used in these simulations
are not large enough to allow us exploring the variable feature
space in detail. Yet some patterns start to be discernible. In
particular, we have shown that the proposed AR-BN achieves
a particularly competitive reconstruction regardless of the
scenario, dataset and error metric used. Although we have
reported signals stationarity for reproducibility, it has not
further been considered for this paper. We believe signal
stationarity will also be a critical element in the variable
feature space supporting the decision over which estimation
technique to use. Consequently, we plan to explore its effect.

The AR-BN model can be trivially extended to any level
auto-regression and can be easily adapted for non-numerical
data. In this sense, different autoregressive stages whether past
or future must be added ”in parallel” rather than ”in series” so
that these observations can be appreciated through the Markov
blanket. We believe the proposed AR-BN profits from both
within-variable information and statistical dependencies across
variables, thus representing a valuable tool for the estimation
of missing data in incomplete databases.
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